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ALTERNATING HAMILTONIAN CYCLES

BY

BÉLA BOLLOBAS AND PAUL ERDŐS

ABSTRACT

Coloar the edges of a complete graph with n vertices in such a way that no
vertex is on more than k edges of the same colour . We prove that for every k
there is a constant c k such that if n > ck then there is a Hamiltonian cycle with
adjacent edges having different colours . We prove a number of other results in
the same vein and mention some unsolved problems .

Given the natural numbers n and d, denote by K~ (A, < d) a complete graph
with n vertices whose edges are coloured in such a way that no vertex is on inore
than d edges of the saine colour. [We denote by A, the maximal degree in the
subgraph formed by the edges of colour c .) These graphs were examined by
Daykin [I], who proved that if d = 2 and n ? 6 then every such graph contains a
Hamíllonian cycle whose adjacent edges have different colours . Daykin [1) also
asked whether this holds for every d and every sufficiently large n (depending on
d). We shall answer this question in the affirmative . We shall also prove a
number of related results ; among others we shall give partial solutions to other
problems stated in [l] .

Denote by AC, a cycle of length l in which adjacent edges have different
colours . These are the alternating cycles and the alternating paths are defined
analogously . Our main result about the existence of an AC, in a K„ (A, < d) will
be proved by using certain auxiliary subgraphs, subgraphs in which it is
particularly easy to construct alternating paths. Let us show first that
K. (A, < d) contains a large subgraph with a stricter condition on the degree .

LEMMA 1 . Let n ? d - 6 ? I be natural numbers and let r be a natural number
such that
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Then every G = K~ (A, < d) contains an H = K, (A, < S) . In particular, if

64d < n then every G = K„ (A, < d) contains a K, (A, 1) .

PROOF. Denote by si the set of complete subgraphs of G with r vertices and

if x is a vertex of G, let

s9, _ {L E ,4 : L contains at least S + I edges of the same

colour, ending at x} .

Denote by d,, • • • , d, the degrees of x in the subgraphs formed by the various

colour classes . Then d; -- d and S; d; = n - 1 , so by the convexity of f (t) _ \
u I

we have

`Sd+11`r-(S+2))-nd1`Sd+1
)

(n Consequently, if

	

= U .4„ where the union is over all vertices,

1/1-41=I Í
/(n1~n(n-1)l d ) n - (S+2)1//nl <n-crs+2ds <1 .lrl

	

d

	

`S±1

	

r-(S+2)

	

rr

Thus I ,i I > 1 ; and by construction every H E ,4 - R will do for the lemma .

Denote by V (G) the vertex set of a graph G . If a, b E V (G), c (ab) denotes

the colour of the edge ab .

LEMMA 2 . Suppose G = K„ (A, < d) contains an alternating path P that ends

at a vertex x, a vertex y not on P and s > d/4 vertex disjoint K, (A, < 1) subgraphs,

say H,, H2 , • • •,H. Then the following assertions hold .

(i) There is an index I such that P can be continued to an alternating path P*

that goes through the four vertices of H,.
(ü) If a E V (H,), b E V (H2) and i, j are given colours, there is an alternating

path Q from a to b, going through the eight vertices of H, and H 2 such that the first

edge of Q does not have colour i and the last edge does not have colour j .

PROOF . (i) Denote by k the colour of the last edge of P . As there are at most

d - 1 other edges of colour k ending at x, there is an index I such that at least

one of the edges joining x to H, has colour different from k . Let k,, k 2 , k,, k, be

the vertices of H . We can suppose without loss of generality that c (xh,) k and

c (h, h,) c (h,y) . Then we can put P* = Ph,h,h,h,y .

(ü) Denote the vertices of H, by a = a,, a 2 , a 3, a, and the vertices of H 2 by

b = b,, b2, b, and b, . We can suppose without loss of generality that
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c (a, a 2) X i 74 c (a, a,)

	

and

	

c (b, b2) f c (b, b,) .

	

Furthermore,

	

as

c (a, a,) c (a, a,) and c (b2 b,) X c (b, b,), by symmetry we can suppose that

c (a, a,) 4 c (a, b,) 9-` c (b, b,) . Then we can put Q = a, a 2 a, a, b, b, b2 b, .
Our first main result is an almost immediate consequence of these lemmas .

