Families of sets whose pairwise intersections have prescribed cardinals or order types

By P. ERDÖS, E. C. MILNER AND R. RADO
The University of Calgary, Canada, and the University of Reading, England

(Received 3 October 1975)

1. Introduction. For a given index set I, let us consider a family $\left(A_{\nu}: \nu \in I\right)$ of subsets of a set E. In this note we deal with some aspects of the following question: to what extent is it possible to prescribe the cardinalities, or the order types in case E is ordered, of the sets A_{p} and of their pairwise intersections? In (1) the authors have shown that, given any regular cardinal a, there is a family of a^{+}sets of cardinal a whose pairwise intersections are arbitrarily prescribed to be either less than or equal to α. In Theorem 1 below we prove a stronger result which states that if a is regular, say $a=\mathrm{N}_{\alpha}$, and if E is well-ordered and of order type ω_{α}^{3}, then one can find a^{+}subsets A_{p} of E, each of type ω_{α}^{2}, whose pairwise intersections are arbitrarily prescribed to be either of type ω_{a} or of a type less than ω_{α}. By way of contrast, Theorem 2 below impliesthis is its special case $m=\mathbf{N}_{\omega} ; n=\mathbf{N}_{2} ; p=\mathbf{N}_{0}$-that, assuming the Generalized Continuum Hypothesis (GCH), there do not exist $\mathrm{s}_{\omega+1}$ sets A_{p}, each of cardinal at most N_{w}, such that x_{2} of them have pairwise finite intersections, whereas all other pairs of sets A_{p} have a denumerable intersection. Theorem 3 gives another case in which some type of prescription of the sizes of the intersections cannot be satisfied. Finally, Theorem 4 asserts that in Theorem 3 the condition $c f p \neq c f m$ cannot be omitted. The paper coneludes with some remarks on open questions.
2. Notation. We use the obliterator ${ }^{\wedge}$, an operator which removes from a well-ordered sequence the term above which it is placed. Roman capital letters denote sets. If A is ordered then $\operatorname{tp} A$ denotes the order type of A. If A, is a set, for $\nu \in I$, where $I \neq \varnothing \varnothing$, then we putt $A_{[\square]}=\bigcap_{v}(v \in I) A_{v}$. The relation $A \subset B$ denotes inclusion in the wide sense, and symbols such as $\{\mu, \nu\}_{\mp}$ have their obvious meaning. For every cardinal a, we put $\underline{a}=\{\gamma: \gamma=$ ordinal $;|\gamma|<a\}$, and if $a \geqslant \aleph_{0}$ then cfa denotes the least cardinal b such that there is a representation $a=\sum_{v}(\nu \in \underline{b}) x_{p}$, where $x_{v}<a$ for $\nu \in \underline{b}$. Thus a is regular if and only if $c f a=a$.
3. Results. Theorem 1. Let a be a regular cardinal, $a=\mathfrak{x}_{a}$, and $f(\mu, \nu) \in\{0,1\}$ for $\mu<\nu<\omega_{a+1}$. Then there are subsets $A(0), A(1), \ldots, \hat{A}\left(\omega_{\alpha+1}\right)$ of $\left\{0,1, \ldots, \hat{\omega}_{a}^{3}\right\}$ each of type ω_{α}^{2}, such that, for $\mu<\nu<\omega_{\alpha+1}$,

$$
\left.\begin{array}{rl}
\operatorname{tp}(A(\mu) \cap A(\nu)) & <\omega_{\alpha} \\
& \text { if } f(\mu, \nu)=0 \tag{1}\\
& =\omega_{\alpha}
\end{array} \text { if } f(\mu, \nu)=1 .\right\}
$$

\uparrow For typographical convenience we place the conditions relating to operations Σ, U, n next to the operational symbol.

Theorem 2. Assume GCH. Let $m, n, p \geqslant \mathrm{x}_{0} ; m>n ; m>p^{+}$;

$$
c f m \neq p^{+} ; \quad|I|=m^{+} ; \quad J \subset I ; \quad|J|=n
$$

Then there is no family $\left(A_{\nu}: \nu \in I\right)$ such that $\left|A_{\nu}\right| \leqslant m$ for $\nu \in I$;

$$
\begin{aligned}
\left|A_{\mu} \cap A_{\nu}\right| & <p \text { if }\{\mu, \nu\}_{\neq+} \subset J, \\
& =p \text { if } \mu \neq \nu ; \quad \mu \in I-J ; \nu \in I .
\end{aligned}
$$

Theorem 3. Assume GCH. Let $\mathrm{x}_{0} \leqslant p<m$; cfp $\neq c f m$;

$$
|I|=m^{+} ; \quad|A|=\left|B_{v}\right|=m ; \quad\left|A \cap B_{v}\right|=p \text { for } \quad \nu \in I .
$$

Then there is $M \subset I$ such that $|M|=m^{+}$and $\left|A \cap B_{[M n}\right|=p$ and hence $\left|B_{\mu} \cap B_{v}\right| \geqslant p$ for $\mu, \nu \in M$.

