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Several survey papers have recently been published on problems

and resultü concerning extremal graph theory ; at the end. of the intro-

duction I give a short list

	

some of these papers . i n this paper, I

discuss some special problems which interested me ín the Last few years

and where some progress has been made towards the final solution . I

will also testate a few older problems which perhaps were neglected hn

which seem interesting and are perhaps not hopeJess .

I . P . Turan, Egv gr6felmél.eti nélsU rték feladatról, Nat,

Lapok 48 , 1941) . 136-x+52 , see also On the Theory of grail;s ,Col i . . tr,,1 (1 )4t : i í 9

II . P . Erdüs, Extremal problems in graph theory, Theo " of Graphs

and its Applications (M . Fi.edle :, ed .), Acad . Press, New York . 1160,

29-36 .

III . P . Erdős, Some recent 'results on extremal 'problems i_n graph .

theory, ihear:

	

Graphs, atertat . Sympos . Rome, 1966, Gordon and

Breach, New York, 1.91.7, 117-130 .

IV . P . Erdős, On same new inequalities concerning extremal proper- •

ties of giaphs, !Ivory oí Graphs, ?roc . Coll . T'ihany, Hungary, 1966,

Í7-- 1 .

V . M. Símonovits, A method tor solving extremal graph problems in

graph theo , stability

	

.obieo , ibid . 279-319 .

Vi .

	

Simonovits, Sxtiemal graph problems with conditions, Com-

binatorial theory a;d it_: atslic.arions, Proc . Coll . Scc. J. Bó1yai,

(1969), 99=-1012 .

B. Bollobas ís writing a comprehensive book on extremal problems in graph then r .~ .



1 . Denote by G(k ;?) a graph of k vertices and Z edges . f(n ;G)

is the smallest integer for which every G1 (n ;f(n ;G)) contains G as a

subgraph. Ck denotes a circuit of k edges . In this paragraph I dis-

cuss f (n ;C 4 ) .

First, a few historical and personal remarks . As is well known,

the theory of extremal graphs really started when Turán determined

f(n ;kt) (kt is the complete graph of k vertices) and raised several

problems which showed the way to,further progress . In 1935 T needed

(the e's will denote positive absolute constants)

(1)

	

f(n ;C 4 ) < c 1n 3/2

for the following number theoretic problem . Denote by h(x) the smallest

integer so that if 1

	

a l < . . . < ak ~ x, k = h(x) is any sequence of

integers, then the products aia.
J

- cannot all be distinct . I proved (1)

without much difficulty and eventually deduced (tt(x) denotes the number

of primes x)

E . Klein proved

3
(2)

	

:'(n, y )

	

c2x /2

for every c2 >~ z and n > ? (e ) . Being struck by eur oes blindness

and lack of imagination, T did not at that time extend the probl .em from

C4 to other graphs and thus missed founding an interesting and fruitful

new branch of graph theory . There is another curious fact about the

1T (X) + c?x~~

	

3, < h(x) < tt(x) + a3x~~

/(log x') 2

	

/(log C) 2



prehistory of this subject . After Turán finished his paper I, he was

informed by Mr . Krausz that W. Mantel and W.A. Wythoff proved (Wíshundige

Ungaven 10 (1907), 60-61) that every G(n ;[1412 1 + 1) contains a triangle .

It seems certainly strange why they missed the obvious generalizations .

W . Brown and Rényi, V .T. S6s and I proved that

(3)

	

.f(n ;C4) - ( 1/2 + o(1))n 34 .

Let 71 be a prime or power of a prime . We in fact proved

(4)

	

f(rZ+7t+ 1 ;C4)

	

2(p3 +p) +p 2 + I

and conjecture that there is equality in (3) .

The best upper bound I can get for f(n ;C4 ) states :

(5)

	

f(r ;C4) fE 1/2n 3~+ n/4 - ( 3/15 +o(1))n 12

The proof of (5) is not difficult . Let G(n ;Z) be a graph not con-

taining a C 4 . Let .7(x .)

