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The Number of Distinct Subsums of L', 1/i

By M. N . Bleicher and P . Erdős

Abstract . In this paper we improve the lower bounds for the number, S(N), of distinct
values obtained as subsums of the first N terms of the harmonic series . We obtain a
bound of the form

í'v log 2 k+ 1
S(N) s ci--

	

H Iogj N)
log N

	

3

whenever Iogk+IN > k + 1, for k > 3 . Slight modifications are needed for k = 1, 2 .
We begin by discussing the number Qk(N) of integers n < N, n = plp2

	

pk, where
pi > e P '- ',i= 2, •

	

, k. We prove that
N k+1

	

/

	

k \ N k+1
logiN < Qk(N) < I I +

	

--

	

11 logiN.
log N i=1

	

Iogk+iN~log N i=3

This bound is valid for logk+1 N >- k + 1 and for 1<u<-
2(1-symbols logix and e i(x) are defined by

e i(x)
e0(x) = x,

	

ei+1 (x) = e

lo g0 x = x,

	

logi+lx = log(log jx),

where log x denotes the logarithm to the base e.

In this paper we improve the lower bounds given in [2] and [3] for the number,

S(N), of distinct values obtained as subsums of the first N terms of the harmonic

series . The estimates in [1], [2] and [3] were derived because the upper bound was

needed for lower estimates of the denominators of Egyptian fractions . In this paper

we concentrate on the lower bounds. We obtain a bound of the form

+ 1
S(1~ > e

N log 2

( log N
log,N

g

whenever log k+ IN > k + 1, for k > 3 . Slight modifications are needed for k = 1, 2;

see Corollaries 1, 2, 3 and 4 for more details . In order to do this we begin by discuss-
ing the number Qk (N) of integers n <N, n = p1p2 • . . pk where pi > e"~pi- I

i = 2, • • • , k. We first prove that
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	N k+I	 k	 N k+1

log N H 1°giN < Qk(N)

	

1 + to

	

N tO N

	

1og,N
g

	

i=3

	

gk+ 1

	

g

	

i=3

This bound is valid for logk+I N > k + 1 and for 1 < a < 2(1 - e2(4)/e3(4)) . The
bounds on N and a are for convenience in evaluating the range of validity and the
constants in the inequality, not for essential reasons . The symbols log, x and e i(x)
are defined by

e i(x )
eo(x) = x,

	

e,+, (x) = e

logox = x,

	

logi+ Ix = log(log,x),

where log x denotes the logarithm to the base e .
In fact we prove the following slightly stronger version .
THEOREM . If 1 < a < 2(1 - e2(4)/e3(4)) = 1 .999

	

then :
For k = 1,

logN I + 21ogN <QI(M-JT(M<ION 1 + 21 g N),

where the lower bound holds for N > 59 and the upper bound for N > 2 ; Q I (N) = 0
for N < 2 .

For k = 2,

log N (093 N + 111) < Q2(N) log N (log, N + 2)

where the lower bound holds for log3 N > 2 and the upper bound for N > e 3(- 2) _

3.1 . . . (i.e., 1093 N > -2); Q 2 (N) = 0 for N < 22 .

For k > 3,
N k+1

	

N(logk+IN	
+ k) k

log N n log, N < Qk(M <

	

log N

	

11 lo gl N'3

	

3

where the lower bound holds for logk+ I N > k + 1 and the upper bound holds for

N > ek+I(- 2) ; Qk(N) = 0 for N < ek+I(- .13 . . . ) = ek-2(11) .

Proof. Case 1 . k = l . In this case Q I (N) = rr(N), so that the result is well

known, see [4, p . 691 .
Case 2 . k = 2 . Let Q2(N) be those integers counted by Q2 (N) ; namely

Q2(N) _ {pq : p, q prime, eap < q, pq <N} .

The Upper Bound for Q 2(N) . Let L be the number which satisfies e"L ' L =
N. It follows that

(1) Q2 (N) _

	

(7r(N/p) - iT(e ap )),
2 5p<L
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where p runs through the primes in the indicated interval . We see from the conditions
on a that

(2)

We thus deduce that

L < log N.

