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I. INTRODUCTION AND NOTATION

A fraction a/b is said to be written in Egyptian form if we write

b-n +n2

	

k
i . . .

+n1

nl < n2 < . . . < nk ,

where the n i are integers . The problem of existence of such an expansion
was settled in 1202 by Fibonacci who gave an algorithm which was
rediscovered and more deeply investigated by Sylvester [7] in 1880 . Since
then several algorithms have been given in an attempt to find a more
computable one and the one for which kis minimal. The algorithms to date
may be summarized as follows :

I . The Fibonacci-Sylvester algorithm for which k < a and n i grow
exponentially .

2. The algorithm given by Erdős in 1950 [3] for which k < 8 In b/ln In b
and n k < 4b2 In b/ln In b for b large .

3 . The algorithm of Golomb [4] in 1962 for which k < a and
n, < b(b - 1) .

4. The algorithm based on Farey series given by Bleicher in 1968 [1]
for which k < a and nk < b(b 1).

5. The algorithm based on continued fractions given by Bleicher [2]
in 1972 for which k < min{a, 2(ln b) 2 /ln In b} and nk < b(b - 1) .

In this paper we concentrate on giving an algorithm which minimizes nk
and relaxes the attempt to minimize k .
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Let D(a, b) be the minimal value of nk in all expansions of alb . Let D(b)
be given by D(b) = max{D(a, b) : 0 < a < b} . In this work we show,
Theorem 2, that D(b) < Kb(ln b)3 for some constant K. On the other hand
in Theorem 1 we show that for P a prime D(P) > P{{log, P}} where
{{x}} _ -[-x] is the least integer not less than x . There is both theoretical
and computational evidence to indicate that D(N)IN is maximum when N
is a prime .

For more historical details and bibliography see [11 and [2] .

11. THE MAIN THEOREMS

We begin by obtaining the lower bound for D(N) .

THEOREM 1 . If P is a prime then D(P) > P{{log, P}}, where {{x}} _
-[-x] is the least integer not less than x .

Proof. If a/P = Y_ á-1 1/ni , n l < n, < • • < nk , then some of the n i
are divisible by P, while perhaps others are not . Let x, < x, < . . . < x t
be all those integers divisible by P which occur in an expansion with
minimum nk of a/P for a = 1, 2, . . ., P - 1 . Thus for each choice of a

a
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1

	

1

	

1

	

1
P

	

xi ,

	

xi2

	

xi ,

	

Yi

	

Ya

where P I x i . and P -r y,n . Let x i ' be defined by x i'P = xi , then (x i ', P) = 1
or the theorem is obviously true . It follows that

axi, , . . .,

	

- Y* xil , . . ., xi__, -- 0 mod P,

where I* xi, , . . ., xá ._ 1 denotes the symmetric sum of all products of j - 1
distinct terms from {xzl , . . ., x' I . For each of the P - 1 choices of a we
must get a different subset {xi	xi .} of {x,', x,', . . ., xt '} . Since there are
at most 21 - 1 such, subsets we see that 21 - 1 > P - 1, whence
t > log, P . Since x, < x, < • • • < x t and are all multiples of P, it follows
that xt > P{{log, P}}. Since x t occurs in some minimal expansion of a/P,
the theorem follows .

We next prove some lemmas needed in our proof of an upper bound for
D(N) .
We use Pk to denote the kth prime. In our notation P, = 2 .

DEFINITION . Let IT - P1 • P, . . . Pk be the product of the first k
primes, with the convention that H7, = 1 for k < 0 .

As usual 6(n) denotes the sum of the divisors of n .
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LEMMA 1 . If 1 < r < a(17k) then r can be written as a sum of distinct
divisors of 17, E .

Proof. The lemma is clearly true for k = 0, 1, 2 . We proceed by
induction on k . Suppose the lemma is true for k < N. Let r < (T(-7I).

If r < a(IIN_,) we are done by induction . Therefore we suppose 6(IIN_1) <
r < Q(IIN) . Since u(HN)

	

- PN(l

	

11PN) = Q(11N-1)(PN

	

1),
we see that a(IIN) - 6(IIN_ 1 ) = PNQ(17N_1 ) . It follows that r - ó(17N_1)
PNQ(IIN_,) . Also for N > 3, r > O(IIN_1) > 2PN_1 > PN . Thus we can
find a number s such that

1 . 0 < r - sPN < (7 ( 17N-1) •

2 . 0 < s < 6(í7N_1) .

Thus s = Y-7 di ' where di ' 11-1,-, and the di ' are distinct and r - sPN = di
where di 111N_1 and the di are distinct . But di'PN 117N while di'PN -r17N-, .
Thus

e n i

	

r = Y, (di'PN) -i- Y di
xt

with is a representation of r in the desired form . The lemma is proved .