	

1, . . . n be the valencies (or degrees) of

the virtues of ouc graph . Since G(n ;Z) contains no C 4 we must have

(6)

	

Z
1

(v (
2
xi )~ 5 (2)2=

To prove. (6) observe that if (6) does not hold there are two vertices,

say x and w2 , both joined to two other vertices, say x 3 and x 4 , i .e .

G(n ;7.) contains a C 4 which is impossible .
n

From Z v(x .) = 21 and (6) we obtain by an elementary inequality

n,2Z

	

n

1
Z< L

2 i'
n

(v(

j

)2 ~ `- (n2



or

(7)

	

21r21

	

1 ,< n-1
n n -

and (7) easily implies (5) .

(5) can probably be improved . If there is equality in (4)

we would expect that for every n

($)

	

f(n,C4)

	

l 312n

	

+ 4 -
l16

+ o(1)
J
n 112 .

There are two possibilities for improving (5) . By the friendship

theorem we can not have equality in (6) and perhaps in (6), (nl can

in fact be replaced by In - cn if we only consider graphs G(

I

n

J

;Z)

with v(xZ ) < a'n ~2 . It
l
is in fact easy to see that for our purpose

it suffices to consider such graphs, but I have not been able to

makee any progress here . Further, observe that nL in general is not

an integer and in any case the extreme graph does not have to be

regular, but here too I got nowhere .

Using well known results on the distribution of primes, (4) and

(5) gives

f(n ;t"

	

Z 2/2 + 0 í n 2-~~ ,

but even if we assume

	

pn - 0(n6) we only could get an error

term 0(n l+E )



Reimann constructs a bipartite graph of n vertices and
3~

(l+q(1))n

	

22- edges which contains no C 4 . He shows that if

n - 2(g2+q+l) then his graph is in fact extremal .

Assume that G(n) contains no C 4 and no C 3 . Then perhaps

(e(G) is the number of edges of G) .

l
max e(G(n)) = 2

	

+ o(l)
J
n 3/2 .

In a recent paper Bondy and Símonovits make a penetrating study

of the G(n) which contain no C 2k , but many unsolved problems remain .
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(1)

	

f(n ;g) < cn '~5 .

It would be very interesting to decide if the exponent 8 / 5 in

(1) is best possible .

A theorem of Mnaíri, the Turáns, and myself states that (k(r,s)

denotes the complete bipartite graph of r white and s black vertices)

(2)

2 . Denote by g the graph determined by the edges of a cube .

Simonovits and I proved that

W. Brown proved

(3)

	

,fNí,k

f(n ;k(r,r)) < c ° n2-1lrr

f(n ;k(3,3)) > c "n5/3 .

It would be very desirab ::ee tc: prove that the exponent in (2)

is best possible for every r and ir, fact to prove that

tc„+á(1))n
2-1/r

As stated previously c2

	

2
but noticing is k,,own for r,,~ 2 .

Simonovits and I conjectured thatt for every bipartite graph G

there is an aG , 0 < aG , 2 so that

(4)

	

f(n ;Cr)/ 1+c,,

	

0 < c~, < . ./.

	

J

At first we though. haC ,x .., must be either 1 or 2 - 1 r = ',3, . . .,
r

	

r'

but we disproved this conjecture and now we believe that a„ is always
U



rational and to every rational a, 0 < a < 1 there is a G with

aG - a .

(4) certainly no longer holds for hypergraphs . Denote by

G(r)-(k,K) an r-graph of k vertices and I z-tuples . W . Brown,

V .T . Sós and I conjectured that

(5)

	

f(n ;G(6,3)) = o(n) 2

and in fact that

(6)

	

f(n;G(6,3)) < n2-E

Szemerédí proved (5) and Ruzsa disproved (6), thus (4) does

not hold for r-graphs . I recently conjectured that

holds for every fixed k if n

P . Erdüs and M. Símonovíts, Some extremal. problems in graph

theory, Comb, theory and its applications, Coll . "lath . Soc . J . Bólyai

Balatonfűred ű migary 377-390 ;, see also The Art of Counting, Selected

writings, P . Erdős, M .I .T. Press, 1973, 246-259 .

T. Kbvári, V .T. S6s and P . Turán, On a problem of K . Zarankievicz,

Colloq . Math . 3, (1954), 50-57 .

aye paper of Ruzsa and Szemerédi wí11 appear in Discrete Mathematics .

