By Paul Erdõs and George Purdy

Hungarian Acadery of Sciences Texas A \& M University

1. Introduction

Let $X_{1}, X_{2}, \ldots, X_{n}$ be distinct points in k-dimensional Euclidean space E_{k}, let $d\left(X_{i}, X_{j}\right)$ denote the distance between X_{i} and X_{j}, and let $g_{k}(n)$ denote the maximum number of solutions of $d\left(X_{i}, X_{j}\right)=a, 1 \leq i<j \leq a$, where the maximum is taken over all possible choices of a and distinct X_{1}, \ldots, X_{n}. In words, $g_{k}(n)$ is the maximum number of times that the same distance can occur among n points in E_{k}. One of the authors proved in [1] that

$$
g_{2}(n)>n^{1+c / \log \log n}
$$

(Throughout this report c and c_{i} deaote positive constants not necessarily the same at every occurrence).

Szemeredi proved recently in [9] that $g_{2}(n)=o\left(n^{3 / 2}\right)$, and one of the authors has shown in [2] that

$$
c_{1} n^{4 / 3}<g_{3}(n)<c_{2} n^{5 / 3}
$$

and

$$
\lim _{n \rightarrow \infty} f_{k}(n) / n^{2}=(1 / 2)-\frac{1}{2\left[\frac{k}{2}\right]}
$$

for $k \geq 4$, where $[x]$ denotes the integer part of x.

In other work [4], [7] the authors discuss the maximum number of times $f_{k}^{a}(n)$ that the same non-zero area can occur among the triangles $\Delta X_{1} X_{j} X_{\ell} \quad 1 \leq i<j<\ell \leq n$, where the maximum is again taken over all choices for X_{1}, \ldots, X_{n} in E_{k}.

In this report we discuss the maximum number $f_{k}^{i}(n)$ isosceles triangles that can occur (congruent or not), the maximum number $f_{k}^{e}(n)$ of equilateral triangles that can occur, the maximum number $f_{k}^{c}(n)$ of pairwise congruent triangles, and the maximum number $f_{k}^{s}(n)$ of pairwise similar triangles that can occur. All of these problems were posed at the end of our paper [4].

2. Isosceles Triangles

In the plane we have

Theorem 1.

$$
c_{1} n^{2} \log n<f_{2}^{1}(n)<c_{2} n^{5 / 2}
$$

Proof 1. Let $X_{0}, X_{1}, \cdots, X_{n}$ be distinct points in E_{2}. For $1 \leq 1 \leq n$, the points forming an isosceles triangle with X_{0} and X_{i} on the base lie on a line, and these lines are distinct. Let v_{i} denote the number of points X_{j} on the fth line. The number of isosceles triangles having X_{0} as a base vertex is $\sum_{i=1}^{n} v_{i}$, and it will be
enough to show that this is less than $\mathrm{cn}^{3 / 2}$. The lines containing fewer than \sqrt{n} points clearly present no difficulty. Let $k \geq 0$ be fixed, and suppose that $v_{1_{1}}, \ldots, v_{i_{N}}$ are the v_{i} satisfying $2^{k} / \mathrm{n} \leq \mathrm{v}_{\mathrm{i}}<2^{\mathrm{k}+1} / \mathrm{n}$, where $\mathrm{N}=\mathrm{N}_{\mathrm{k}}$.

Since two lines have at most one point in common, we have

$$
\sum_{j=1}^{N_{k}}\binom{v_{i_{j}}}{2} \leq\binom{ n}{2}
$$

Using the inequalities on $\mathrm{v}_{\mathrm{i}_{j}}$,

$$
\begin{aligned}
& N_{k} \frac{1}{2} 2^{k} / n\left(2^{k} / n-1\right) \leq\left(\frac{n}{2}\right), \\
& N_{k}<\frac{\mathrm{cn}}{4^{k}}, \\
& \sum_{j=1}^{N} v_{i_{j}} \leq N_{k} 2^{k+1} / \sqrt{n}<\mathrm{cn}^{3 / 2} / 2^{k},
\end{aligned}
$$