LEMMA 2 . Let P be a prime and k an integer with 0 < k < P . Given
any k integers {x	xk} none of which is divisible by P then the 21 sums of
subsets of }x	xk} lie in at least k + 1 distinct congruence classes mod P.

I

	

Proof. Although this lemma is known we give a proof since neither
of the authors knows where to find this lemma in the literature .
The proof is by induction on k . For k = 0 the result is obvious . Suppose

P > k > 0 and the result is true for fewer than k integers. From x, , . . ., xk-1
_ l form all possible sums . If there are more than k distinct sums mod P

we we are done if not by induction there are exactly k such sum. Add x k to

are each of these sums if at least one new congruence class is obtained then

mce there are enough distinct congruence classes . If no new congruence classes

ows are obtained then let x k = xk+1 = xk+s = "' = xk+P , and note that by
a/P

	

adding each of these xi , one at a time, we still remain at k distinct values,
but this is absurd since from P values in the same class we can obtain all

for values mod P . The lemma follows .
We note that if we don't allow the empty sum the lemma remains true

except that the number of distinct sums is reduced by one .

LEMMA 3 . If r is any integer satisfying H,(I - 1/k) r < Hk (2 - 1/k)
then there are distinct divisors di of 17, such that

tk

1 . r=Ydi ,
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and
2 . di > cH7c _3 ,

for some constant c .

Proof. We choose N, sufficiently large that all of the inequalities in the
remainder of the proof which are claimed to be true for sufficiently large N
are valid for N > N, . We pick c sufficiently small (c = 17NO_3 will
certainly work) that the lemma is true for k < N„ This can be done by
Lemma 1, since Q(H,,) > HJ2 - 1/k) for k > 1 ; while k < 0 can be
handled trivially .

We proceed by induction suppose N > N, and the lemma is true for
k < N. Let H,(I - I/N) < r < TTN(2 - 1/N) .

Step I . Let -9 be the set of divisors of TIN defined as follows
9 _ {d: d 17N_,/P iP,Pk, , [N/2] < i < j < k < N}, when [x] is the
greatest integer in x . Since 1 9 1 > (N/2)(N/2 - 1)(N/2 - 2)/6 while
PN < N(ln N + In In N) (see [6, p . 69]) it follows from Lemma 2 that we
can choose s < PN elements di e -9 such that for r, = r - d, -
d2, - • • • - d, , r,, - 0 mod PN . Further r, < ITN(I - 1/(N - 1)) . To
prove this it suffices to show that d, + d2 + • • • + d, < 17N(I - 1/N) -
17N(1 - 1/(N - 1)) since r > ITN(1 - 1/N). To see that this is so we note
that di < 17N_,lp 3 where p = P[N , 21 while s < PN . Thus d, + • • • + d, <
17N_,/p 3 • PN = TIN/p3 . Since [6, p . 69] p = PLN/21 > [N/2] ln[N/2] we
see that for large N, p3 > (N)(N - 1). Thus d, + • • • + d, < ITNlp 3 <
17NIN(N - 1) = 17N(1 - 1/N) -17N(1 - 1 /(N - 1)) . The claim is estab-
lished .

If r, < TTN(2 - 1/(N - 1)), the process of Step I now stops .
If r, > 17N(2 - 1/(N - 1)) we proceed to subtract more elements of -9

from r, until it becomes sufficiently small ; however this must be done in
such a way that the result, say r 2 , staisfies

1 . r' -=- OmodPN ,
2 . ITN(1 - 1/(N - 1)) < r' < IIN(2 - 1/(N - 1)) .

In order to assure that r' - 0 mod PN we subtract off elements from -1k , at
most PN at a time, such that the sum of the divisors subtracted is
= 0 mod PN and condition 1 will hold . Since the divisors are all less than
17N_, and we are subtracting PN at a time and the interval r' we wish
in which to be has length 17N = ITN_, • PN , we can subtract in such
a way as to end up in the desired interval, if the total of all available
divisors, properly grouped, is large enough to bring the largest value of r,

belowHN(2 - 1/(N - 1)) . Since r, < r <TTN(2 - 1/N), we must show that

h

the
172,

div
div
of i

div
lar€
11 N

wh
Ste

isi

Thi
r2 =

disl
mo

is a
Thf

I

641 ,



r

3

e

e

n

r=~: d,' -Ydi
t
s
1
1
1

IfI7k-, < N < II~ thene
i
t

EGYPTIAN FRACTIONS

	