(3)

	

QI(N) <

	

Y-	 N	1 +	3
2<p-Log N p log NIP ( 2 log NIP

Since log NIP is almost constant on the interval under consideration, we obtain

	 N	3	 log N 1(4)

	

Q2(N) < log(N/log N) 1 + 2 log(N/log N)

	

P

The value of E 1/p is well known, for example see [4, p . 701 . Thus we obtain

(5)

	

Q2(N) ~ to N
1 + 2 -l to

o
	 gN

	

1093N + B +	
log

	 2
N)'

N

g (

	

g X

	

2

wwhich is valid for N > 3 and where B = .26149 -

	

If N > e4 , i .e ., 109 3 N
log e 4 > .326

	

then this can be simplified to

(6)

	

Q2(N) < N(log 3 N + 2)/log N

If 22 < N < e4 < 55, then Q2 (N) < Q2 (54) = 5 together with 109 3 N > 0 gives
the upper bound of the theorem for k = 2 .

The Lower Bound for Q2(N) . From the definition of Q2 (N) we obtain

(7)

	

Q2(M = E

	

Y- 1,
1-<p-<N 1<q<M

where p and q run over primes in the indicated intervals and M=min{N/p, loge/a} .
Let L be such that

(8)

	

aN = 1. log L,

so that N/log N < L < eN/log N, then

(9)

	

Q2(N) _ I

	

Y-

	

1 +

	

l .
1<p--L 1<q<(logp)/a

	

L<p<N 1<q<N/P

Let E1 denote the first double sum and E 2 the second . Since E I > 0 we can
obtain a lower bound for Q2(N) by obtaining a lower bound for E 2 .

The Bounds for E2 . From the definition of E2 in (9) we obtain

(10)

	

em12 = Y- 7r(NIP) +

	

7r(N/P),
L<p<L'

	

L'<p5N/2

where L < L' = N/p r , p I is the lth prime with l > 7 to be determined later . We
note that
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We shall frequently need to estimate sums of the above type where the index of

the summation range over an interval of primes . There is a standard technique for con-

verting the sum to a Stieltjes integral, with respect to dt9(x), integrating by parts twice

with r9(x) approximated by x in between to obtain the following well-known lemma .
LEMMA . If f(x) > 0 and f '(x) exists and is continuous and 0 < a < b

(12)

and

(13)

	

O(x) - x < x/(2 log x) for x > 1

and the estimates

log x CI + 2 log x )
< 7r(x) for x > 59,

and

rr(x) <
log x

`I
+ 2 log x) for

x > 1 .

We use (15) which holds for N > 73 and the lemma to estimate

of (10) ; thus

M . N . BLEICHER AND P . ERI)oS

(11)

	

7r(N/p) _

	

7r(Nlp) - I7r(N/pr ) .
L'<p~C-N/2

	

2sp~p j

L AP) _	 f(x)(19(x) - .x) b
+

Cb f(x)
a<p-<b

	

log(x)

	

a

	

a log x dx

(b

	

d Cflx)
- J a

(r9(x)
- x)dx log x A

.

We recall from [41 the estimates

Ir9(x) - xl < x/(2 log x) for x > 563

We next show that

rN

L<p\L' p log NIP
_

	

i9(x) x
N x log x log N/x

lo x < u(x) for x > 17,
g

L'

	

fL	 dx

L + it,L log x log N/x

J L (z9(x)
-

x) dx x log x flog N/x
dx .

the first sum



(23)
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fL
L'

	

d (z9(x) - x)
A (x log x flog N/x

To do this we note that
)
dx

	 1	
X2 log x log N/x

and that the estimate of (12), 19(x) - xl < x/2 log x are both valid for the range
N/log N< x< N/2 when N> e 8-5 . Thus

L ,
(19)

	

I fL Mx) x) dx x log x1log N/x dx

Since 1 /2 log 2 x is almost constant on the interval involved it can be brought
out of the integral and replaced by 1/2 log e L ; what remains is the derivative of
- 1092 N/x, and we get

(L'	dx	 <	l
(20)

	

L 2x 1,2 x log N/x 2 109 2 L (-
log e N/x)f

5

which yields (18) .
We next evaluate the first integral in (17) by taking the 1/log x outside the

integral as I /log L' and integrating the rest exactly to obtain

109 3 N

	

1092 p1

	

1092 PI

	

~i '	dx	
(21)

		

log N 1 + 109 3 N + log N < - L x log x log N/x

We next note that

L'(22)

	

I Cx logx log NIX L

	

< 2 Iog 2 L
I

NIL + 2 log 2 L I log NIL' < 2 log 2 N

Using (15) and (16), (11) and N/p t > 17, which holds since p l < log N and

1093 N > 2, we deduce

E

	

