Cliques in random graphs

By B. BOLLOBÁS and P. ERDÖS
University of Cambridge

(Received 17 September 1975)

1. Introduction. Let $0<p<1$ be fixed and denote by G a random graph with point set \mathbb{N}, the set of natural numbers, such that each edge occurs with probability p, independently of all other edges. In other words the random variables $e_{i j}, 1 \leqslant i<j$, defined by

$$
e_{i j}=\left\{\begin{array}{l}
1 \text { if }(i, j) \text { is an edge of } G, \\
0 \text { if }(i, j) \text { is not an edge of } G,
\end{array}\right.
$$

are independent r.v.'s with $P\left(e_{i j}=1\right)=p, P\left(e_{i j}=0\right)=1-p$. Denote by G_{n} the subgraph of G spanned by the points $1,2, \ldots, n$. These random graphs G, G_{n} will be investigated throughout the note. As in (1), denote by K_{r} a complete graph with r points and denote by $k_{r}(H)$ the number of K_{r} 's in a graph H. A maximal complete subgraph is called a clique. In (1) one of us estimated the minimum of $k_{r}(H)$ provided H has n points and m edges. In this note we shall look at the random variables

$$
Y_{r}=Y(n, r)=k_{r}\left(G_{n}\right)
$$

the number of K_{r}^{\prime} 's in G_{n}, and

$$
X_{n}=\max \left\{r: k_{r}\left(G_{n}\right)>0\right\},
$$

the maximal size of a clique in G_{n}.
Random graphs of a slightly different kind were investigated in detail by Erdös and Rényi(2). In (4) Matula showed numerical evidence that X_{n} has a strong peak around $2 \log n / \log (1 / p)$. Grimmett and McDiarmid(3) proved that as $n \rightarrow \infty$

$$
X_{n} / \log n \rightarrow 2 / \log (1 / p)
$$

with probability one. Independently and earlier Matula(5) proved a considerably finer result about the peak of X_{n}. In particular he proved that, as $n \rightarrow \infty, X_{n}$ takes one of at most two values depending on n with probability tending to 1 .

The main aim of this note is to prove various results about the distribution of X_{n}. We shall also investigate the existence of infinite complete graphs in G. Finally we prove how many colours are likely to be used by a certain colouring algorithm.
2. Cliques in finite graphs. To simplify the notations we shall put $b=1 / p$. Note first that the probability that a given set of r points spans a complete subgraph of G is $\left.p^{(}\right)$. Consequently the expectation of $Y_{r}=Y(n, r)$ is

$$
\begin{equation*}
E_{r}=E\left(Y_{r}\right)=E(n, r)=\binom{n}{r} p(9 \tag{1}
\end{equation*}
$$

Let $d=d(n)$ be the positive real number for which

$$
\binom{n}{d} p^{(s)}=1 .
$$

It is easily checked that

$$
\begin{aligned}
d(n) & =2 \log _{b} n-2 \log _{b} \log _{b} n+2 \log _{b}\left(\frac{1}{2} e\right)+1+O(1) \\
& =2 \log _{b} n+O\left(\log _{b} \log _{b} n\right)=\frac{2 \log n}{\log b}+O\left(\log _{b} \log _{b} n\right) .
\end{aligned}
$$

Choose an $\epsilon, 0<\varepsilon<\frac{1}{2}$. Given a natural number $r \geqslant 2$ let n_{r} be the maximal natural number for which

$$
E\left(n_{r}, r\right) \leqslant r^{-(1+\epsilon)}
$$

and let n_{r}^{\prime} be the minimal natural number for which

$$
E\left(n_{r}^{\prime}, r\right) \geqslant r^{1+\epsilon}
$$

It is easily checked that
and

$$
\begin{gather*}
n_{r}^{\prime}-n_{r}<\frac{3 \log r}{r} b^{\frac{1}{r} r} \tag{2}\\
n_{r}=b^{\frac{d}{} r}+o\left(b \frac{b}{}{ }^{\frac{1}{2}}\right) .
\end{gather*}
$$

