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ASYMPTOTIC ENUMERATION OF K„-FREE GRAPHS

RIASSUNTO . - In questo lavoro si calcola il numero di grafi con tt vertici che non
contengono alcun K. (grafo completo con m vertici) . Fissato m, si ottiene un valore
asintotico, per n che tende all'infinito, del logaritno del numero di tali grafi. Una vasta
classe di tali grafi puó ottenersi spartendo i vertici in m - i classi approssimativainente
eguali e collegando poi due vertici se essi sono in classi diverse . 11 logaritmo del numero
di grafi di questo tipo tende asintoticamente al logaritmo del numero di tutti i grafi privi
di K, .

Nel caso in cui na = 3 (grafi privi di triangoli) si ottiene un risultato piú forte : si
ha infatti che il numero di grafi con n vertici e privi di triangoli é asintoticainente eguale
al numero dei grafi bipartiti con n vertici .

We investigate in this paper the question of how many graphs there are
containing no complete m-gon (K,,,) as a subgraph ; that is, no subset of in
vertices with every pair joined by an edge of the graph . All graphs considered
here are undirected, without loops or multiple edges, and with labelled vertices .
We answer the question asymptotically for the logarithm (Corollary to Theo-
rem i) for m > 3, and asymptotically (Corollary to Theorem 2) for m = 3 .

For the m = 3 case, a slight modification of the method used in [2]
for counting asymptotically the number of partially ordered sets on n elements
can be used . The method used here is basically the same, but divides the
graphs into cases in different ways . The idea is to divide the graphs into several
subclasses, all but one of which are asymptotically negligible . That one is
the class of bipartite graphs . Thus these graphs are " almost all " bipartite .

THEOREM I . For every integer k > 2 and every real number e > o, there
are numbers o < fk (e) and n (k , e) such that the number of graphs with n
vertices, n > n (k , e) and at most enk subgraphs of type K k , is at Post
2(,012)((1-11(k-1))+ .fk(z)), where

f, (s) -a o

	

as e -- o .

COROLLARY. Let Gk (n) be the number of graphs with n vertices and witli
no subgraph of type Kk . Then

1og2 (G k (n)) =

	

( r - k '	 I ) +0(,12) .n
2

Note: All logarithms are base 2 in this paper.
Proof of Corollary . That n2 /2 (r - I1(k- i)) + o(n2) is an upper bound

follows from Theorem i by letting e -s o as n -+ oo . That it is a lower bound



can be seen as follows : Divide the set of n vertices into k - 1 subsets as equally
as possible ([nl(k - 1)] or [nl(k - i)] + i in each) consider all graphs with
no edge joining two vertices of the same subset . There are at most
2kn/k-1)'(k-1)((k-2),!2) of these, or 2("'J2)(1-(li(k-]))) . This construction completes the
proof .

Proof of Theorem i . We use induction on k, starting with k = 2 . In this,

case, given e > o, we get - (o

	

n) graphs . For e sufficiently small, say
i

e < e o , and n sufficiently large, depending on e, say n > n (e), we get
1-1 ( (

2
) < n2 [nz1 22

( [2 en f 2] }i=o

	

i

< 2 -(2Elogr.+(1-2s)log(1-2E))(n'J2)+21ogn

< 2-2, (10g E) "' .

Thus for e > Eo we let n (2 , e) = i, f2 (e) = i, and for e < eo We let n (2 , E) _
= n (e), and /2 (E) _ - 2 e log e . This completes the k = 2 case .

Next we assume that the theorem holds for k - > and consider graphs
on n vertices with at most enk subgraphs of type K k . We consider two sub-
classes :

A (n , e) : Graphs with fewer than cnk- i subgraphs of type K k - 1 , where
c is such that fk_ 1 (c') < 1l(2 (k - i) (k - 2)) for all c'< c .

B (n , e) : Graphs with a subgraph H of type R lk-11 (see definition
below) such that at most an vertices from the remaining n - (k - i) R ver-
tices are connected to some vertex in each of the k - i parts of H . Here we
take R = 2 C_ Ilk , a = 4 kRk-1 c-is, and we assume a is small enough so that
a < i say z < e o . By a graph of type RI` ) we mean a graph consisting of l
disjoint sets of R vertices each (called the " parts " of RE") and edges between
every two vertices in distinct parts, and only these edges. Such a graph is
called a complete 1-partite graph .

Let G (n , e) be the class of all graphs with n vertices and at most
en k subgraphs of type Kk .

LEMMA . G (n , e) = A (n , e) v B (n , e), for n sufficiently large,
n > n (e) .