N
-

	

p)
hr
(17)

N/PI<P<N2

	

P

	

2<P`PI

	 N 	1 1
(+

	

3
log N/pt (2<p<PI P PI

	

2 log N/pj

If 1/pl < B, then using N > e3(2) > e16 oo and p l < log N,

1093N
<

2 log 2 N

(L'	dx	c
JL 2x log 2 x log N/x

L 1

L

lo
(24)

	

IT
N

>

	

-- 1092 p 1 + B -

	

12 - 1 + - 1?1
N1pj<p<N/2 p

	

log N

	

log p l p 1 log N

dx x log x log N/x)

Now with the aid of (10), (11) and (24) as well as (17), (21), (22) and (24) we

obtain for 1093 N > 2 and 1/p 1 < B,
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N 1093 N

	

loge PI

	

log Pr _	1
~2> log N 1 109 3 N + log N 2 log N 109 3N

(25)

	

-

	

1

	

+ loge	 PI + B - 1/p i

2 log N 109 3 N

	

1093N

_	1	logPI
2 loge PI 109 3N + 109 3N log N

Taking pl = 1547, 1 = 251 so that all the previous conditions are satisfied and
using B = 261 • • • , 1/p l = .157 • • • , 1 /2 log e p l < .0005 and 109 3 N > 2, we deduce

> N	 1093N	1	(26)

	

~2

	

log N ( + 11 1093N)'

Since Q2(N) > E I + 1;2 and by (13), E I > 0, (26) implies the desired lower
bound of the theorem for the case k = 2 .

Case 3 . k > 3 . We now proceed by induction on k. Suppose k > 2 and that
for 2 < k' < k the theorem is true for k replaced by k' ; we now show it is true
for k.

The Lower Bound for Qk(N) . Let 2k(N) denote the set of integers counted
by Qk(N) . As before let L = N/log N. We claim that

2k(N)

	

U {qp : q E nk- I (NIP)}
L<p<N

where the union is disjoint . The disjointness follows from the fact that p > L =
N/log N > log N > q and thus distinct choices of p and q yield distinct products .
To see the containment we note that since k > 3, q must have at least two prime
factors, so that the largest prime factor of q, say p', is at most N/2p < log N/2 ;
thus

(27)

(28)

	

log p > log N - log e N > a
~logN)

~ ap

so that qp is one of the integers in n k(N) .

The containment (27) leads immediately to the inequality

(79)

	

Qk(N) > Y- Qk- t (NIP)>
L<p<L'

where L' can have any value satisfying I,' > L . We define L' by

(30)

	

L' =N/e((1og2 N)I11094N
) .

With this choice we can show that

(31)

	

1o9k N/p -> 109k N/L ' > 0Ogk+ 1 N)(1 - (1095 N)/1o94 N) .



For k > 3, (31) yields

(32)

	

log k N/p > k ;

while for k = 3 (31) yields

(33)

	

to g 3 Nlp > 2,

where we have used logk+ I N > k + 1 .

From (32) and (33) we see that the hypothesis of the inductively assumed theo-
rem is satisfied for estimating the summands Qk- I (N/p) in (29) .

We define Qjx) by

(34)

	

Qk(x) _

thus in the range of summation in (29) by the inductive hypothesis

Qk- I (NIP)*
From the lemma we get

(35)

THE NUMBER OF DISTINCT SUBSUMS OF LI Ili

Qk(N)

	

l ) x x Qk- 1(NIx)

	 x
log x

k+I
Il log i x ;

3

f L'

	

d Q_k(NIX)

J L (O(x) -
x)

dx log x dx.

We first obtain lower estimates for the first and . last terms in the RHS of (35)
and estimate the middle term, which is the main term, last . By (12), the estimate

L' / L' Qk(NIX)

L
+

L log x
dx

Putting together (35), (36), (38), and (39), we obtain

Qk- I (NIP) <

35

j19(x) - xI < x/2 log
increasing in x while

x is valid in the
Qk- I (N/x) is

range
decreasing,

under consideration . Since x/2 log x is
we see that

(36) D(x) - x

A straightforward

Q
log x

	

k I (N/x)

calculation yields

L
<

2 2 log2
N ' Qk- 1(log N) .