Thus, with at most finitely many exceptions, one has

$$
\begin{gathered}
n_{r}<n_{r}^{\prime}<n_{r+1}, \\
\left(n_{r}^{\prime}-n_{r}\right) /\left(n_{r+1}-n_{r}^{\prime}\right)<4\left(b^{\frac{1}{2}}-1\right)^{-1} r^{-1} \log r
\end{gathered}
$$

and

$$
\lim _{r \rightarrow \infty}\left(n_{r+2}-n_{r+1}\right) /\left(n_{r+1}-n_{r}\right)=b^{\frac{1}{2}} .
$$

Theorem 1. For a.e. graph G there is a constant $c=c(G)$ such that if

$$
\begin{gathered}
n_{r}^{\prime} \leqslant n \leqslant n_{r+1} \text { for some } \quad r>c \\
X_{n}(G)=r .
\end{gathered}
$$

then
Proof. Let $0<\eta<1$ be an arbitrary constant. We shall consider the random variables $Y_{r}=Y(n, r)$ for

$$
(1+\eta) \frac{\log n}{\log b}<r<3 \frac{\log n}{\log b}
$$

and large values of n. Note first that the second moment of Y_{r} is the sum of the probabilities of ordered pairs of K_{r} 's. The probability of two K_{r} 's with l points in common is

$$
p^{2(p-6)}
$$

since G must contain $2\binom{r}{2}-\binom{l}{2}$ given edges. As one can choose

$$
\binom{n}{r}\binom{r}{l}\binom{n-r}{r-l}
$$

ordered pairs of sets of r points with l points in common (since $n \geqslant 2 r$), the second moment of Y_{r} is

$$
\begin{equation*}
E\left(Y_{r}^{2}\right)=\sum_{l=0}^{r}\binom{n}{r}\binom{r}{l}\binom{n-r}{r-l} p^{2 \zeta)-(\varphi)} \tag{4}
\end{equation*}
$$

(cf. Matula (4)). As
the variance of Y_{r} is

$$
E_{r}^{2}=\sum_{l=0}^{r}\binom{n}{r}\binom{r}{l}\binom{n-r}{r-l} p^{2(\varphi)}
$$

$$
\begin{gather*}
\sigma_{r}^{2}=\sigma^{2}\left(Y_{r}\right)=\sum_{l=2}^{r}\binom{n}{r}\binom{r}{l}\binom{n-r}{r-l} p^{2 \varphi}\left(b^{(}-1\right) \\
\left.\sigma_{r}^{2} / E_{r}^{2}=\sum_{l=2}^{r} \frac{\binom{r}{l}\binom{n-r}{r-l}}{\binom{n}{r}}\left(b^{(\mathcal{l}}\right)-1\right)=\sum_{l=2}^{r} F_{l} . \tag{5}
\end{gather*}
$$

and so

Routine calculations show that, if n is sufficiently large and $3 \leqslant l \leqslant r-1$, then

$$
F_{l}<F_{3}+F_{r-1} .
$$

Consequently

$$
\begin{aligned}
\sigma_{r}^{r} / E_{r}^{2} & <F_{2}+F_{r}+r\left(F_{3}+F_{r-1}\right) \\
& <\frac{r^{4}}{2 n^{2}}(b-1)+\frac{1}{E_{r}}+r\left(\frac{r^{6}}{6 n^{3}}\left(b^{3}-1\right)+\frac{r n p^{r-1}}{E_{r}}\right) .
\end{aligned}
$$

Since

$$
b^{r}>n^{1+\eta} \quad \text { and } \quad r<\frac{3}{\log b} \log n
$$

this gives

$$
\begin{align*}
\sigma_{r}^{2} / E_{r}^{2} & <\left(\frac{1}{2}(b-1) r^{4} n^{-2}+E_{r}^{-1}\right)(1+\eta) \\
& <(b-1) r^{4} n^{-2}+2 E_{r}^{-1} . \tag{6}
\end{align*}
$$

Inequality (6) gives, in fact, the right order of magnitude of $\sigma_{r}^{2} / E_{r}^{2}$ since (5) implies immediately

$$
\sigma_{r}^{2} / E_{r}^{2}>F_{2}+F_{3}=\frac{1}{2}(b-1) r^{4} n^{-2}+E_{r}^{-1}\left(1-p^{(p)}\right)
$$

We shall use inequality (6) only to conclude

$$
\begin{equation*}
P\left(Y_{r}=0\right)<\sigma_{r}^{2} / E_{r}^{2}<b r^{4} n^{-2}+2 E_{r}^{-1} \tag{7}
\end{equation*}
$$