Theorem 4. Assume GCH. Let $\mathrm{x}_{0} \leqslant p \leqslant m ; c f p=c f m ;|I|=m^{+} ;|A|=m$. Then there is a family $\left(B_{\nu}: \nu \in I\right)$ such that $\left|B_{y}\right|=m$ and $\left|A \cap B_{\nu}\right|=p$ for $\nu \in I$, whereas $\left|B_{\mu} \cap B_{\nu}\right|<$ por $\left\{\mu, \nu_{\}_{+}} \subset I\right.$.
4. Proof of Theorem 1. Put, for $\xi, \eta<\omega_{\alpha}$,

$$
S(\xi, \eta)=\left\{\omega_{\alpha}^{2} \xi+\omega_{\alpha} \eta+\theta: \theta<\omega_{\alpha}\right\} .
$$

We shall construct $A(\nu)$ inductively. Let $\nu_{0}<\omega_{\alpha+1}$;

$$
\begin{gathered}
A(0), \ldots, \hat{A}\left(\nu_{0}\right)=\left\{0, \ldots, \hat{\omega}_{\alpha}^{3}\right\}, \\
\operatorname{tp} A(\nu)=\omega_{\alpha}^{2} \text { for } \nu<\nu_{0}, \\
|A(\nu) \cap S(\xi, \eta)|=1 \quad \text { if } \nu<\nu_{0} \text { and } \xi, \eta<\omega_{\alpha} .
\end{gathered}
$$

Suppose that (1) holds for $\mu<\nu<\nu_{0}$. We shall define $A\left(\nu_{0}\right)$, and in such a way that (1) holds for $\mu<\nu=\nu_{0}$.

In what follows dependence on ν_{0} will often not be shown in our notation. It is clearly possible to choose sets $B(0), \ldots, \hat{B}(t)$ in such a way that

$$
t \leqslant \omega_{a} ; \quad\{B(\tau): \tau<t\}=\left\{A(\nu): \nu<\nu_{0}\right\}
$$

and, for $\mu<\nu_{0}$,

$$
\left.\begin{array}{rl}
|\{\tau<t: B(\tau)=A(\mu)\}| & =1 \quad \text { if } \begin{array}{rl}
f\left(\mu, v_{0}\right)=0 \\
& =\mathrm{x}_{\alpha}
\end{array} \text { if } f\left(\mu, v_{0}\right)=1 . \tag{2}
\end{array}\right\}
$$

We shall define $x(\xi, \eta) \in S(\xi, \eta)$ for $\xi, \eta<\omega_{\alpha}$, and we shall put

$$
\begin{equation*}
A\left(\nu_{0}\right)=\left\{x(\xi, \eta): \xi, \eta<\omega_{\alpha}\right\} . \tag{3}
\end{equation*}
$$

Case 1. $t<\omega_{\alpha}$. Then, by (2), $f\left(\mu, \nu_{0}\right)=0$ for $\mu<\nu_{0}$, and we have $\nu_{0}<\omega_{\alpha}$. Hence we can choose, for all $\xi, \eta<\omega_{\alpha}, x(\xi, \eta) \in S(\xi, \eta)-\bigcup_{\nu}\left(\nu<\nu_{0}\right) A(\nu)$. Then, by $(3), \operatorname{tp} A\left(\nu_{0}\right)=\omega_{\alpha}^{2}$. Moreover, if $\mu<\nu_{0}$ then $f\left(\mu, \nu_{0}\right)=0$ and, as required,

$$
\operatorname{tp}\left(A(\mu) \cap A\left(\nu_{0}\right)\right)=0<\omega_{\alpha^{*}} .
$$

Case 2.t $=\omega_{\alpha}$. We shall define $\xi(\theta), \eta(\theta)$ for $\theta<\omega_{\alpha}$ in such a way that, for all $\theta<\omega_{\alpha}$,

$$
\begin{gather*}
\xi(\theta)<\eta(\theta)<\omega_{\alpha}, \tag{4}\\
\eta\left(\theta^{\prime}\right)<\xi(\theta) \text { for } \theta^{\prime}<\theta . \tag{5}
\end{gather*}
$$