Proof. Consider a graph G with n vertices and at most enk Kk , and
suppose G e A (n , e) v B (n , e) . It therefore contains at least cnk- i Kk-1
subgraphs. By a theorem of Erdös [i], for n large enough, depending on R
and c (and thus only on e), we can find a subgraph H in G of type R(k-1 ~

Now since G is not in B (n , e), there must be at least an vertices connected
to at least one vertex in each of the k - 1 parts of H . Thus some set S1 of
k- i vertices, one from each part, is common to at least anlW-1 subgraphs
of type K, .

say



Consider the family of sets of k - i vertices of G forming subgraphs
of type Kk _i , but excluding Si . There are at least csak -1 - I of these. Thus
again by the theorem of Erdös [i], there will be a subgraph H' of type R ik- ",

where not all k - i parts of H' contain vertices of S1 . Again, since G is not
in B (n , e), there will be a set S 2 of k - i vertices, one from each part of H',
such that S 2 is common to at least an/Rk-1 subgraphs of type Kk .

We repeat this argument [(c/2) nk -1 ] times, each time eliminating one
set of k - i vertices, and always leaving at least (,,/2) nk-1 other Kk-1 . That
this process can be continued is a consequence of the theorem of Erdös [i],
which guarantees it for n large enough, depending on c . But repeating the
argument [(c12) nk-I ]

times guarantees the existence of at least [(C12)
nk-1] S i

and thus at least k (yn/Rk-1 )
(cJ2) n"- ' Kk (to account for the possibility that

a given K k may contain up to k of the S ) . However, this exceeds enk, a
contradiction . This proves the lemma .

We next obtain bounds for A„ = I A (n , s) I and B,, _ B (n , s) 1 . Let

G,, = j G (n , s) 1 . We already saw that log G" > (I - 1/(

	

z
k - I))

2
(in the

proof of the Corollary) . By induction on k the have, for n large enough,

tog A, < ~' i - i 1(k - 2`~ ' fk-i 'c)} 12l

	

J-

	

'

	

2

Thus

C«I-IJ(k-i»- I

	

12

~(k-i)(k-2

	

2

A.

	

% I

	

I

	

n 2(i)

	

log( G,' <-~2 (k - i) (k - 2) ) -2

Next we consider B (n , z), and we estimate B„ by (over-) counting
the numbers of ways to form graphs in B (n , s) by starting with one on
n - (k - i) R vertices and at most enk Kk subgraphs . By definition of
B (n , e), we can obtain all graphs in B (n , s) by adding one of type R Ek- "

to one on n - (k - i) R vertices .
First we choose (k - i) R-sets (at most R

)k-1
choices), and then use

choose a graph on the remaining vertices with at most Enk Kk (at most
G.-(k-, )R choices). Next we choose at most an vertices to be connected to all

k-i of the R-sets at most n `[ In
])

choices}, and then we connect them (at
1

	

xn
most 20k-1) Rna ways). We then connect the rest of the n - (k - i) R vertices
by choosing for each of these vertices one of the R-sets to which it will not
be connected (at most (k- i)"

-(k-1)R choices), and then connecting them
(at most 2("-R(k-i))(k-2)R ways. This completes the construction of all graphs
in B (n , e) and gives

log	B"
1) R )

< kR log n + log n

-n(aloga -{-(i-a) log (i-a))+(k-i)Ran

+(n-(k-i) R) log (k-i)+(n-(k-i)R)(k-2)R .



For a sufficiently small (and thus e sufficiently small) and n sufficiently large,
depending on R , a (and thus on e), we get

log (-Gq -B' 1) R) ) < (k - 2) Rn + do

where

- 22 -

d = i oo kRa = i oo k2 2k+1 C1

d is thus a constant independent of e. We get

log

	

B„

	

r

	

d
og l G„-(k-1) R ) ~~ i

	

k - t ) + (k - ) R ) (k - I } Rn

Let e l be sufficiently small so that for each fixed e < e i there is a number
n' (e) such that (1), (2) and the lemma hold for all n > n' (e) .

We have from the lemma and (i)

G„ < A„ + B,, < Bn + Gn 2- (u/2k)a

(2)

or
Gn < B n (I - 2-(n12k)')-1

Then from (2) we get

log~	 Gn
-) (i -	I +

	 dl
) (k - ) RG,,-(k-I) R <

	

k-I

	

(k-)R

	

I

	

n

- log (i - 2- (n/2k)°)

- k
	 L- i + (k 2 d ) R )(k-I)Rn

~

	

i

	

2 d

	

) (k - 1) 2 R2
- I, I- k-i + (k-i)R

	

2

we get

for n sufficiently large, say n > n" (e) > n' (e) . Thus if

rlog (Gn_(k_i)R) <
1

1 - k i

	

2d

	

(n - (k - i) R) 2
_z + (k-I)R )	2

1

	

2 d

	

n2log(G)<~I-k-i+ (k-i)R) 2 +K .