1 6 1

the sum of the divisors is at least TIN(2 - lIN) - TIN(2 - Il(N - 1)) _
IIN/N(N - 1) . But we can continue to subtract groups of at most PN
divisors from -9 until there remains less than PN elements . Thus of all the
divisors in -9 we will be able, if needed, to subtract all but at most PN

•

	

of them. It follows that we may subtract at least

«N/2)(N/2 -
6
1)(N12 - 2) - PN)

• divisors each of which is at least as large as TIN_, . For N sufficiently
large the number of divisors is at least N3/100, so that we are done if
11N-á(N3/100) > TIN/N(N - 1) which is equivalent to

•

	

which holds for N sufficiently large since PN < N(In N + In In N) . Thus
•

	

Step 1 can be completed .
•

	

We note that we have thus written r = r, + d, -}- d2 + -{- dN where

Step IL Let r2 = r,/P, . Then by conditions 3 and 4 we see that r2
is an integer and

Thus, by induction there are di' I H,-, , di' distinct, di ' _>- TIN_, such that
r2= E di ' . Let d," - PNda ' . Thus dí' I TIN , d" - TIN_, , so that the d, are
distinct both from each other and from the di choosen in Step L Further-
more, d, - CIIN_ 4PN > cIIN_, . Also since r - PNr2 +Y- di we see that

is an expansion which satisfies all the conditions of Lemma 2 for k = N.
The lemma follows by induction .

LEMMA 4 .

641/8/2-3

N5 - N4 j 100PNPN_1PN-2

TIN_i(1 - 1/(N - 1)) - r 2 G IIN_,(2 - 1/(N - 1)) .

1nN (

	

In InInNk

	

In In N\ 1 + InIn N )*

1 . di I TIN _, , di distinct,
2 . di i 17,3 ,
3 . r,-0modPN ,
4 . 17N(1 - 1/(N - 1)) - r4 G TIN(2 - 1/(N - 1)) .
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Proof. From [6, p . 70], we see that In H, ~>_ P,(1 - 1/2 In P.) .
Thus an upper bound for k is the smallest integer ko such that
PkJ1 - 1/2 In Ph. ° ) > In N where Pk ->- k(In k + In In k - 3/2) . For k a
equal to the bound given in the lemma this yields

In TI > (	 I	)
'°° '

I - 21n Pk°
k(ln ka -+- In In k, - 3/2)

_

	

1

	

In N r

	

In In In .N(I

	

2InPN ) In InN`I + InInN

n1n N
X In InN-{-ln(I+ 1

1I
1n	
IN

(

	

In (I + In In In N )
In In In N

	

In InN 	3)

	

/2}ln 1 -	In N +

	

In In N
In N

	

In In In N ) {in In N - 2} .In In N I

	

In In N

Since for large N the two middle logarithmic terms in the braces are both
close to zero . Thus,

1n IIk°

	

In N (1

	

1 In In N ) (
I

	

In In N) > In N.

Thus for N large enough there is an integral value of k less than the given
bound which would also satisfy

In II,, > In N.

THEOREM 2 . There is a constant K so that for every N > 2, D(N)
KN(ln N)3 .

Proof. Given the fraction aIN in the unit interval we find k so that
TIk_1 < N TIk . If N I TIk we rewrite a/N = b/II, and by Lemma 1,
b = Y, di, , di I IIk . This yields an Egyptian expansion of a/N with the
largest denominator at most 7,,, . Since Pk < k(ln k + In In k) < V and
Lemma 4 gives a bound for k, we get that the denominators in this case
are certainly less than N(In N)3 .

We next consider the case in which N IIk, . In this case

a

	

aHk qN + r

	

q + r
N NII,

	

NTIk

	

TIk NTI,



where r is chosen so that HJ1 - 1/k) < r < 17k(2 - I/k) . This can be
done since we may assume a > 2 and since N 17k . The fraction q/7k
can be handled as the case N117,.,. We need only consider
r/N17k = (I/N)(r/17k) . If we get an expansion for r/II,,, and multiply each
denominator by N then since N -r Ilk , they will all be distinct from those
used to expand q/Ilk . By Lemma 3 there are divisors di of 17k such that

r = Y, dz ,

	

(1z c17k_3

Thus the denominators in the expansion of r/17,,á are at most
c1PkPk_lPk_2 . Thus the denominators in expansion of r/N17k are at
most c 1NPkP7_1Pk_2 . Using the upper bound in Lemma 4 for k
one can show after some calculation that

Thus the theorem is established .

111. SOME SPECIAL CASES AND NUMERICAL RESULTS

THEOREM 3 . D(N) - N for N = 211, 17,, or n ! , n - 1, 2, 3, . . . .