THEOREM 1 . If 69d < n then every G = K„ (A, < d) contains an alternating
Hamiltonian cycle .

PROOF . As n - 4 [5d 14] > ó4d, by Lemma I the graph G contains s =

[5d 14] + 1 vertex disjoint K, (A, < 1) subgraphs, say H,, H2, H_ Let P be a

maximal alternating path in H = G - U ; Hi . Then H - P contains at most

d - l vertices. By Lemma 2 (i) in G the path P can be continued to an

alternating path P* containing all these vertices and the vertices of at most d - 1

of the graphs H, . Consequently there are t ? [ d/4]+2 subgraphs disjoint from

P*, say H,, H2 , . . . . H, . Denote by x, (resp . x 2 ) the first (resp . last) vertex of P *

and by i, (resp . i 2 ) the colour of the first (resp . last) edge of P* . There are at

most (d - 1)/4 subgraphs H; such that every edge joining x (resp . y) to a vertex

of H; has colour i, (resp . i 2 ) . Therefore one can find vertices a, E V (H,), a,C
V (h,), 1 < i j -- t, such that c (x, a,) X í, and c (x 2 a 2 ) X i2 .
By Lemma 2 (ü) there is an alternating path Q from a 2 to a; going through all

the vertices of U ; H, such that the colour of the first edge is not c (x 2 a2 ) and

the colour of the last edge is not c (x, a,) . Then a, x, P* x 2 a 2 Qa, is clearly an

alternating Hamiltonian cycle . This completes the proof of the theorem .

REMARKS . 1 . Exactly the same proof gives that under the conditions given in

the theorem every G = K„ (A, < d) contains an A C for every l, 3 < t : n .

2 . In the first version of the paper we proved Theorem 1 under the condition

n > c, d 21 ` (e > 0), and only the referee's remarks made us prove this stronger

form. A similar result has been proved independently by Chen and Daykin .

Though the bound n > 69d might not seem to be too bad, we suspect that it is

very far from being the best possible, since from below we can construct

practically nothing . (See the first conjecture at the end of the paper .)

Let us examine now the related questions . These questions arose in connec-

tion with the auxiliary subgraphs used in the proof of Theorem 1, but we think

they are interesting on their own . Let a > 0 be a given constant. How large does

n have to be if every K„ (A, < d) contains a K., (0, < 1) ? How large does n

have to be if every K, (A, { d) contains a complete subgraph with at least ad
vertices without 2 edges of the same colour? We cannot give a complete answer

to either of these questions but we prove reasonably good estimates .
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THEOREM 2 . a) If a' d° < n then every K„ (A, < d) contains a K., (A< < 1) .

b) There is a constant Csuch that if d'> Cn(log n)' then there is a K„ (A, < d)

that does not contain a Kl.dl (A, < l) .

PROOF . The first part is contained in Lemma 1 . To prove b) we apply a

probabilistic argument .

It will be clear from the argument that it is sufficient to prove the result when

k = n"' is an integer and n is sufficiently large .

Colour the edges of a K„ (complete graph with n vertices) with n/k colours,

giving each colour probability k/n . Then with probability > 1/2 the obtained

graph G will be a K„ (A, < d), where d = [k log n] . Let us choose a complete

subgraph H of G with r + 1 = [ad] vertices . If x is a vertex of H, the probability

that H does not contain 2 edges ending at x that have the same given colour (say

colour 1) is

z
(1 - n) + r(1- n) , n < 1 - 2n

z
' .

Consequently the probability that H does not contain 2 adjacent edges of the

same colour is at most

Now

r z kz) .wi(zk)

8n 2
(1-

r' k~

	

n

	

n
(1- 8

	

(r)<2exp(-kr'/(16n))(r) ~a

as n - - . In particular, if n is sufficiently large, the probability that H is a

K, ., (A, < 1) is < ( ?1 ) -' /2 . Thus there exists a G = & (A, < d) that does not
r

contain a K1,, 1 (A, < 1), as claimed .

THEOREM 3 . a) If r d < n then every K„ (A, < d) contains a complete sub-

graph with r vertices without 2 edges of the same colour.

b) There is a constant Csuch that ifd' > Cn(log n)° then there is a K„ (0< < d)

in which every complete subgraph with r = [ad] vertices contains 2 edges of the

same colour.