(37) I d Qk-,(Nlx) Qk-I(Nlx )
<

dx

	

log x x log x

Thus the absolute value of the last term of the RHS of (35) is bounded above by

LI Qk-I(Nlx)

	

1

	

L'
(38) dx

`

	

(NIX) dx .f

	

fL Qk-

Similarly for

L

	

log 2 x

	

<
log2 L

	

I

the main term

(39) ~L Qk- I (N/x)

	

1 L
dx.

.1 L

	

log x

	

dx
log L'J L Qk- I (NIX)
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(40)

We can evaluate the integral in (40) by parts with u = ilk logl(N/x) and v =
-log 2(N/x) to obtain

Since

(41) leads to

(42)

(43)

Qk(N)

M. N . BLEICHER AND P . ERDOS

	 1

	

_

	

1 	fL'-

(log L'

	

log 2 L .1 i, Qk - i (N/x) dx

	 N
- log2 N Qk- I (log N) .

L'-

	

k
J 1 Qk_ I (N/x) dx = -N loge N/x Il logi N/x

3

J G,N

	

k

	

i

	

1
+ G Qk- 1 (N/x)

	

logj N/x

	

dx.Ce-~ i=3

L

logj N/x r >1	1	
i=3Ci=3

	

log 3 N/X '

(L

	

kfJ L Qk _ I (NIX) dx >N11 1ogl N/x
2

L 1
L

rL'-
+J !.

Qk- I (Nx)/log 3 NIX dx.

The last integral can be approximated by substituting for Qk_ I (N/x) and simplifying

to get
k

J L Qk_ I(N101093 NIX dx = fL x log NIX 11 logi
NIX

dx

k
N 11 log, NIL'- f G

	

1

	

dx4

	

- L x log N/x

k
= N 11 1og, N/L'(- loge NIX IL )

4

k

	

1093 N
= N 11 logj N/L' 1093 N - logo N4

Substituting this for the last term in (42) while evaluating the first and combining
terms,we get



(44)

(45)
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f1 Qk- I (NIX) CZX

k+1

	

k

	

log, N - 1
= N

~ 3

	

4

	

log 4 J1log/ N +
Ch

log, N/L' 1093 N 1094 N(--2	
N

Since 1/log L - 1/log e L' > 1/log N, we get from (40), and (44) that

k+I

Qk(N) '> log N Il
log/ N

k

	

logs N - 1

+ log
N 1093 N log o N

4
11 log/ NIL' ( log4 N

	 N	1 	k+I

log N loge N 11
log/ N

Since

logo NIL' = log s N + log I - lo gs N > log s N I -
to ,2

- ,

we see that the sum of the last two terms is positive . The desired lower bound follows .

The Upper Bound for Qk(N) . We may suppose N >, ek _ 2 (11), for otherwise
Qk(N) = 0 .

We begin by establishing the following inequality :

Qk(N) <

	

Qk- 1 009 p log2 p) +

	

Qk- I (NIP)
na<p<L

	

L<p<L'
(46)

+

		

F_

	

Qk-I(N/p) _ 1: I + 1: 2 + Y-3'
L'<p<N/NO

37

where M = ek _ 2(11), a lower bound for the largest prime factor of elements of

Qk- I ,
L = N/(log N • log2 N) and L' = min {N/1093 N, N/No ), where No is the smallest

element in Qk ,_ I . To see that (46) holds, consider n e Qk(M , factor n = pq
where p is the largest prime factor, then n is counted by the appropriate swill de-
pending on the range into which p falls . We see that in the first sum since q =

PIP2 . . . pk- I with pk_ I < log p/a and pi < log pi+I/a, 1 < i < k - 1,
q < log p 1092 p

	

log k_ I p < log p 1092 p. The last two sums follow from the
fact that pq = n < N and thus q < N/p .

For the remainder of the proof we suppose that L' = N/109 3 N, for otherwise
the last sum in (46) is zero and the range on the middle sum is shortened . In either
case the inductive assumption applies to each Qk _ I (N/p) of the middle sum .

To estimate E I we note that there are at most IT(L) summands in which each is at
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most Qk _ I (log L logz L) using the estimate ir(x) c 2x/log x and the inductive esti-
mate for Qk _ 1 we obtain

(48)
	 1	N

	

~k
l

10 loge N log N Qogk+ I N + k - 1) i l oge N.
3

We now turn our attention to E 2 which yields the main term. By use of the

inductive hypothesis, the choice L = N/log N, the estimate log,(log x loge x) S
(logy+I x)(1 + 2/1og 2 x), for j > 3, and the lemma we deduce

	 2L

	

log L

	

k~-1

~I
<

log L

	

lo g2 009k L + k - 1) i j log, L
gz

	

