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1 . Introduction

Let X1 , X2 , . ,

	

be distinct points in k-dimensional

Euclidean space Ek , let d(X i ,X .

	

denote the distance between

and let gk (n) denote the maximum number of solutions

of d(X i ,X ] ) = a , 1 < i < j < cl , where the maximur.L is

over all possible choices of a and distinct X 1 , . .

	

Xn .

	

In

words . gk (n) is the maximum number of times that the. sawe distance

can occur among n points in
Ek`

One of the authors proved írL

[1]

	

that

g2 (n) > Te l :+c/log .lorn

('I'hrougtiout this report c and

	

denote positive constants

nor necessarily the same at every occi= ence) .

Szemerédi proved recently in [9] that g 2 (n) = o(n
3/2,

and one of the authors has shown in [2] that

c1n4/3

	

g3(n) < r2n5/3

PROC . 6TH S-E CONF . COMBINATORICS, GRAPH

1



and

for k > 4, where [x] denotes the integer part of x .

In other work [4], [7] the authors discuss the maximum

number of times fa(n) that the same non-zero area can occur

among the triangles AXiXiXZ

maximum is again taken over all choices for

-k'

paper [4 ] .

limn 2

	

1
gk(n)/n ® (1/2) - 2[

I < i < j <4<n, where the

XI , . . , Xn in

In this report we discuss the maximum number fk(n)

isosceles triangles that can occur (congruent or not), the

maximum number fe (n) of equilateral triangles that can occur,

the maximum number fk(n) o£ pairwise congruent triangles, and

the maximum number fk(n) of pairwise similar triangles that

can occur . All of chew problems were posed at the end of our



2 . IsoscelesTriangles

Theorem1 .

In the plane we have

e n2logn < fi(n) < e n5/2

Proof 1 .

	

Let X0, X l , . . ., Xn be distinct points in E2 . For

1 < i < n, the points forming an isosceles triangle with X0 and

Xi on the base lie on a line, and these lines are distinct . Let v i

denote the number.of points X
i

on the ith line . The number of
nC

isosceles triangles having X0 as a base vertex
is

L vi , and it will be

enough to show that this is lese than cn3/2 . The lines containing

fewer than v/n points clearly present no difficulty . Let k > 0 be

fixed, and suppose that v i

2k~n < v i < 2k+lrn

1
, . . , viN

where N - Nk .

Using the inequalities on v i ,

are the v i satisfying

Since two lines have at most one point in common, we have

n
L

J=1
2~

	

< 2



and summing over k gives the result .

2 .

	

Let m - [fn] and consider the points X i = (u i ,v i )

with integer coordinates satisfying Iuj, Ivi j < m/2 . Let

u and v be fixed, luy,jvl < m/4 . If k < m /16 , then the

circle with center (u,v) and radius A will lie inside the

region

and the number of points lying on the circle wá11 be r(k),

the number of representaci .ans of o the. foru k == 2 1 + m2 ,

where £ and m are integers . The pairs of points on the circle

give us

Nk Z 2k6(2k6 - 1) < (n ) ,

en
Nk <

4
k

~k v < H
2k+l/n

< en312 12k
j .1

	

ij

	

k

R - {(x,Y) : ix ;, jY1 < m121 ,

r (k)

2

1

,/
isosceles triangles having (u,v) as a vertex .

N

	

r(k)\
Hence there are at least

	

1

	

2

	

isosceles triangles having
k=1 \



(u,v) as a vertex, where N > [m/4 ]2 > cn . By formula 22 of

[8] and (18 .7 .1) of [5], we have

N

	

r (k)

	

N

	

N

E

	

2

	

~ z ~ r2 (k) - i ~ r(k)
k-1

	

k 1

	

k=1

á(log N + B) + 0(n3/5 + e )

- 2 nN + 0(N1/2 )

for every c > 0, where B is a constant . Hence the number of

isosceles triangles containing (u,v) is at least en logn. There

are cn choices for (u,v) and the result follows .

Theorem 2 .

	

fi(n) > 2n 3/27 - cn2

Proof . Let n be given, and let )fi = (ui ,v1 0) for

1 < i

	

[2n/3], where u i,vi are distinct solutions of

2

	

72u 4 v = 1 , and let

Yi = (0,0,i) for 1 < i < n - [2n/3] .

The triangles AX Xj Yk

	

for 1 < i < j < [2n/3] and 1 <.k < n - [2n/3]

are isosceles ; hence



3 . EquilateralTriangles

In the plane we have

Theorem3 .

	

n2 - cn3/2 < fe(n) r n2/3

Proof 1 .

	

Let Xl, X2, . • . , Xn be distinct points in E2 . For

fixed Xi and Xi there are at most two points X such that

AXiX
1
X is equilateral . Hence fe(n) < 3(2) , and the result

follows .

2 .

	

Let A be the geometrical, lattice known as the

triangular or 60° lattice. Let n be giveut, and lett p be a

positive number chosen so that the unit disc_ centezed on the

origin contains between n - c o rn and n + c 2Vn points of pA .