In particular, by the choice of n_{r}^{\prime},

$$
\begin{aligned}
P\left(Y\left(n_{r}^{\prime}, r\right)=0\right) & <b r^{4}\left(n_{r}^{\prime}\right)^{-2}+2 E\left(n_{r}^{\prime}, r\right)^{-1} \\
& <3 r^{-(1+\varepsilon)} .
\end{aligned}
$$

On the other hand,

$$
P\left(Y\left(n_{r+1}, r+1\right)>0\right)<E\left(n_{r+1}, r+1\right)<r^{-(1+\epsilon)}
$$

Consequently, for a fixed r

$$
\begin{equation*}
P\left(\exists n, n_{r}^{\prime} \leqslant n \leqslant n_{r+1}, \quad X_{n} \neq r\right)<4 r^{-(1+\varepsilon)} . \tag{8}
\end{equation*}
$$

As $\sum_{1}^{\infty} r^{-(1+e)}<\infty$, the Borel-Cantelli lemma implies that for a.e. graph G with the exception of finitely many r 's one has

$$
X_{n}(G)=r \quad \text { for all } n, \quad n_{r}^{\prime} \leqslant n \leqslant n_{r+1}
$$

This completes the proof of the theorem.
Let $\epsilon=\frac{1}{3}$. Then the choice of the numbers n_{r}, n_{r}^{\prime} and the definition of $d(n)$ imply easily (cf. inequalities (2) and (3)) that

$$
d\left(n_{r}\right)<r<d\left(n_{r}^{\prime}\right)
$$

and if r is sufficiently large then

$$
\max \left\{r-d\left(n_{r}\right), d\left(n_{r}^{\prime}\right)-r\right\}<\frac{7}{2 \log b} \frac{\log r}{r}<2 \frac{\log \log n_{r+1}}{\log b \log n_{r+1}} .
$$

Thus inequality (8) implies the following extension of the result of Matula(5).
Corollary 1. (i) For a.e. graph G there is a constant $\tilde{c}=\tilde{c}(G)$ such that if $n \geqslant \tilde{c}(G)$ then

$$
\left[d(n)-2 \frac{\log \log n}{\log n \log b}\right] \leqslant X_{n} \leqslant\left[d(n)+2 \frac{\log \log n}{\log n \log b}\right] .
$$

(ii) If r is sufficiently large and $n_{r} \leqslant n \leqslant n_{r+1}$ then

$$
\begin{aligned}
P\left\{\left[d(n)-2 \frac{\log \log n}{\log n \log b}\right] \leqslant X_{n}\right. & \left.\leqslant\left[d(n)+2 \frac{\log \log n}{\log n \log b}\right], \forall n, n_{r} \leqslant n \leqslant n_{r+1}\right\} \\
& \geqslant 1-10 r^{-\frac{1}{-} .}
\end{aligned}
$$

Remark. Note that the upper and lower bounds on X_{n} in Corollary 1 differ by at most 1 if n is large and for most values of n they simply coincide.
Let us estimate now how steep a peak X_{n} has got near $d(n)$. More precisely, we shall estimate

$$
P\left(X_{n} \leqslant r(n)\right) \text { and } P\left(X_{n} \geqslant r^{\prime}(n)\right)
$$

for certain functions $r(n), r^{\prime}(n)$ with $r(n)<d(n)<r^{\prime}(n)$. The expectation gives a trivial but fairly good bound for the second probability. As for $r>d(n)$ one has $E(n, r)<n^{d(n)-r}$,

$$
P\left(X_{n} \geqslant r^{\prime}(n)\right)<n^{\alpha(n)-r^{\prime}(n)}
$$

whenever $r^{\prime}(n)>d(n)$. Furthermore, if $0<d(n)-r(n)$ is bounded, $K>0$ is a constant and n is sufficiently large, then $E(n, r)>K n^{d(n)-r(n)}$. Consequently it follows from (7) that if $0<\delta<2,0<c$ and n is sufficiently large (depending on p, δ and c) then

$$
\begin{equation*}
P\left(X_{n} \leqslant d(n)-\delta\right)<c n^{-\delta} . \tag{9}
\end{equation*}
$$