and summing over k gives the result.
2. Let $m=[\sqrt{n}]$ and consider the points $X_{i}=\left(u_{i}, v_{i}\right)$ with integer coordinates satisfying $\left|u_{i}\right|,\left|v_{i}\right| \leq m / 2$. Let u and v be fixed, $|u|,|v| \leq m / 4$. If $k<\mathbb{m}^{2} / 16$, then the circle with center (u, v) and radius $r k$ will lie inside the region

$$
R=\{(x, y):|x|,|y| \leq m / 2\},
$$

and the number of points X_{1} lying on the circle will be $r(k)$, the number of representations of k in the form $k=\ell^{2}+m^{2}$, where ℓ and m are integers. The pairs of points on the circle give us $\binom{r(k)}{2}$ isosceles triangles having (u, v) as a vertex. Hence there are at least $\sum_{k=1}^{N}\binom{r(k)}{2}$ isosceles triangles having
(u, v) as a vertex, where $N \geq[m / 4]^{2}>c n$. By formula 22 of
[8] and (18.7.1) of [5], we have

$$
\begin{aligned}
& \sum_{k=1}^{N}\binom{r(k)}{2}=\frac{1}{2} \sum_{k=1}^{N} r^{2}(k)-\frac{1}{2} \sum_{k=1}^{N} r(k) \\
& =\frac{N}{8}(\log N+B)+0\left(n^{3 / 5}+\varepsilon\right) \\
& \quad-\frac{1}{2} \pi N+0\left(N^{1 / 2}\right)
\end{aligned}
$$

for every $\varepsilon>0$, where B is a constant. Hence the number of isosceles triangles containing (u, v) is at least on logn. There are cn choices for (u, v) and the result follows.

Theorem 2. $\quad f_{3}^{1}(n) \geq 2 n^{3} / 27-\mathrm{cn}^{2}$

Proof. Let n be given, and let $k_{i}=\left(u_{i}, v_{i}, 0\right)$ for
$1 \leq 1 \leq[2 n / 3]$, where u_{i}, v_{i} are distinct solutions of $u^{2}+v^{2}=1$, and let

$$
Y_{i}=(0,0,1) \text { for } 1 \leq i \leq n-[2 n / 3] \text {. }
$$

The triangles $\Delta X_{i} X_{j} Y_{k} \quad$ for $1 \leq i<j \leq[2 n / 3]$ and $1 \leq k \leq n-[2 n / 3]$
are isosceles; hence

$$
\begin{aligned}
f_{3}^{1}(n) & \geq \frac{1}{2}((2 n / 3)-1)((2 n / 3)-2)(n / 3) \\
& \geq(2 / 27) n^{3}-c n^{2}
\end{aligned}
$$

3. Equilateral Triangles

In the plane we have

Theorem 3. $\quad \frac{1}{6} \mathrm{n}^{2}-\mathrm{cn}^{3 / 2} \leq \mathrm{f}_{2}^{\mathrm{e}}(\mathrm{n}) \leq \mathrm{n}^{2} / 3$

Proof 1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be distinct points in E_{2}. For fixed X_{i} and X_{j} there are at most two points X such that $\Delta x_{1} X_{j} x$ is equilateral. Hence $f_{2}^{e}(n) \leq \frac{2}{3}\left(\frac{n}{2}\right)$, and the result follows.
2. Let Λ be the geometrical lattice known as the triangular or 60° lattice. Let n be given, and let ρ be a positive number chosen so that the unit disc centered on the origin contains between $n-c_{1} / n$ and $n+c_{2} / n$ points of ρA. If X and Y are in $\rho \Lambda$, then both of the points Z forming equilateral triangles with X and Y will lie in $\rho \Lambda$, but not necessarily in the unit disc.