PROOF. The proof of the first part is analogous to the proof of Lemma 1 and

the proof of the second part is exactly the same probabilistic argument as the

proof of Theorem 2b) . We omit the details .
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Let us denote by K„ (Xv ? d) a complete graph with n vertices whose edges are
coloured in such a way that each vertex is on at least A edges of different colour .
[X~ = number of colours appearing among the edges containing a vertex v .]
Daykin posed the question of finding a d , as small as possible, such that every
K„ (X,: -- A) contains an alternating Hamiltonian cycle . We shall show that
A ? (7/8)n will do . We also give an example showing that 1t = [(n + 2)/3] will no
longer do .

THEOREM 4 . Every K„ (X„ ? (7/8) n) contains an alternating Hamiltonian
cycle .

PROOF. Put r = 1/8 and let G = K~ (X, ? (1 - E) n) . If e = xy is an edge of
G, let c (e) = c (xy) be its colour . Call an edge xy of G x-unique if
c (xy)¢ c (xz) if z y . Call an edge xy unique if it is both x-unique and
y-unique .

Let C be a cycle of maximal length in G, say length 1, consisting of unique
edges . As there are at least (1 - 2E) n x-unique edges for each vertex x, there are

at least (1-2E)n 2- (2}=(i-2E)n2+(n/2)=(n2/4)+(n/2) unique edges .

Therefore t _ n/2 (see [2]) .
Let L, be a longest alternating path in G - C, let L Z be a longest alternating

path in G-C-L, , etc . Suppose we obtain the paths L,, L 2 , • , L, with 1,, 12, • • •, i,
vertices, respectively . Then I +7_ ; 1, = n and 1; ? 2 if i < t .

It is easily seen that if L, is an a, b, -path, where a, might coincide with b„ then
C contains adjacent vertices c„ d, such that the path c, a, L, b, d, is an alternating
path. Suppose now that L, (s > t) in an a, b, -path, beginning with the edge a, a,'
and ending with the edge b, b, . Then at most en - 2 - I of the edges a, c, c a
vertex of C, have the same colour as a, a , , and a similar assertion holds for b, . It
is easily checked that

2(En-2-~ 1;)+2(t-s)+1<1 .

Therefore one can choose inductively different vertices of C, say
c„ d„ c,_,, d,_,, •- •, c,, d,, such that c ; and d ; are adjacent vertices of C and the
paths P; = c ; a ; L ; b; d ; are alternating, i = t, t - 1, • • •, 1 . Replacing the edge c ; d; of
C by the path P;, we obtain an alternating Hamiltonian cycle, as required .

OPEN PROBLEMS AND CONJECTURES . It is likely that Theorems 1 and 4 (our
main results) can be strengthened considerably . The values at which these
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theorems are known to fail are much smaller than the bounds we needed to
prove the existence of alternating cycles and we suspect that these rather feeble
looking examples are nearer to the truth than our positive results .

1 . Let n = 4k + l . Then the edges of K„ can be coloured with red and blue
in such a way that at each vertex there are 2k red and 2k blue edges . This is a
K4k+, (A, < 2k) that does not contain an ACgk+l • We do not know a K, (A, < d)

with d < [n/2] that does not contain an AC4k+1 and we suspect that there might
not be one . So the problem is the following . Does every K„ (A, < [n /2]- l)
contain an alternating Hamiltonian cycle?

2 . Let k = [(n - 1)/3] and colour the edges of K . with colours 0, 1, k + I
in the following way . Let xO , x,, • • • , xk _, be k arbitrary vertices of K. and divide
the remaining vertices into k non-empty classes, S ., S,, • • • , S,-, . If y E S; colour
the edge x,y with the colour I i - j I . Use the colour k to colour the edges x,x; and
the edges yz, y, z E U " S; . In this colouring of K„ with k + 1 colours every

vertex is on an edge of each colour. Clearly there is no alternating Hamiltonian
cycle since every Hamiltonian cycle has three consecutive vertices in U ' S; . It
is not impossible that this example is essentially best possible, perhaps even
without the restriction that each vertex is on an edge of each colour . In other
words can Theorem 4 be sharpened to the following?

Every K. (Xv ? [(n + 5)/3]) contains an alternating Hamiltonian cycle .
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