Let K be large enough so that
~log (G,t)

	

1< I - k_1+zd

	

n2
(k - I)R ) 2 r K

+K,

for all n < n" (e) . Then by the last remark, this inequality holds for all n .
Now let n (e) > max (n" (e) , ((2 K (k - i) R),ld) 4) . Then

log G n < (i - (i l(k - i )) + 3 dl (k - i) R) n2 /2 for all n > n (e) .

The proof of Theorem i is complete if we let. f, (e) = i for e > e i ,
and fk (e) = 3 dj(k - i) R for e < e 1 , and if we let n (k , e) = i for e > el ,
and n (k , e) = n (e) for e < e 1 .
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We now turn to the case k = 3, or triangle-free graphs . We show that
almost all " such graphs are bipartite . That is, if T is the number of triangle-

free graphs on a set of n vertices, and if S„ is the number of bipartite graphs
on the set n vertices, then

THEOREM 2 . T = S„ ~I + o

To prove Theorem 2 we use some lemmas, each concerning a special
subclass of triangle-free graphs . We consider a set V of m + i vertices .

LEMMA i . Let A (V) be those graphs on V with a vertex v connected to at
most m/64 others . Then

to	 A (V)' <
m

g Tm

	

4

Proof. All graphs in A(V) are obtained as follows : a vertex v is chosen
(m + I ways) ; a graph on V - { v } is chosen (T,,, ways) ; and the connections

to v are chosen (at most m (~ 1641 ) ways) . This gives

log
`(

..:TV)I

	

_T_	 ) < log m + log (m ' I) + log
`[m/641)

< m/4 ,

for m sufficiently large .

LEMMA 2 . Let B (V) be the graphs on V with a vertex v connected to a set
Q of [ml] vertices, where the set R of all vertices connected to any vertex of Q
satisfies I R I > ml2 + ~ m 5/8 . Then log (I B (V) J /Tm) < M/2 - m"18/4 for m
sufficiently large .

Proof. Graphs in B (V) are all obtained as follows : v is chosen (m + I

ways); a graph on V - { v } is chosen (T, ways) ; a set Q is chosen to satisfy

the conditions for R (at most (
M ]

) ways) ; and v is connected to V- ({v } U R)

(at most 2'12- m"erg ways). This gives

tog I
B (V)

< 2 m' tog m + yra /

	

I

	

M

	

M5/8

Tm

	

2 - 2 m51s <
4

for m large enough .

LEMMA 3 . Let C (V) be the graphs on V with a vertex v connected to a set
Q of [0] vertices where the set R of vertices connected to any vertex of Q satisfies
R I <m/2-2m 518 . Then

log C (V 1 < 2
9n312 - m9í8

Tm-[m7]

	

•{
for m sufficiently large .

Proof. All graphs in C(V) are obtained as follows : v is chosen ((m + I)

ways) ; Q is chosen
`(fm 1

) ways ; a graph on V - ({ v } UQ) is chosen

Tm-['n8~; ways); R is chosen at

	

omost

	

(7n

	

9n/2 (,M, 2] ) Ways /(

	

>= J

	

7Y1
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the connections from Q to R are chosen ,at most 2 1- J(-I2-á-$e) ways) ; and
finally the remaining connections of v are chosen (at most 2- ways, . This
gives

lo	 ICMI

	

na

_ m3?2 -
nt9I8 < Y123/2

	

M O/8

g Tm-(m ]

	

3

	

2

	

2

	

4

for m large enough .

LEMMA 4 . Let D (V) be the graphs on V with two adjoint vertices x and y,

with their corresponding Qr , Q,, and R x , R,, as above, with ! Rx

	

m
-

2 <

sn 5 l8

z

and similarly for R,, , and with I (V - R,) Cl (V - R,,) >
o

. Then

g	 ID(~')I

	

_ n2lo

	

Tm-i
< m

	

r6o ,

for m large enough .