It is convenient to think of the points as complex numbers. Let z be a fixed point in the unit disc. If w is also in the unit disc, the point

$$
\xi=\frac{1}{2}(z+w)+1 \frac{\sqrt{3}}{2}(z-w)
$$

forms an equilateral triangle with z and w. The requirement that $|\xi| \leq 1$ restricts

$$
w=-\frac{(1+i \sqrt{3})}{2} \xi-\frac{(1+i \sqrt{3})}{2} z
$$

to lie in a disc of radius one and center $\frac{(1+1 \sqrt{3})}{2} z$.

The area in which this disc intersects the disc $|w| \leq 1$ is the area of overlap of two unit discs whose centers are distance $\left|\frac{(1+i \sqrt{3})}{2} z\right|=|z|$ apart. If $z=x+i y$, this area is easily seen to be

$$
A(x, y)=2 \int_{0}^{\sqrt{1-x^{2}-y^{2}}}\left\{2 \sqrt{1-z^{2}}-\sqrt{x^{2}+y^{2}}\right\} d z .
$$

If z is a point of $\rho \Lambda$ having modulus less than one, then the number of equilateral triangles having $z=x+1 y$ as a vertex is at least $\frac{A(x, y) n}{\pi}-c \sqrt{n}$.

By integrating this function over the unit disc, and bearing in mind that every triangle is obtained three times in this way, we get $f_{2}^{e}(n) \geq \frac{n^{2}}{3^{\pi}} 2 I-\mathrm{cn}^{3 / 2} \quad$, where

$$
I=\int_{x^{2}+y^{2} \leq 1} A(x, y) d x d y
$$

Hence

$$
\begin{aligned}
I & =2 \int_{x^{2}+y^{2} \leq 1} d x d y \int_{0}^{\sqrt{1-x^{2}-y^{2}}}\left\{2 \sqrt{1-z^{2}}-\sqrt{x^{2}+y^{2}}\right\} d z \\
& =4 \pi \int_{0}^{1} r d r \int_{0}^{\sqrt{1-r^{2}}}\left\{2 \sqrt{1-z^{2}}-r\right\} d z \\
& =4 \pi \int_{0}^{1}=\sin ^{-1}\left(\sqrt{1-r^{2}}\right) d r \\
& =4 \pi \int_{0}^{1} t \sin ^{-1} t d t \\
& =\left[2 \pi t^{2} \sin ^{-1} t\right]_{0}^{1}-2 \pi \int_{0}^{t^{2} d t / \sqrt{1-t^{2}}} \\
& =\pi^{2}-\pi^{2} / 2=\pi^{2} / 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
f_{2}^{e}(n) & \geq\left(n^{2} / 3 \pi^{2}\right)\left(\pi^{2} / 2\right)-c n^{3 / 2} \\
& =\left(n^{2} / 6\right)-\mathrm{cn}^{3 / 2}
\end{aligned}
$$

as claimed.

In space, we have

$$
f_{3}^{\mathbf{e}}(\mathrm{n}) \leq \mathrm{f}_{3}^{\mathbf{s}}(\mathrm{n}) \leq \mathrm{cn}^{7 / 3}
$$

The second inequality will be proved in Section 4 .

$$
\text { In } E_{4} \text {, we have }
$$

Theorem 4. $\quad f_{4}^{e}(n) \leq \mathrm{cn}^{8 / 3}$.

Proof. Let $X_{0}, X_{1}, \ldots, X_{n}$ be distinct points in E_{4}, and let G be the graph whose vertices are X_{1}, \ldots, X_{n} and whose edges are those ${\overline{X_{i}}}_{j}$ for which $\Delta X_{0} X_{i} X_{j}$ is an equilateral triangle. We shall show that G cannot contain a Kuratowski subgraph $K_{3,3}$. Suppose that G contains a $K_{3,3}$. Then there are points $Y_{1}, Y_{2}, Y_{3}, Z_{1}, Z_{2}$, and Z_{3} such that the nine triangles $\Delta X_{0} Y_{i} Z_{j}$ are equilateral. They clearly must be congruent; let a
denote their common side length. Let $1 \leq 1 \leq 3$ be fixed. The points Z_{j}, being equidistant from X_{0} and Y_{i}, lie on a hyperplane π_{i}, which is the perpendicular bisector of the line segment ${\overline{X_{0}}{ }_{i}}$. If we let X_{0} be the origin of coordinates and let X_{i} be the position vector of the point Y_{i}, then the points z_{j} lie on an ordinary sphere s_{i}, contained in π_{i}, with center $(1 / 2) y_{i}$ and radius $(\sqrt{3} / 2) a$. For distinct i and j, the spheres s_{i}, having different centers and equal radii, will intersect in a circle $c_{i f}$ with center $(1 / 2)\left(y_{1}+y_{j}\right)$. The two circles c_{12} and c_{13} have different centers, and yet they have three points Z_{j} in common. This is clearly impossible; hence G does not contain a $K_{3,3}$.