If X and Y are in pA, then both of the points Z forming

equilateral triangles with X and Y will lie in pA, but not

necessarily in the unit disc .

f i (n) > 2((2n/3) - 1)((2n13) - 2)(n/3)

> (2/27)n3 - cn2 .



It is convenient to think of the points as complex numbers .

Let z be a fixed point in the unit disc . If w is also in the

unit disc , the point

2(z + w) + i Y 3(z - w)

forms an equilateral triangle with z and w . The requirement

that iii < 1 restricts

w=- (1+i,~3)~ - (1+ir3) z
2

	

2

to lie in a disc of radius one and center (12i,/3) z

The area in which this disc intersects the disc iwi < 1

is the area of overlap of two unit discs whose centers are

distance i(1+2iV3) zi = izi

	

apart . If z = x + iY, tills

area is easily seen to be

-x2_y2

A(x,y) = 2j 0

	

{2d1-z2 - ,x 2+y} dz .

If z is a point of pA having modulus less than one, then the

number of equilateral triangles having z = x + iy as á vertex

is at least

	

A(x,y) n - crn .
IT



By integrating this function over the unit disc, and bearing in

mind that every triangle is obtained three times in this

2
get f2(n) > 3n2 I - cn3i2

	

where

Hence

Hence

I - ix2+y2<1 A(x,y)dxdy .

I
-

2jx2+y2<I.

( 1

dxdy
J1-x 2_y2

1 4~i
- 4njo rdrj~

	

{2,1.-z2 - r} dz

4n 0
r Sin-'(/,-r`) dr

( I

4frj 0 t Sin-It dt

1

- [27rí 2
Sin-1t}2,

- 2itJ
0

t2dt/X-t

- 7r 2 - 7r 2 /2 - n2/2

/.4y } dz

way, we



as claimed .

,
2
e (n) > (n213n 2 )( 12) - cn3/2

(n216) - cn312

In space, we have

f3(n) < f3(n) < cn7/3

The second inequality wí11 be proved in Section 4 .

In E4' we have

Theorem 4 .

	

f4 (n) < en 8/3 .

Proof . Let X f.) , X,, . . . , X n be distinct points in E 4 , and let

G be the graph whose vertices are X l , . . ., Xn and whose edges

are those X iX j for which A11

	

is an equilateral triangle .

We shall show that G cannot contain a Kuratowski subgraph K3,3'

Suppose that G contains a K 3,3 . Then there are points

Y1 , Y2' Y 3' Z1' Z2 , and Z3 such that the nine triangles

AxGYiz i are equilateral . They clearly must be congruent ; let a



denote their common side length . Let 1 < i < 3 be fixed . The

points Zj , being equidistant from X0 and Yi, lie on a

hyperplane 7rí , which is the perpendicular bisector of the line

segment TOY, . If we let XD be the origin of coordinates

and let Yi be the position vector of the point Y i , then the

points Zj lie on an ordinary sphere s it contained in Tri , with

center (1/2)Yí and radius (V312)a . For distinct i and j, the

spheres sit having different centers and equal radii, will intersect

in a circle

	

with center (1/2)(Yí + Y j ) . The two circles

c12 and c13 have different centers, and yet they have three points

Z j in common . This is clearly impossible ; hence G

contain a K3,3'

By a theorem of Turán, Sös, and Kovdri [6J the graph

G has fewer than cn5/3 edges ; hence any vertex belongs to at

most cn5/3 equilateral triangles, and the result follows .

Remark By slightly elaborating the above argument, the following

can be proved : If X1

	

K
n are distinct points in E 4 and

G XYZ is an acute or obtuse triangle, then no vertex can belong

to more than cn5/3 triangles similar to AXYZ. The following

does not



example shows that the assertion is not true if AXYZ is a right

triangle :

Let P : (0, 0, 0, 0)

Xi : (xi ,y i ,0,0) 1 < i < n

Yj : (O,O,xj ,y i ) 1 < j < n

zwhere xi + yj - 1 . Then the n

	

triangles APX iYi are

all isosceles right triangles (and in fact, congruent) .

In

	

we have only f5 (n) < f5 (n) < cn 26/g , and the second

inequality will be proved in Section 4 .

In E6 , the following construction, which also appeared in

(21 and (4), gives m 3 congruent equilateral triangles from

only 3m points : For 1 < i < m

Xi. : (ui , V i , 0 , 0 , 0 , 0 )

Yi

	

(0,0,ui ,v i ,0,0)

Zi : (0,0,0 > O,ui ,v i )



where ui + vi ° 1. The triangles AXiYj Zk are equilateral

triangles with side one, and consequently

	

f6(n), fe(n) and

f6 (n) are all greater than (n 3/27) - en2 .

4 . Similar Triangles

In the plane, we have

Theorem 5 . f2 (n) < cn 2 .

Proof .

	

Similar to the proof of Theorem 3, part one .

In space, we have

Theorem 6 .