W . Brown, P . Erdős and V .T . Sós, or. the existence of

triangulated spheres in 3-graphs and related problems,

Periodica 'lath . 3(1973), p . 227-228 ; see also Some extremal

problems on r-graphs, in New Directions in the Ibeory of Graphs,

ed . Frank. üarary, Academic Press, 1973 .

f(n ;G(k,k-3)) = o(n 2 )



Some further extremal problems are stated in P . Erdős, Some

unsolved problems in graph theory and combinatorial analysis, Com-

binatorial mathematics and its applications, Proc . Conference Oxford

1969 (Ed. D .J .A. Welsh), Acad. Press 1971, 97-109, see pp . 102-104 .

3. Sauer and I asked the following question : Denote by f(n,k)

the smallest integer so that every G(n ;f(n,k)) contains a regular

graph of valency k as a subgraph . Trivially f(n,2) = rn and it was a

great surprise to us that we could get no satisfactory estimation even

for f(n,3) . Our best upper bound is f(n,3) < en% which follows from

(1) of the previous chapter . Chvatal observed that f(2n+3) > 6n .

His graph is defined as follows : Let the vertices of a C 2n be

(xl' . .. ,x2n), yl is joined to all the x2k+,
and y„ to the

x2k'

k = 1, . . .,n . y is joined to all- the x's . This is our best lower

bound(

One of the difficulties of the problem may be that there are too

many regular graphs of valency three, and 1t is therefore difficult to

consider the class of all of them . Perhaps the following question is

simpler: Denote by A(n) the smallest integer for which every G(n ;A(n))

contains for some k a C,~ where x y and
xl+k

are joined by an edge for

every Clearly f(n,3) : A(n) and A(n) < en since K(3,3)

is one of our graphs (for k = 3) . We have no satisfactory upper or



lower bound for A(n) . I expect A(n) < nl+s for every r > 0 and

n > n 0 (e), but perhaps A(n)/n -. m .

An older conjecture of Sauer and Berge states that every regular

graph of valency four contains a regular subgraph of valency three .

Chvatal just stated the following more general conjecture :

Let g be a graph every vertex of which has valency ? 4 .

Then g contains a regular subgraph of valency three .

Szemerédí recently posed the following problem : Denote by F(n,k)

the smallest integer for which every G(n ;F(n,k)) contains a spanned

regular subgraph of valency k . Clearly F(n,k) ; f(n,k) . We have no

satisfactory lower bound for F(n,k) and know nothing better than

Chvatal's F(2n+3,3) >, f(2n+3,3) : 6n .

I proved F(n,3) < c ln 5/~ . More precisely I showed : There is an
5

absolute constant c l so that every G(n ;[e ln ~]) either contains a

paper with Símonovits quoted in 2 . it follows that without loss of

generality we can assume that our graph has a subgraph Gtm) of m ver-

tices, m > e2ny15, each vertex of which has valency > c 3m2/3 where

0
3
= c 3 (c i ) is large if c l is large .

if G( .mj contains a K 4 our theorem is proved . If it does not

contain a K4 then by a theorem of Szekeres and myself ít'contains an
1

	

l
independent set of [M/31 points x l , . . .,X11 Z ° [m' 3 ] . Let xL+l, . . .,XUl

be the other vertices of our G(m) . Denote by V(x .) the valency of x .i

	

t

K 4

or a spanned K(3,3) (i .e . G contains a graph of 6 vertices x l ,x2'X3 ;

yl'y2'y 1
where x i is joined to xj ,l 3 but no two X's or y's

are joined in G) .