Our next result extends this inequality.
Theorem 2. (i) Let $0<\epsilon, 0<r(n)<d(n), r(n) \rightarrow \infty$ and put

Then

$$
t=t(n)=[d(n)-\epsilon-r(n)]-1 .
$$

if n is sufficiently large.
(ii) Let $0<\epsilon<\delta<1$. Then

$$
P\left(X_{n} \leqslant(1-\delta) d(n)\right)<n^{-n^{2 \epsilon}}
$$

if n is sufficiently large.
Proof. (i) Put $s=\left[b \frac{1}{2} t\right]$ and choose subsets V_{1}, \ldots, V_{s} of $\{1, \ldots, n\}$ such that $\left|V_{i} \cap V_{j}\right| \leqslant 1$ and $\left|V_{i}\right| \geqslant n / s(1 \leqslant i, j \leqslant n, i \neq j)$. Then

$$
d\left(\left|V_{i}\right|\right)>d(n)-\frac{1}{2} \epsilon-\frac{2 \log s}{\log b}>d(n)-\frac{1}{2} \epsilon-t \geqslant r(n)+1-\frac{1}{2} \varepsilon .
$$

Thus for large n the probability that the subgraph spanned by V_{i} does not contain a K_{l} with $l>r(n)$ is less than n^{-1}. As these subgraphs are independent of each other,

$$
P\left(X_{n} \leqslant r(n)\right)<n^{-s}
$$

if n is sufficiently large.
(ii) Put $r=[(1-\delta) d(n)+1]$ and let q be a prime between n^{ϵ} and $2 n^{\varepsilon}$. Put

$$
Q=q^{2}+q+1, \quad m=[n / Q] .
$$

Divide $\{1,2, \ldots, n\}$ into Q classes, C_{1}, \ldots, C_{Q}, each having m or $m+1$ elements. Consider the sets C_{1}, \ldots, C_{Q} as the points of a finite projective geometry. If e is a line of this projective geometry, let G_{e} be the subgraph of G with point set $V_{e}=\bigcup_{C_{i} \in e} C_{i}$ and with all those edges of Q that join points belonging to different classes. It is clear that almost every r-tuple of V_{e} is such that no two points belong to the same class, since

$$
\binom{q+1}{r} m^{r} \sim\binom{\left|V_{e}\right|}{r} .
$$

Furthermore,

$$
r<d\left(\left|V_{e}\right|\right)-2 .
$$

Consequently inequality (7) implies that the probability of G_{e} not containing a K_{r} is less than n^{-1}. As e runs over the set of lines of the projective geometry the subgraphs G_{e} are independent since they have been chosen independently of the existence of edges. Therefore

$$
P\left(G_{n} \text { does not contain a } K_{\tau}\right)<n^{-Q}<n^{-n^{2 \epsilon}},
$$

as claimed.
Remark. Up to now we have investigated the maximal order of a clique. Let us see now which natural numbers are likely to occur as orders of cliques (maximal complete subgraphs). We know that cliques of order essentially greater than $d(n)$ are unlikely to occur. It turns out that cliques of order roughly less than $\frac{1}{2} d(n)$ are also unlikely to occur but every other value is likely to be the order of a clique. The probability that ${ }^{r}$ given points span a clique of G_{n} is clearly

$$
\left(1-p^{r}\right)^{n-r} p^{(\varphi)} .
$$

Thus if $Z_{r}=Z_{r}\left(G_{n}\right)$ denotes the number of cliques of order r in G_{n} then the expectation of Z_{r} is

$$
E\left(Z_{r}\right)=\binom{n}{r}\left(1-p^{r}\right)^{n-r} p^{(\emptyset)}
$$

Denote by $d(n)$ the minimal value of $r>2$ for which the right hand side is 1 . One can prove rather sharp results analogous to Theorem 1 stating that the orders of cliques occurring are almost exactly the numbers between $\tilde{d}(n) \sim \frac{1}{2} d(n)$ and $d(n)$, but we shall formulate only the following very weak form of the possible results.
Given $\epsilon>0$ a.e. graph G is such that whenever n is sufficiently large and

$$
(1+\epsilon) \frac{\log n}{\log b}<r<(2-\epsilon) \frac{\log n}{\log b},
$$

G_{n} contains a clique of order r, but G_{n} does not contain a clique of order less than