3

k-I
(47)

	

log NN

	

log z N/log N (1°gk N
+ k - 1) 11 logt N

3

	 3	N

	

k-1

10 92

	

log N
(logk N + k - 1) 11 logj N.

gz

	

g

	

3

We next consider E 3 . There are at most rr(N/22) summands each of size at

most Qk- I (NIL) = Qk-1 (log 3 N). Hence we conclude

2N

	

log, N

	

k+2
~ 3G 22 log N/22 log 4 N (1ogk+ 3 N + k - 1)

6
11 log, N

N

	

k-I

L< L p log NIP
(log,, .N/p 4 k- 1) 11 log, N/p

N(logk+ 1

(49)

	

N(l0gk+ 1

r,
~JL x log

	 2 	k k	 1
N + k - 1)( +		logj N

	 2	 k k
N+k-1)'1+

	

klogi N
\

	

1092 N

	

4

L'

(q(x)x log N/x + ~L (x) x) ax x log x log N/x
dx

~9(x) - x

	

L,
+ x log x log N/xIL~ '

log z N n
4

<<p-<L

The last terms in the braces have been evaluated earlier in formulae (18) and (22),

where in those formulae slightly different values of h and L' were used. The 1/log x
can be taken outside the integral as 1/log L and the rest integrated exactly to yield



(50)
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2 6 N(logk+ I N+ k- 1)' 1+ lo	
2

	 N k F1 log, N
\

	

g2

	

4

lo N

log L 1092 N1x
L + 2 log 2 N + 2 log2N

	N

	

~k
log N (logk+I

N+ 2) 1 1 109 3 N
3

	 2 	k l 2 loge N)(I

	

N
1 +

1092
	 N

	

~l1 + log N ~C1
1093

	 N

+	1 	+	1	
2 log N 2 log N 1093 N

Recalling that L' = N1109 3 N or, equivalently 109 3 N > No > 22, we deduce

that log s N > 1 . Hence we see that the quantity in the braces is less than 1 .

It follows from (50), (48) and (47) that

k
Qk(N) log N ( 1ogk+ I N + k - 1)

	

logo
.N 1 + 10 logo N + log e N

(51)

	N

	

~k
log N (1ogk+ I N + k) 11 logi N,

g

	

3

which is the desired upper bound .

The Number of Distinct Subsums of EN 1/i ; a Lower Bound . Let Q(N) _

Uk=IQk(N) and Q(N) = EiWN), where we have taken a = 3/2 in defining

Qk(N) . Since for any N only finitely many Qk(N) are nonzero, there is no difficulty

with the sum .

In order to relate the problem of distinct values of subsums of Ei 1/i to the
previous problem we first prove the following theorem .

THEOREM . If S(N) denotes the number of distinct values of EI ek/k as the
Ek assume all the 2N possible combinations with e k = 0, 1, then S(N) > 2Q (N) .

Before proving the theorem we point out some immediate consequences of this

theorem in combination with the previous theorem's lower bounds for Qk(A~ .
COROLLARY 1 . For N > 2,

S(A~ > 2'(N >
e ~N

log 1 +
2

log N)~
g

COROLLARY 2. For 109 3 N > 2,

39
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12
S(N) > e	 logN Clog3 N +

1 1 + 2 log N))*

COROLLARY 3 . For k > 3 and logk+ I N > k + 1,

N log 2 k+ I

S(N) > e lo N

	

log, N) .
g

	

3

It may be noted that these corollaries improve the results on lower bounds for

S(N) obtained in [21 in two ways . The first is that the constant 1/e in the bound in

[21 is replaced by the larger log 2(log 3 N + 12/ 11 + 1/2 log N) in Corollary 2 and by

log 2 in Corollary 3 . The second is the validity of the formula for a given k is ex-

tended to much smaller values of N .

Combining Corollaries 2 and 3 above with Theorem 3 of [21 we obtain

COROLLARY 4 . For log2r N > 1 and r > 2, choose t such that e t(1) >

2r - t - L Let k = 2r - t - 1 . Then k > r (equality only for r = 2, 3) and

log 2 k+1

	

N lob N r

c ~Nog N fj log, N < S(N) < e log N J1
logi N .