By a theorem of Turán, Sös, and Koväri [6] the graph G has fewer than $\mathrm{cn}^{5 / 3}$ edges; hence any vertex belongs to at most $\mathrm{cn}^{5 / 3}$ equilateral triangles, and the result follows.

Remark By slightly elaborating the above argument, the following can be proved: If X_{1}, \ldots, X_{G} are distinct points in E_{4} and $\triangle X Y Z$ is an acute or obtuse triangle, then no vertex can belong to more than $\mathrm{cn}^{5 / 3}$ triangles similar to $\triangle \mathrm{XYZ}$. The following
example shows that the assertion is not true if $\triangle X Y Z$ is a right triangle:

$$
\begin{aligned}
& \text { Let } P:(0,0,0,0) \\
& \qquad X_{i}:\left(x_{i}, y_{i}, 0,0\right) \quad 1 \leq i \leq n \\
& Y_{j}:\left(0,0, x_{j}, y_{j}\right) \quad 1 \leq j \leq n
\end{aligned}
$$

where $x_{i}^{2}+y_{j}^{2}=1$. Then the n^{2} triangles $\Delta P X_{i} Y_{j}$ are all isosceles right triangles (and in fact, congruent).

In E_{5} we have only $f_{5}^{e}(n) \leq f_{5}^{s}(n) \leq \mathrm{cn}^{26 / 9}$, and the second inequality will be proved in Section 4.

In E_{6}, the following construction, which also appeared in [2] and [4], gives m^{3} congruent equilateral triangles from only 3 m points: For $1 \leq i \leq m$

$$
\begin{aligned}
& x_{i}:\left(u_{i}, v_{i}, 0,0,0,0\right) \\
& Y_{i}:\left(0,0, u_{i}, v_{i}, 0,0\right) \\
& z_{i}:\left(0,0,0,0, u_{i}, v_{i}\right)
\end{aligned}
$$

where $u_{i}^{2}+v_{i}^{2}=1$. The triangles $\Delta X_{i} Y_{j} Z_{k}$ are equilateral triangles with side one, and consequently $\quad f_{6}^{s}(n), \quad f_{6}^{e}(n)$ and $f_{6}^{c}(n)$ are all greater than $\left(n^{3} / 27\right)-\mathrm{cn}^{2}$.
4. Similar Triangles

In the plane, we have

Theorem 5. $\quad \mathrm{f}_{2}^{\mathrm{s}}(\mathrm{n}) \leq \mathrm{cn}^{2}$.

Proof. Similar to the proof of Theorem 3, part one.

In space, we have

Theorem 6. $\quad f_{3}^{s}(n) \leq \mathrm{cn}^{7 / 3}$.

Proof. Let $X_{1}, X_{2}, \ldots, X_{n}$ be distinct points in E_{3}, and let $\triangle A B C$ be a triangle (non-degenerate, of course).