	

f3 (n) < cn7/3

Proof .

	

Let Xl , X2 , .

let AABC be a triangle (non-degenerate, of course) .

If i and j are fixed, 1< i< j< n

points

	

such that the vertices Xi ,

order, form a triangle s niilar to SAC cous .ists of at most a

constant number cc ci.rcle~. . Let N be the number of these circles

over all i and j, and let v i be the number of points X .
J

on

the ith circle . We have

N 1 en2

r Xn be distinct points in E 3 , and

Lhen the locus of

and Z, taker, in. some



and since a triple of points can only occur on one circle, we have

N

C

31

/

: (3)

1=1

The number of triangles similar to AABC is

the maximum of this function, even allowing positive real ví ,

subject to the constraint

NC
G v,(v, - 1)(v, - 2) < 6(3)
i~l

occurs when the vi are all equal, because the function on the

left-hand side is convex . Consequently,

1 NC

3 1Ll
{2 + {n(n-1)(n-2)}1/3 )

N

N + 3 {n(n-1)(n-2)}1/3 N2/3

< cn7/3 , by the upper bound on N .

1 N v3 i~i

	

i , and



Theorem7 .

	

f4 (n) < cn 17/6

Proof .

	

Let AABC be a non-degenerate triangle, and let X1 , X2 , .

be in E4 and distinct . We form the 3-graph G whose vertices are

the Xi , and whose edges are the unordered triples {Xí , Xj , Xk)

	

such

that AXiXjXk is similar to AABC . We claim there cannot be a

K3 (2,3,3) subgraph of G . That is, there cannot be vertices

Yl , Y2' Z1' Z2' Z,í' W1, W2 , and W3 such that the 18 triples

{Y i - Zj , Zk) for 1 < i < 2, 1 < j , k < 3 are all in G. Suppose

that such Y í , Z
j
, Wk do exist . Then the triangles AYJj Wk are

similar to AABC and all congruent to each other . The three points

Z,
J

lie on a hypersphere, they are not collinear, and they determine

a two-dimensional plane Trz . The three points Wk determine,

similarly, a two-dimensional plane it w , and the two points Xi

determine a line JZ . Since the are equidistant from the

Yi , Trz must be orthogonal to t .

Similarly,

	

is orthogonal to k and

	

This is only

possible ín five or more dimensions ; hence the K3 (2,3,3) does not

occur, as claimed . Ttt follows from the methods of (6 j, arid [31

Xn



3-k1that G has fewer than cn

	

edges if G contains no

K3 (k,R,m), where c depends only on k, R and m. Consequently,

there are fewer than cn17/6 triangles similar to AABC .

Theorem8 . f5 (n) < cn2b/9

Proof .

	

Similar to the proof of theorem 7 .

The 3-graph G does not contain a K3 (3,3,3) , and therefore G

has fewer than en26/9 edges .

S . CongruentTriangles

in the plane, we have

Theorem 9 . £2 (n) = o(n3/2) .

Proof .

	

Let AABC be an arbitrary non-degenerate triangle, and

let. X1 , . . ., Xn be distinct points in the plane . The result

g2 (n) = o(n 3/2 ) , due to Szemerédi, which was mentioned in

o(n3/2) pairsSection 1, implies that no more than

can be at distance AB .

	

Each pair can occur in at most c triangles

congruent to AABC , and the result follows .

{X í ,X
i
}



In space, we have

Theorem10 . f3 (n) < en
19/9 .

Proof .

	

Let AABC be an arbitrary non-degenerate triangle, and

let X1 , . . ., Xn be distinct points in space . The result

g3 (n) < c2n5/3 mentioned in Section 1 implies that no more

than en
5/3

pairs {X,,X
i

I can be at distance AB . For each

such pair, the locus of points X such that the vertices X,,X

and X taken in ,ome order form a triangle congruent to AABC

consists of at most a constant number of circles . Let N be the

num!,er of all of these circles as {Xi ,Xi } ranges over all the

pairs at distance AB .

	

Then we have

N < cn
5/3

N
~ v i

	

n
As in the proof o£ Theorem 6, we-e have

	

1

	

(. )
i 1

where vi is the number of. X . on the íth circle, and the number

of triangles congruent to GABC is at most

< 2N + {n(n-1)(n-2)}113
N213

< en
1919



6 . Conclusion

In conclusion we would like to mention a few related problems .

Throughout this section a will denote a positive number, not

necessarily the same at every occurrence .

3
Is the inequality fe (n) >

z7
- cn2 best possible? It would

be interesting even to show f6 (n) < (6 - e)n3 .

What is the value of limn fe(n)/n2 ?

	

Does the limit > ,van

exist? Can you prove f 26 (n) < (3 - c)n2 ? Finally, we inent.i.o non an

entirely different problem : Given n points in the plane, how

many triangles f2 (n) can approximate congruent equilateral. triangles?

By dividing the points into three small clusters we can get

f2 (n) > (n 3/27) . It would be of interest to show f 2 (n) < (4 - On ; .
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