$$
(1-\varepsilon) \frac{\log n}{\log b},
$$

or greater than

$$
(2+\epsilon) \frac{\log n}{\log b} .
$$

3. Infinite complete subgraphs. We denote by $K\left(x_{1}, x_{2}, \ldots\right)$ (resp. $K\left(x_{1}, \ldots, x_{n}\right)$) the infinite (resp. finite) complete graph with vertex set $\left\{x_{1}, x_{2}, \ldots\right\}$ (resp. $\left\{x_{1}, \ldots, x_{n}\right\}$). We shall always suppose that $1 \leqslant x_{1}<x_{2}<\ldots$. We would like to determine the infimum c_{0} of those positive constants c for which a.e. G contains a $K\left(x_{1}, x_{2}, \ldots\right)$ such that

$$
x_{n} \leqslant c^{n} \text { for every } n \geqslant n(G) .
$$

Corollary 1 implies that $c_{0} \geqslant b \frac{1}{2}$. At the first sight $c_{0}=\frac{1}{2}$ does not seem to be impossible since a.e. G is such that for every sufficiently large n it contains a $K\left(x_{1}, \ldots, x_{n}\right)$ satisfying $x_{n}<b^{(2+c) n}$. However, it turns out that a sequence cannot be continued with such a density and, in fact, $c_{0}=b$. We have the following more precise result.

Theorem 3. (i) Given $\epsilon>0$ a.e. graph G is such that for every $K\left(x_{1}, \ldots\right) \subset G$

$$
x_{n}>b^{n(1-e)}
$$

holds for infinitely many n.
(ii) Given $\epsilon>0$ a.e. G contains a $K\left(x_{1}, \ldots\right)$ such that

$$
x_{n}<b^{n(1+c)}
$$

for every sufficiently large n.
Proof. (i) Let $1 \leqslant x_{1}<x_{2}<\ldots<x_{n} \leqslant b^{n(1-c)}$. Then the probability that there is a point $x_{n+1} \leqslant b^{(n+1)(1-\epsilon)}$ joined to every $x_{i}, 1 \leqslant i \leqslant n$, is less than

$$
b^{(n+1)(1-c)} p^{n}=b^{1-(n+1) \epsilon} .
$$

Thus the probability that G contains a $K\left(x_{1}, \ldots, x_{N}\right)$ satisfying

$$
x_{k} \leqslant b^{k(1-c)} \quad(k=n, \ldots, N)
$$

is less than

$$
P_{n, N}=\binom{b^{n}}{n} \prod_{n+1}^{N} b^{1-k e} .
$$

(There are at most $\binom{b^{n}}{n}$ sequences $\left.1 \leqslant x_{1}<\ldots<x_{n} \leqslant b^{n(1-c)}\right)$) Clearly $P_{n, N} \rightarrow 0$ as $N \rightarrow \infty$, so the assertion follows.
(ii) Let P_{n} be the probability that G contains a $K\left(x_{1}, \ldots, x_{n}\right)$ with $x_{n}<b^{n(1+e)}$. We know that $P_{n} \rightarrow 1$. Given $1 \leqslant x_{1}<\ldots<x_{n}<b^{n(1+e)}$ let us estimate the probability Q_{n+1} that there is a point $x_{n+1}, x_{n}<x_{n+1}<b^{(n+1)(1+e)}$, which is joined to every x_{i}, $1 \leqslant i \leqslant n$. There are

$$
\left[b^{(n+1)(1+c)}-x_{n}\right] \geqslant\left[b^{(n+1)(1+c)}-b^{n(1+e)}\right]>b^{(n+1)(1+\xi)}=B_{n+1}
$$

independent choices for x_{n+1}, where $0<\eta<\epsilon$ and n is sufficiently large. The probability that a point is not joined to each of $\left\{x_{1}, \ldots, x_{n}\right\}$ is $1-p^{n}$. Consequently

$$
1-Q_{n+1} \leqslant\left(1-p^{n}\right)^{B_{n+1}} \leqslant e^{-b^{n \eta}} .
$$