If i and j are fixed, $I \leq i<j \leq n$, then the locus of points Z such that the vertices X_{i}, X_{j} and Z, taken in some order, form a triangle similar to $\triangle A B C$ consists of at most a constant number c circles. Let N be the number of these circles over all i and j, and let v_{i} be the number of points X_{j} on the fth circle. We have

$$
\mathrm{N} \leq \mathrm{cn}^{2},
$$

and since a triple of points can only occur on one circle, we have

$$
\sum_{i=1}^{N}\binom{v_{i}}{3} \leq\binom{ n}{3}
$$

The number of triangles similar to $\triangle A B C$ is $\frac{1}{3} \sum_{i=1}^{N} v_{i}$, and the maximum of this function, even allowing positive real v_{i}, subject to the constraint

$$
\sum_{i=1}^{N} v_{i}\left(v_{i}-1\right)\left(v_{1}-2\right) \leq 6\binom{n}{3}
$$

occurs when the v_{i} are all equal, because the function on the left-hand side is convex. Consequently,

$$
\begin{aligned}
& \frac{1}{3} \sum_{i=1}^{N} v_{i} \leq \frac{N}{3}\left\{2+\left\{\frac{n(n-1)(n-2)}{N}\right\}^{1 / 3}\right\} \\
& =\frac{2}{3} N+\frac{1}{3}\{n(n-1)(n-2)\}^{1 / 3} N^{2 / 3} \\
& \leq \mathrm{cn}^{7 / 3}, \text { by the upper bound on } N .
\end{aligned}
$$

Theorem 7. $\quad f_{4}^{\mathrm{s}}(\mathrm{n}) \leq \mathrm{cn}^{17 / 6}$

Proof. Let $\triangle A B C$ be a non-degenerate triangle, and let $x_{1}, x_{2}, \ldots, x_{n}$ be in E_{4} and distinct. We form the 3 -graph G whose vertices are the X_{i}, and whose edges are the unordered triples $\left\{x_{i}, x_{j}, x_{k}\right\}$ such
that $\Delta X_{i} X_{j} X_{k}$ is similar to $\triangle A B C$. We claim there cannot be a $K_{3}(2,3,3)$ subgraph of G. That is, there cannot be vertices $Y_{1}, Y_{2}, Z_{1}, Z_{2}, Z_{3}, W_{1}, W_{2}$, and W_{3} such that the 18 triples $\left\{Y_{i}, Z_{j}, Z_{k}\right\}$ for $1 \leq i \leq 2,1 \leq J, k \leq 3$ are all in G. Suppose that such Y_{i}, Z_{j}, W_{k} do exist. Then the triangles $\Delta Y_{i} Z_{j} W_{k}$ are similar to $\triangle A B C$ and all congruent to each other. The three points z_{j} lie on a hypersphere, they are not collinear, and they determine a two-dimensional plane π_{z}. The three points W_{k} determine, similarly, a two-dimensional plane π_{w}, and the two points X_{i} determine a line ℓ. Since the z_{j} are equidistant from the Y_{i}, π_{2} must be orthogonal to ℓ.

Similarly, $\quad \pi_{w}$ is orthogonal to ℓ and π_{z}. This is only possible in five or more dimensions; hence the $K_{3}(2,3,3)$ does not occur, as claimed. It follows from the methods of [6] and [3]
that G has fewer than $\mathrm{cn}^{3-\frac{1}{k \ell}}$ edges if G contains no
$K_{3}(k, \ell, m)$, where c depends only on k, ℓ and m. Consequently, there are fewer than $\mathrm{cn}^{17 / 6}$ triangles similar to $\triangle A B C$.

Theorem 8. $f_{5}^{s} \quad(n) \leq \mathrm{cn}^{26 / 9}$.

Proof. Similar to the proof of theorem 7.

The 3-graph G does not contain a $K_{3}(3,3,3)$, and therefore G has fewer than $\mathrm{cn}^{26 / 9}$ edges.
5. Congruent Triangles

In the plane, we have

Theorem 9. $\quad f_{2}^{c}(n)=o\left(n^{3 / 2}\right)$.

Proof. Let $\triangle A B C$ be an arbitrary non-degenerate triangle, and let X_{1}, \ldots, x_{n} be distinct points in the plane. The result $g_{2}(n)=o\left(n^{3 / 2}\right)$, due to Szemerédi, which was mentioned in Section 1 , implies that no more than $O\left(n^{3 / 2}\right)$ pairs $\left\{X_{i}, X_{j}\right\}$ can be at distance $\overline{\mathrm{AB}}$. Each pair can occur in at most c triangles congruent to $\triangle A B C$, and the result follows.