Proof. For a/211 we write a as a sum of powers of 2 (base 2) and cancel
to get an Egyptian expansion . For N = nn we use Lemma 1 . For N = n!
we use the analog of Lemma I with Ig n replaced by n! . Since this modified
Lemma I is easy to prove, we omit the proof.

THEOREM 4 . For n = 1, 2, 3, . . ., we have D(3n) = 2 • 3" .

Proof. Given a/3 11 we rewrite it as 2a/2 • 3 1, and expand 2a according to
its base 3 expansion 2a = Y i '

=-o1 Ei3z where Ei = 0 1 > or 2 since each of the
terms in the sum divides 2 • 31, we see D(3) = 2 • 311 . At least one denominat-
or in the expansion of 2/3 1, must be divisible by 3"' . If only one denominator
is so divisible, and it is 311, then the remaining terms would be an ex-
pansion of J /3n in which no term is divisible by 311, a contradiction .
Hence, D(3n) > 2 • 311 .

THEOREM 5 . For N = P n , P a prime we get D(Pn) < 2P11-1D(P) .

We may restrict our attention to P >, 5, since the preceding two
theorems handle P = 2 and P = 3 .

If a/P n > 1/2 we consider b/2Pn - a/P 1, - 1/2 where b < Pn otherwise
we consider 2a/2Pn = b/2Pn where again b < Pn . We next expand b/2P'1
in the Egyptian form with denominators at most 2Pn-1D(P), since
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c1NP k P,,. 1Ph_ 2 - 2c-1N(ln N)3 .
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b/P'n < 1/2, 1/2 will not be used and can be added on at the
a/Pn > 1/2 . We write b - ii=O EiPi , 0 < Ei < P. Thus

n-1b

	

E i

	

Ei

	

I
Pn =

	

n-

	

p ' pn l-1

~=

	

á= ~

For each i, 0 < i < n - 1 we can expand Ez/P = Y-k-1 1/n ;" ) , 2 < n
D(P) . Thus b/P'n = I ó

j7_1 1120 )Pn_ti -1 A slight difficulty arises
that the denominators may not be distinct . However we know that for all P,
D(P) < P(P - 1) (see [2, Theorem 3, p . 347]), thus the only equalities
which can arise are of the form

1

	

1

	

O
2n(2)Pn-z-1

	

2n U+1)pn-z
1,

	

1,

So that n,' ) - n1 = Pn2 = Pn;2+1) . Since n1 < P(P - 1) we see that
n 2 < (P - 1). In all instances where equalities like (*) occur we replace
these two terms by the one term 1/n 2Pn-1 . If n2 is odd it can not be equal
to any other term . If n 2 is even it may be that 1/n2Pn- i is equal to another
term, which . i s of the form 1/2nx` )Pn- i -1 or I/2n' 1Pn- i, but not both since
otherwise these would have been reduced . Let n3 - 0 -1) . These two
equal terms may be replaced by 1/n 3Pn-i .

If n .3 is odd it is distinct from all other terms, since the only way 1/n3Pn-1
could have occured was if it came from the reduction of two terms at the
previous stop, but in that case both l/2nx' )Pn- z-1 and l / 2n ;;-')Pn-i would
have been replaced earlier, and 1/n2Pn- could not have equaled any other
term. If n3 is even possible new equalities may occur, but since n1 < P
after at most loge P steps, this process must terminate yielding the desired
expansion . The theorem is proved .
The last theorem of this section has to do with the nonunicity of

Egyptian Fractions .

THEOREM 6* . If ni < n2 < n3 < . . . is an infinite sequence of positive
integers such that every rational number (0, 1) can be represented as

a

	

1

	

1

	

. . .

	

1
b

	

ni ,

	

ni ,

	

n

for some k and distinct ni , in the sequence . Then there is at least one rational
number which has more than one representation .

* The authors would like to thank Drs. Graham and Lovast for helpful discussions
about this theorem .
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Proof. Since

	

1 1/2i = 1 we see that for some value of i, n il-, < 2n i .
Thus 1/n j - 1/ni+,L < 1/n i+r . By the hypothesis 1/n i - 1/ni}i = Y,cr 1/n i . .
So that for io = i + 1, 1/n i = Y- ,=, I/n i . . But each side of this equation
yields an acceptable expansion of 1/n i . Thus the theorem is proved .
We also note that either 1/n i is used infinitely often or there is another

subscript j such that n;+, < 2n ; , which in turn is used infinitely often or
there is another subscript Z such that nt+, < 2nl , etc. Thus there are in
fact infinitely many rationale with more than one representation . It is
probably true that some fraction must have infinitely many representations .
We conclude this section with some numerical results . The following

table gives an indication of what happens for the first few primes . A
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N {tlog, N)j D(N)/N occurrence of D(N)