Proof. All graphs in D (V) are obtained as follows : x , y are chosen
(at most (m = 0' ways); a graph on V - { x, y } is chosen (Tm 1 ways) ;
Q r and Q,, are chosen so that Rx and R,, satisfy the conditions above

at most n2]
)2

ways) ; and finally x and y are connected as follows: Let

\S = (V - Rx) Cl (V - R,,). Then x can be connected to (V - Rr) - S
in at most Ym'2)+(-''e/2)-jsl ways, and similarly for y and (V - R„) - S. S
can then be connected to x and y in 3'sI ways, since x and y are to be adia-
cent. This gives at most 2-+-"' + I S 1109 3- 2 1 S I ways . Then

log
Dm` 1

	 } < 3 m2 log m -
11

m =, W518 -
4o

(2 -109 3)

< rn - 16o

for m large enough .

LEMMA ; . Let E (V) be the graphs on V with vertices x , y adjacent
respectively to sets Q,x , Qy of [m Q ] vertices, where Q,, Q„ are connected to
Rr , R,,, respectively, with I I R, I - m/2 1 < m5!s /2, and similarly for R, . . Fur-
ther let no two vertices of R. be adjacent, and assume u , v E R x have no comm oil

adjacent vertex . Then log
E(V)

I
	 } < 8 m for m sufficiently large .

Proof. Graphs in E (V) are obtained as follows : x , y , u , v are chosen
(at most in m4 ways); a graph on V - { x , y , u , v } is chosen (at most Tm_3

ways) ; Q,, and Q,, are chosen so that R.. and R,, can satisfy the conditions above

~at most lml~
)a

ways) ; x and y are connected to V - R,r and V - R
9n

respectively (at most 2-+-58 ways) ; finally a and v are connected to V - R x
(at most 3(' ,12)+-° 78 12 ways) . This gives

log (	Tm` 3 )
< 3 m? log m T 2 MN =

m (
i -}

log 3
) < I8 na

for m large enough .



LEMMA 6 . Let F(V) be the graphs on V with v , Q and R as above, with
R I - M/2 1 < m''8 Í2, and with a vertex u not adjacent to any vertex of R nor

to any vertex adjacent to v . Then

Proof. Graphs in F(V) are obtained as follows : u , v are chosen (at most
(m + 1)2 ways) ; a graph on V - { u , v } is chosen (at most T„- 1 ways) ;
Q is chosen (at most lm~l ) ways} ; then u , v are connected to V - Rm
(at most 3m/2+-"-12 ways) . This gives

log ( F(V)
) < 2 m~ log m + m'J8 +

yn log 3

< 8 m

	

for m large enough .

LEMMA 7 . For m sufficiently large,

}Z 1- m - 2 log m < log S,n < 42 + m

(Recall Sm is the number of bipartite graphs on m vertices) .

Proof. To obtain bipartite graphs on m vertices >e divide them into two
subsets (at most 2m ways), and connect the two parts (at most 2m'/4 ways) .
This gives log 5,,, < m2/4 + m.

To get a lower bound we must construct a special subclass of bipartite
graphs and count them without duplication . We do this as follows . First
we divide the vertices into two sets of sizes [m/2] and m - [m/2] . There are
at least z l [m l2] 1

ways to do this . Not counting the effect of duplication this

gives a contribution of [MM/2]) 2[m/2](m-[m/2))-1 `says to construct the graphs .
The only graphs counted more than once here are those with more than

one connected component. Suppose the vertices are divided into two subsets
K and L, with k and Z vertices respectively, such that no vertex of K is connec-
ted to any in L. Using the upper bound established above, we get at most
2k'' .4+1'I4+k=r such graphs for fixed K and L. The upper bound we have for
Sm includes all multiplicities obtained in the construction above . Thus to
more than) compensate for multipli cities we subtract ~k=1' (k ) 2('"~/4>+ri'-k(m-k>/2

This can be rewritten as

Hence we get

for m large enough,
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log

	

F(V) ; < ' m .
T,, -1

	

8

[m/2]
2m'/4+m

	

2(-k(.-k»í2 < m 2(- 1).12 2m'/4+m
k=1

	

2

S > 2(m'14)-2
m

	

- 2(",/4)+m m 2-(m+1),/2m

	

([M/2])

	

2

> 2(m'i4)+m (2-2-logm - 2-mí24-logm -'})

> 2(m'14)+m (2-3-logm)

> 2(m',4)+m -2Iogm
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COROLLARY. For m. large enough

log (	S,S„+~ } <-na/2 `-31097n-

LEMMA 8 . Let S (V) be the bipartite graphs on V. Then A (V) U
U F (V) U S (V) contains all the triangle free graphs on V, for na su a-

ciently large .