Theorem 10. $f_{3}^{c}(n) \leq \mathrm{cn}^{19 / 9}$.

Proof. Let $\triangle A B C$ be an arbitrary non-degenerate triangle, and let X_{1}, \ldots, X_{n} be distinct points in space. The result $g_{3}(n)<c_{2} n^{5 / 3}$ mentioned in Section 1 implies that no more than $\mathrm{cn}^{5 / 3}$ pairs $\left\{\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right\}$ can be at distance $\overline{\mathrm{AB}}$. For each such pair, the locus of points X such that the vertices X_{i}, X_{j} and X taken in some order form a triangle congruent to $\triangle A B C$ consists of at most a constant nuaber of circles. Let N be the number of all of these circles as $\left\{X_{i}, X_{j}\right\}$ ranges over all the pairs at distance $\overline{A B}$. Then we have

$$
\mathrm{N} \leq \mathrm{cn}^{5 / 3} .
$$

As in the proof of Theorem 6 , we have $\sum_{i=1}^{N}\binom{v_{i}}{3} \leq\binom{ n}{3}$,
where v_{1} is the number of X_{j} on the ith circle, and the number of triangles congruent to $\triangle A B C$ is at most

$$
\begin{aligned}
\sum_{i=1}^{N} v_{1} & \leq 2 N+\{n(n-1)(n-2)\}^{1 / 3} N^{2 / 3} \\
& \leq \mathrm{cn}^{19 / 9}
\end{aligned}
$$

In conclusion we would like to mention a few related problems. Throughout this section ε will denote a positive number, not necessarily the same at every occurrence.

Is the inequality $f_{6}^{e}(n) \geq \frac{n^{3}}{27}-c n^{2}$ best possible? It would be interesting even to show $f_{6}^{e}(n) \leq\left(\frac{1}{6}-\varepsilon\right) n^{3}$.

What is the value of $\lim _{n \rightarrow \infty} f_{2}^{e}(n) / n^{2}$? Does the limit even exist? Can you prove $f_{2}^{\epsilon}(n) \leq\left(\frac{1}{3}-\varepsilon\right) n^{2}$? Finally, we mention an entirely different problem: Given n points in the plane, how many triangles $f_{2}(n)$ can approximate congruent equilateral triangles?

By dividing the points into three small clusters we can get $f_{2}(n) \geq\left(n^{3} / 27\right)$. It would be of interest to show $f_{2}(n) \leq\left(\frac{1}{4}-\varepsilon\right) n^{3}$.

References

[1] Erdös, P. "On sets of distances of n points." Amer. Math. Monthly 53 (1946) pp. 248-250.
[2] Erdös, P. "On sets of Distances of n Points in Euclidean Space," Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960), 165-169.
[3] P. Erdös, "On Extremal Problems of Graphs and Generalized Graphs," Israel J. Math. 2 (1964), 183-190.
[4] Erdös, P. and Purdy, G. Some Extremal Problems in Geometry," J. Comb. Theory 10 (1971) pp. 246-252.

15] An Introduction to the Theory of Numbers, G. H. Hardy and E. M. Wright, Oxford University Press, 1938.
[6] T. Kövári, V. T. Sós, and P. Turán, "On a Problem of K. Zarankiewixz, Colloq. Math. 3 (1954), 50-57.
[7] Purdy, G. "Some Extremal Problems in Geometry II". Discrete Math. 7 (1974) pp. 305-315.
[8] Collected Works of Srinivasa Ramanujan P. 135, Edited by G. H. Hardy, Camb. Univ. Press, 1927.
[9] Szemerédi, E. "The number of unit distances in the plane" Proc. International Colloquium on Infinite and Finite Sets June 25 through July 1, 1973. Edited by A. Hajnal, R. Rado, and Vera T. Sós.