To prove our theorem first observe that by using Theorem 1 of our



in G(m), as stated V(-) > c3m23 . Thus each xi , 1 i < Z is

joined to more than cam
2/3

x
,
~s,Z < j ,< m . For sufficiently large

e3 we obtain by a simple computation

(1)

	

rV(x .)1

	

l[C

3m2~3]1

	

`

,l

	

2

	

> Z

	

3

	

J > 5 3i-1 3

Thus from (1) we obtain that there are three xi's, say x,, x2 , x 3

which are joined to xZ+j' 1 .< j S 6 . The graph spanned by x
Z+,j ,

1 : j : 6 cannot contain a triangle since then x and this trianglei

it contains an independent triangle, say xZ+1'

independent by assumption

and in G(n), which completes

would bee a Ky . Thus

xZ+2' xZ+3' But then since x l , x2 , x 3

{x l ,x2 ,x3 ,x4 ,x5 ,x6 } span a X(3,3) in G(m)

are

our proof .

P. Erdbs and G . Szekeres, A combinatorial problem in geometry,

Compositio Math . 2(1935), 463-470 .

4 . In this final chapter I state somee recent extremal problems

and results on somewhat unconventional problems . Let G(rn) be an

Bollobás, Szemerédi

and I conjectured that if each vertex has valency ; (r - 2)n then

graph contains a K(r) . We know that r

	

cannot be replaced by

r - 2 - e but we cannot prove it even if r - 2 is replaced by r - 1 -• e .

Our paper on this and related questions will appear in Discrete

r-partite graph having n vertices of each color .

Mathematics .

our



Let G(n ;e) be a graph of n vertices and a edges . Bollobás and
2

I conjecture that if e n3 then our graph contains a triangle

{x l ,x 2 ,x 3 ) with

(1)

	

v(x1) + v(x 2 ) + v(x 3 )

We showed that (1) does not hold for e <

G(n ;e) has an edge (x l ,x2 ) with

6e
n

2
n__ .

(2)

	

t7(x l ) + ll(x

	

4e2) 3 r

> 2n .

We observed that every

(2) follows by a simple averaging process . It seems impossible to

prove (1) by the same method .
2

I proved that every G(n ;,n 1 + 1 has an edge, say (x i ,x 2 ) with

cn other vertices which are joined to both x l and x 2 , i .e . the

edge (x l ,x2 ) is on at least on triangles . Bollobás and I observed

that c Éd and we could not decide whether c = 6 .

Nordhaus and Stewart conjectured that every G(n ;[n2 J4j+k) contains

at least 49k triangles . Bollobás recently proved this conjecture .
r

Poses proved that for n : 4, every G(n ;2n-3) contains a circuit

with a diagonal and observed that 2n-3 is best possible .

Denote by r(n ;k) the smallest integer for which every 1(n ;r(n ;k))

has a circuit C Z with a vertex which has at least k-1 diagonals (i .e .

which is joined to at least k+1 other vertices of our C Z ) . The prob-

lem makes sense only for n ; k+2 and it is easy to see that



r(k+2,k) _ (k22)

	

k23

	

I conjectured that for n > n o (k)

r(n ;k) - k(n-k) + 1 . The bipartite graph of k ohíte and n-k black

vertices shows that this conjecture, if true, is best possible .

First I thought that n 0 (k) = 2k (this is true for k = 3), but Lewin

showed that it is false for large k . Posa proved (unpublished) that

every g(n;[kn]) contains a circuit with at least ek 2 diagonals .

Let fr(n) be the smallest integer for which every G(n ;fr(n))

contains a Kr . Is there a constant e r so that every G(n ;fr(n)) has

a vertex x l of valency m > c
r
n so that the graph spanned by its star

has at least f_, (n) edges? (The star of the vertex is the set of

vertices joined to it .) If true this would be a nice generalization

of TllrAn's theorem . The first interesting case is r = 4 and I could

not settle this case .

21
Let G be a bipartite graph of n vertices with [n 3] black and
2

n - [n /3 ] white vertices . Is it truee that íf the number of edges

is greater than crt rhe,n our graph contains a C 6 ? It is easy to see

that it contains a C 3 .

Final]v I state ann old conjecture of Hajnal and myself : Consider

a G(n ;[kn]) and ler 3 :_ .. < r n : n be the set of integers

r for which our G(n ;[kr. ) contains a C

	

Determine or estimater

m 1n 1r .
2

where the minimum is extended over all G(n ;[kn]) . It seems likely

that the minimum is ( + o(i)) log k but we could nott even prove that

it tends to infinity is k tends to infinity (independently of n) .
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