2 1 2

2

	

1

	

1
3 2 2

3 2 + 6

2

	

1

	

1
5 3

5

	

3 + 15

2

	

1

	

1
7 3 4

7 4 + 28

2

	

1

	

1 1 1
11 4

11

	

12 + 22 + 33 + 44

2

	

1

	

1

	

1
13 4 5 13 10 + 26 + 65

4

	

1

	

1

	

1 1 1
17 5 5 -_- - -17

	

12

	

15

	

17 4 •

	

17 5 •

	

17

2

	

1

	

1 1
79 5 6

19

	

12 + 4 . 19 + 6 . 19

2

	

1

	

1

	

1 1
23 5 6

23

	

23 + 2 . 23 + 3 . 23 + 6 . 23

29 5 6
5

	

1

	

1
29 6 + 6 • 29

5 6
4

	

1

	

1

	

1 1
+31 31

	

12~ 31 + 4 . 31 6 . 31

12

	

1

	

1 1 1 1

	

1
37 6 8

37 6

	

8 + 2 . 37 + 3 . 37 + 4 . 37 + 8 . 37
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comparison of the second and third columns shows that the bound of
Theorem 1 is frequently low .

We conclude with a numerical example which illustrates that whichever
purpose one desires, minimizing k or n k the algorithms to date leave
something to be desired . We expand 5/121 by several algorithms .

The Fibonacci-Sylvester [7] algorithm yields

5

	

1

	

1

	

1

	

1
121

	

25 757 + 763308 + 873960180913
1

+ 15 276 184 876 404 402 665 313

The Erdös algorithm [3] yields considerably smaller denominators, but
is longer :

5

	

1

	

1

	

1

	

1

	

1

	

1

	

1 ~_1
121

	

48

	

180 + 1452 ' 4354 ' 8712

	

87120'

The continued fraction algorithm [2] yields

5

	

1

	

1

	

1

	

1

	

1
121

	

25 + 1225 ' 3477 + 7081 ' 11737'

The algorithm presented here in Theorem 2 yields :

5

	

5(2 . 3 . 5 . 7)

	

7 . 121 +203
121

	

121 •(2 . 3 . 5 . 7)

	

121 . 2 . 3 . 5 . 7'

Since 203 = 7(3 - 5 + 2 • 5 + 3 + 1), this gives

5

	

1

	

1

	

1

	

1

	

1
121

	

30 + 242 + 363 + 1210 3630'

which is considerably better .
However modifying our present algorithm in an ad hoc way yields the

following two better expansions . We have

5

	

8 . 121+82
121

	

121 •2 . 3 . 5 . 7

By replacing 82 by 77 + 5 and 8 by 5 + 3 we get a good short expansion,
namely,

5

	

1

	

1

	

1

	

1
121

	

42 + 70 330 + 5082'
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while replacing 82 by 33 + 35 + 14 yields

5 _ 1

	

1

	

1

	

1

	

1

121

	

42 T 70 + 726 770

	

1815'

167

which while longer has denominators considerably smaller than any of the
others .

IV . SOME CONJECTURES

In working on these and related problems some conjectures arose which
we are not yet able to prove .

CONJECTURE 1 . The constant in Lemma 2 can be replaced by 1 .

Numerical evidence for low values of k support this and of course
since the induction doesn't change the constant, a finite but difficult
computation can settle this . Hopefully a clever trick can do it more easily .
An affirmative answer to this conjecture implies the constant in

Theorem 2 can also be taken to be 1 .

CONJECTURE 2 . D(N) is submultiplicative, i .e ., D(N • M) < D(N)
D(M) . If true, relative primeness of M and N is probably irrelevant .

This would enable one to concentrate on N - P in proving bounds
for D(N) . One might note that instead of splitting cases on N I Ilk , N -r Ilk
we could in general use denominator N'I7k when N' - N/d, d - (N, Ilk ),
to get a more efficient method of expanding a/N with small denominators .

CONJECTURE 3 . For every e > 0 there is a constant K = K(e) such
that D(N) < KN(ln N)l I c .

CONJECTURE 4 . Let n, < nz < . . . be an infinite sequence of positive
integers such that n i-iln i > c > 1 . Can the set of rationale alb for which

a

	

1

	

1

	

1
b

	

n ip

	

n~z

	

nit

is solvable for some t contain all the rationale in some interval (a, /3). We
conjecture not .

If this conjecture is true then according to Graham [5] this is best
possible .
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