Proof. Let G be a triangle-free graph not in A (V) through F (V) . By
A (V) , B (V) and C (V), every vertex in G i s connected to some set Q which
in turn is adjacent to a set R of vertices with I R I -rn/2I < ; na',18 .

We claim that G contains no pentagons (5-cycles) . For let a , b , c , d, e
be the vertices of such a pentagon, in order . For each of these there is a
corresponding Q and R, say Ra , • • • , R, . By D (V),

I(V-Rd)n (V-Ra)1 <  a ,

	

I(V-Ró)n (V-R,) ; < 40 .

Since (V - Rd), (V - Ró), (V - R,) all have (In/2) - 2 nay s vertices, we get
I (V - Ra) n (V - R,) ! > (M/2) - (3 an'/g/2) - m/2o . Similarly, I (V - R,) n
n (V - Re) I > "M12) - 3 7n'"8/2) - M/2o . This implies that

1 (V - R,) n (V - R,) 1 > yYZ - 7 7n •sts _ 172

	

m
2

	

2

	

io

	

zo

for m large enough, contradicting D (V), since a and e are adjacent . "Thus G
has no pentagons .

Now consider any two adjacent vertices x and y in G . Let Sx and S,,
be those vertices distance i from x and y respectively, and Rx , R,, those at
distance 2 . Since there are no pentagons, Rz and R,, are disjoint . Sx and S,,
are disjoint also, as there are no triangles . Thus by A (V) , B (V) and C (V),
1 Rx I and I R,, I are both an/2 M5"8/2 . Since there are no pentagons or trian-
gles, no two vertices of Rr are adjacent, and similarly for Rv . (Also for
Sx and S,,) .

By E(V), every two vertices of Rx have a common adjacent vertex,
and similarly for R,, . (Strictly speaking, we first choose a set Q of [0]
vertices from Sx (resp . S,,) so that the two vertices under consideration are
adjacent to Q, and then apply E(V)) •

Now consider a vertex z not in U = ({ x , y',} U Sx U S,, U Rx U R,,) . By
A (V), z must be connected to some vertices in U . By definition of the S's
and R's, z can be connected only to Rx U R,,, and not { x: , y } U Sx U S,, , But
if z is connected to u E Rx and v E R,,, then by A(V), v must be connected to
some other vertex w c Rx, and by our observation above, w and u must both
be adjacent to some other vertex t . Then t , w , v , z , u form a pentagon,
which is forbidden . Thus z can be connected to only one of Rx and R,, . But
by F (V) there can be no such z .

Thus G consists entirely of x, y, Sx, S,,, R,, R,, . We claim G is bipartite
with parts { x } U S,, U Rx and {y } U Sx U R,, . We already know that within
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each of R.T , R,, , S r , S there are no edges. Furthermore x cannot be connected
to S,, nor Rx or a triangle would result. Similarly y is not connected to Sx
nor R,, . Finally, there can be no edges between Sx and R,, nor R_r and S,, or
there would be a pentagon .

Thus G E S (V) and the proof of Lemma 8 is complete .

Proof of Theorem 2 . We prove the following statement by induction on n :
T n < (I =, 'Cl-n)) S„ for all n, where C is large enough so that

T„ < (I !, (C In') S„ for n < N, and N is large enough so that all the lemmas

above are valid, and N > ioN.

For n < N statement is true by choice of C. We assume that it holds

for all n < ),n, where na > N, and we show

Tn}1 < I I + C 	S„}I .

By Lemma 8, we need only show that

These

A (V) J 1 . . .+ F(,V) ~
<

	

C
Tf,+I

	

YT + I

We use induction and the inequalities from the lemmas to show that
c

n -1- Ieach of I A (V) I/S„ }I , • • • , I F (V) I /S„+I are less than 1/6

ments are all similar and we give only a couple here .

IC/V Tra -[n

TI,-[n ] S oa-[aaá] Sra-[ni]+I

for ~V~=n ri .

Sn
Sn+i

I fta14- I
Y1~1a

	

C
< 2 2

	

4

	

I --
n _ [n~ ]

. /2-(fe-[ná]) /- +3 log n)[n~]} 7

< 2_Ig,lala
\I
_

	

C

	

C I

	

C
?z _[n#],

	

6 n+I
F(L)

	

~F(V)I T-i Sn-I

	

Sn
Sn+i < T-1 S-i SI, S,,+1

< 2,/8f1
\ I T

	 C 	2 -(fa-1)}b log n
n-

I

	

C
< 6 n+I .

complete the proof of Theorem 2 .
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