3

	

b

	

3

	

)

Proof of Corollary 4 . From the definition of k we see that if log 2r N > I
then logk+l N > e t(I) > k ; hence Corollary 3 gives the lower bound for r > 3 . For
r = k = 2 it is easy to see that log o N > 1 implies 1093 N > 2, hence Corollary 2

gives the lower bound . The upper bound is from Theorem 3 of [2] . The comment
about equality of k and r is a trivial calculation . In fact, for r = 4, k = 5, while
for r = 5, k = 7 . The corollary is proved .

Proof of the Theorem . The idea of the proof is simple . We show that for each
sequence n i , n2, n 3 , . . . , nk of distinct elements of Q(N) we get a distinct value
for E 1/n i . Since n i <N and there are 20 (N) such sequences, the lower bound

follows, if we can show the values are all distinct . Thus the theorem will be established

if we prove the following lemma .

LEMMA . Let n~, n 2 , . . . , n k and m P m 2, mI be two sequences of

elements of t3(N) ; the elements in each o,f these sequences being distinct from other

elements of thát sequence. Then E 1 /n i = E 1 /mi if and only if k = l and, after
possibly renumbering, n i = mi, i = 1, 2, • • • , k .

Proof of the Lemma . We prove the "only if" . The "if" half is trivial .
Let P he the largest prime factor of the product of the n i and mi . Let

nI, 112, • • • , n k , and m r , m2 , • • • , m j - be all those n i and m i in increasing order

which have P as a factor. The proof is by induction on the size of P.
If P = 2, n i, m i C (1, 2} and clearly the distinctness of different sums is true .

Similarly for P = 3 when n i , mi E { 1, 2, 3} .

We now suppose that P > 5 and that for sequences which have only prime

factors less than P, distinct sequences yield distinct values .



(52)

We may assume alb >, 0, since otherwise we may interchange the mi and n i

and proceed .
Let n i = Pní and m i

	

hus

(53)

	

a
b P(~

-
1

ni

	

1

We next show that

(54)

	

k' = I' and n i = m i ,

	

i = 1, 2,

	

k' .

If a = 0 then the claim follows by induction since the n'i and mi have largest
prime factor less than P.

We thus consider the case a * 0 and derive a contradiction .
Since the ni and mi are in Q(N) and P was the largest prime factor if we

choose Q to be the largest prime such that e3Q12 < P, then we know from the def-
inition of Q(N) that no prime factor of any n i or mi exceeds Q. Since all the n i

and m i are squarefree,we see that d = IIP<QP = eo (Q ) is a common multiple for
the ni and m; . Thus

1

	

1

	

1

	

c
n~

	

n2~

	

d

for some positive integer c . Since the largest prime factor of the ni and rni is at
most Q and the ní and mí are in O(N), we see that Q log Q log e Q . . . log,. Q
n i , m i where r is chosen so that e2 > log,. Q > 2 . Thus eld < ZQ2 1/i < 2 log Q +
1 . Hence c < 3d log Q . It follows that

(55)

Define alb,

THE NUMBER OF DISTINCT SUBSUMS OF Y- I 1/i

a reduced fraction, by

a _ Z 1_ z 1
b

	

ni

	

I mi

(56)

	

c < 3d log Q < 3eo (Q ) log Q < e30(Q )12 < P.

(Note : For Q = 2, 3 a different argument is needed to show that c < P since
3 log Q > e t5(Q )

/ 2 . A trivial calculation suffices)
Since 0 < c < P it follows that P- c. Since alb = 1/P • c/d and (a, b) = 1,

we see that Pta and Plb .
But by hypothesis E 1/n i = E 1/rn i , thus

a

	

k _

	

1

	

1 _ r
b =

	

n i

	

nZi
i 1 i-

Z n

	

s
i>k' i

where we may take s = e`9(P-1) , since all the n i , i > k', and all the m i , i > l',
have prime factors less than P. We deduce that P-rs ; but alb = r/s and (a, b) = 1
and Pb, thus Pls, a contradiction . Thus alb = 0, and as noted before the equalities
of (54) follow . But (54) implies n i = m i for i = 1, 2, • • • , k' = l' . Thus

1
Mi .

41
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i= k'+ I n i

	

i= k'+ 1 nl r

and all prime factors are less than P. By induction k = l and n i = mi for i = k' +

l,k'+2,- • • , k.
The lemma is established .
Conclusion of the Proof of the Theorem . Rom the lemma we see that every

distinct subset of Q(N) yields a distinct value for ,I Ek/k by setting Ek = 1 for
members of the subset and Ek = 0 otherwise. Thus S(N) > 2Q (N) , as claimed .

The theorem is established .
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