Therefore the probability that G contains a $K\left(x_{1}, \ldots, x_{n}\right), x_{n}<b^{n(1+6)}$, which can be extended to a $K\left(x_{1}, x_{2}, \ldots\right)$ by choosing first $x_{n+1}<b^{(n+1)(1+\varepsilon),}$, then $x_{n+2}<b^{(n+2)(1+\varepsilon)}$, etc., is at least

$$
R_{n}=P_{n} \prod_{n+1} Q_{k^{*}}
$$

As $R_{n} \rightarrow 1(n \rightarrow \infty)$, the proof is complete.
4. Colouring by the greedy algorithm. Given a graph G with points $1,2, \ldots$, the greedy algorithm (see (3)) colours G with colours c_{1}, c_{2}, \ldots as follows. Suppose the points $1, \ldots, n$ have already been coloured. Then the algorithm colours $n+1$ with colour c_{j} where j is the maximal integer such that for each $i<j$ the point $n+1$ is joined to a point $x_{i} \leqslant n$ with colour c_{i}. In other words the algorithm colours the point $n+1$ with the colour having the minimal possible index. Denote by $\tilde{\chi}_{n}=\tilde{\chi}_{n}(G)=\tilde{\chi}\left(G_{n}\right)$ the number of colours used by this algorithm to colour G_{n}. Out next result extends a theorem of Grimmett and McDiarmid (3) stating that $\tilde{\chi}_{n}[(\log n) / n] \rightarrow \log 1 / q$ in mean, where $q=1-p$. An immediate corollary of our result is that $\tilde{\chi}_{n}[(\log n) / n] \rightarrow \log 1 / q$ in any mean (with a given rate of convergence) and almost surely. As usual, $\{x\}$ denotes the least integer not less than x.

Theorem 4. (i) Let $0<\gamma<\frac{1}{2}$ be fixed and let $u(n) \geqslant \gamma^{-\frac{1}{-1}}$ be an arbitrary function. If n is sufficiently large then

$$
P\left\{\tilde{\chi}_{n} \frac{\log n}{n}<\log 1 / q\left(1+u(n)(\log 1 / q)^{\frac{1}{2}}(\log n)^{-\frac{1}{2}}\right)^{-1}\right\}<n^{-\gamma u^{2}(n)+1} .
$$

(ii) Let $3 \leqslant v(n)<\log n(\log \log n)^{-1}$ and put

$$
\begin{gathered}
t(n)=1-v(n) \log \log n(\log n)^{-1}, \\
c(n)=\left\{\frac{n \log 1 / q}{\left.\frac{t(n) \log n}{}\right\}}\right\} .
\end{gathered}
$$

Then for every sufficiently large n we have

$$
P\left(\tilde{\chi}_{n}>c(n)\right)<e^{-\log n)^{2}(n)-2} .
$$

Proof. (i) Let M_{j} be the probability that G_{n} has at least

$$
k=k(n)=\frac{\log n}{\log 1 / q}+u(n)(\log n)^{\frac{1}{2}}(\log 1 / q)^{-\frac{1}{2}}=k_{1}(n)+k_{2}(n)=k_{1}+k_{2}
$$

points of colour c_{j}. It suffices to show that if n is sufficiently large then

$$
M_{j}<n^{-\gamma u^{2}},
$$

since then the probability that there is a colour class with at least $k(n)$ points is at most

$$
n n^{-\gamma u^{2}}=n^{-\gamma u^{2}+1} .
$$

Grimmett and McDiarmid showed ((3), p. 321), that

$$
M_{j} \leqslant \prod_{i=1}^{[k(n)]-1}\left(1-\left(1-q^{i}\right)^{n}\right)
$$

Since $k_{2} \rightarrow \infty$ as $n \rightarrow \infty$ we may suppose that $k_{2}^{2}-5 k_{2}+6>2 \gamma k_{2}^{2}$. Then taking into account that $q^{k_{1}}=n^{-1}, q^{k_{i}^{2}}=n^{-u^{2}}$,

$$
\begin{aligned}
M_{j} & \leqslant \prod_{i=\left[k_{2}+1\right]}^{[k-1]} n q^{i} \leqslant n^{k_{2}-2} q^{\frac{1}{2}\left(k_{2}-2\right)\left(2 k_{1}+k_{2}-3\right)} \\
& =q^{\frac{1}{2}\left(k_{2}^{3}-5 k_{2}+6\right)}<q^{\gamma k \mathbf{i}}=n^{-\gamma u^{2}(n)},
\end{aligned}
$$

as required.
(ii) Let us estimate the probability that the greedy algorithm has to use more than $c(n)$ colours to colour the first n points. The probability that this happens when k_{i} points have colour $i, i \leqslant c(n)$, is exactly
since

$$
\begin{aligned}
\prod_{i=1}^{e(n)}\left(1-q^{k_{i}}\right) & \leqslant\left(1-q^{n /(n)}\right)^{\alpha(n)} \\
\sum_{1}^{c(n)} k_{i} & \leqslant n-1 .
\end{aligned}
$$

Thus the probability that more than $c(n)$ colours have to be used to colour the points $1, \ldots, n$ is less than

Now

$$
S_{n}=n\left(1-q^{n \mid(x)}\right)^{(x)}
$$

$$
\left(1-q^{n /(n)}\right)^{\alpha(n)}<e^{-\alpha(n)(1 / q)^{-n / \alpha(n)}}
$$

and

$$
\log \left(c(n)(1 / q)^{-n i \varrho(n)}\right)>\left(v(n)-\frac{3}{2}\right) \log \log n
$$

if n is sufficiently large. Consequently

$$
S_{n}<e^{\log n-(\log n)^{\Downarrow(n)-1}}<e^{-(\log n)^{凶(n)-2}}
$$

for n sufficiently large, completing the proof.
5. Final remarks. (i) Colouring random graphs. It is very likely that the greedy algorithm uses twice as many colours as necessary and, in fact, $\chi\left(G_{n}\right) \frac{\log n}{n} \rightarrow \frac{1}{2} \log 1 / q$ for a.e. graph G. $\left(\chi\left(G_{n}\right)\right.$ denotes the chromatic number of G_{n}.) One would have a good chance of proving this if the bound $n^{-n^{2 x}}$ in Theorem 2 (ii) could be replaced by $e^{-c_{\epsilon} n}$ for some positive constant c_{c}, depending on ϵ.
(ii) Hypergraphs. Let $k>2$ be a natural number and consider random k-hypergraphs (k-graphs) on \mathbb{N} such that the probability of a given set of k points forming a k-tuple of the graph is p, independently of the existence of other k-tuples. The proofs of our edge graph results can easily be modified to give corresponding results about random k-graphs. Let us mention one or two of these results. As before, denote by X_{n} the maximal order of a complete subgraph of G_{n}.

The expectation of the number of complete graphs of order r is clearly

$$
\left.\binom{n}{r} p^{(\mathrm{m}}\right) .
$$

Let $d_{k}(n)>1$ be the minimal value for which this is equal to 1 . It is easily seen that

$$
d_{k i}(n) \sim\left(\frac{k!\log n}{\log 1 / p}\right)^{1 /(k-1)} .
$$

Then, corresponding to Corollary 1 , we have the following result.
For every $\epsilon>0$

$$
\lim _{n \rightarrow \infty} P\left(\left[d_{k}(n)-\epsilon\right] \leqslant X_{n} \leqslant\left[d_{k}(n)+\epsilon\right]\right)=1 .
$$

Denote by $\tilde{\chi}_{n}^{k}(G)$ the number of colours used by the greedy algorithm to colour G_{n}. Then

$$
\tilde{\chi}_{n}^{k} \frac{(\log n)^{1 /(k-1)}}{n} \rightarrow((k-1)!\log 1 / q)^{1 /(k-1)}
$$

in any mean. It is expected that in general the greedy algorithm uses $k^{1 /(k-1)}$ times as many colours as necessary.

REFERENCES

(1) Bollobís, B. On complete subgraphs of different orders. Math. Proc. Cambridge Philos. Soc. 79 (1976), 19-24.
(2) Erdös, P. and Renyi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5 A (1960), 17-61.
(3) Grimmett, G. R. and McDlarmid, C.J.H. On colouring random graphs. Math. Proc. Cambridge Philos. Soc. 77 (1975), 313-324.
(4) Matula, D. W. On the complete subgraphs of a random graph. Combinatory Mathematics and its Applications (Chapel Hill, N.C., 1970), 356-369.
(5) Matula, D. W. The employee party problem. (To appear.)