Let $\theta_{0}<\omega_{\alpha}$, and assume that $\xi(\theta)$ and $\eta(\theta)$ have been defined for $\theta<\theta_{0}$ in such a way that (4) and (5) hold for $\theta<\theta_{0}$. We shall define $\xi\left(\theta_{0}\right)$ and $\eta\left(\theta_{0}\right)$. Put

$$
\begin{aligned}
\bar{\eta}\left(\theta_{0}\right) & =\sup \left\{\eta(\phi): \phi<\theta_{0}\right\} & & \text { if } \quad \theta_{0}>0, \\
& =0 & & \text { if } \quad \theta_{0}=0 .
\end{aligned}
$$

Since N_{α} is regular, we have $\bar{\eta}\left(\theta_{0}\right)<\omega_{\alpha}$. There is $\mu\left(\theta_{0}\right)<\nu_{0}$ such that $B\left(\theta_{0}\right)=A\left(\mu\left(\theta_{0}\right)\right)$. Put \dagger

$$
C\left(\theta_{0}\right)=B\left(\theta_{0}\right)-\bigcup_{\phi}\left(\phi<\theta_{0} ; B(\phi) \neq B\left(\theta_{0}\right)\right) B(\phi) .
$$

If $\phi<\theta_{0}$ and $B(\phi) \neq B\left(\theta_{0}\right)$, then $\operatorname{tp}\left(B(\phi) \cap B\left(\theta_{0}\right)\right) \leqslant \omega_{\alpha}$. Hence $\operatorname{tp} C\left(\theta_{0}\right)=\operatorname{tp} B\left(\theta_{0}\right)=\omega_{\alpha}^{2}$. It now follows that there are numbers $\xi\left(\theta_{0}\right), \eta\left(\theta_{0}\right)$ such that

$$
\begin{align*}
& \bar{\eta}\left(\theta_{0}\right)<\xi\left(\theta_{0}\right)<\eta\left(\theta_{0}\right)<\omega_{x}, \\
& C\left(\theta_{0}\right) \cap S\left(\xi\left(\theta_{0}\right), \eta\left(\theta_{0}\right)\right) \neq \varnothing . \tag{6}
\end{align*}
$$

This completes the definition of $\xi(\theta)$ and $\eta(\theta)$ for $\theta<\omega_{\alpha}$ so that (4), (5), (6) hold for $\theta, \theta_{0}<\omega_{\alpha}$. We now define $x(\xi, \eta)$ for $\xi, \eta<\omega_{\alpha}$. Let $\xi_{1}, \eta_{1}<\omega_{\alpha}$. By (4) and (5) there is $\theta_{0}\left(\xi_{1}, \eta_{1}\right)<\omega_{\alpha}$ such that

$$
\begin{equation*}
\eta(\phi)<\max \left\{\xi_{1}, \eta_{1}\right\} \leqslant \eta\left(\theta_{0}\left(\xi_{1}, \eta_{1}\right)\right) \tag{7}
\end{equation*}
$$

for $\phi<\theta_{0}\left(\xi_{1}, \eta_{1}\right)$. For, this only means that $\theta_{0}\left(\xi_{1}, \eta_{1}\right)$ is the least ordinal $\lambda<\omega_{\alpha}$ satisfying $\eta(\lambda) \geqslant \max \left\{\xi_{1}, \eta_{1}\right\}$, and such an ordinal λ exists by (4) and (5).

Case 2a. Either (i)
or (ii)

$$
\left(\xi_{1}, \eta_{1}\right) \neq\left(\xi\left(\theta_{0}\left(\xi_{1}, \eta_{1}\right)\right), \eta\left(\theta_{0}\left(\xi_{1}, \eta_{1}\right)\right)\right)_{i}
$$

and

$$
\left(\xi_{1}, \eta_{1}\right)=\left(\xi\left(\theta_{0}\left(\xi_{1}, \eta_{1}\right)\right), \eta\left(\theta_{0}\left(\xi_{1}, \eta_{1}\right)\right)\right)
$$

In this case we can choose

$$
x\left(\xi_{1}, \eta_{1}\right) \in S\left(\xi_{1}, \eta_{1}\right)-\bigcup_{\phi}\left(\phi<\theta_{0}\left(\xi_{1}, \eta_{1}\right)\right) B(\phi)
$$

Case $2 b$.

$$
\left(\xi_{1}, \eta_{1}\right)=\left(\xi\left(\theta_{0}\left(\xi_{1}, \eta_{1}\right)\right), \eta\left(\theta_{0}\left(\xi_{1}, \eta_{1}\right)\right)\right)
$$

and

$$
f\left(\mu\left(\theta_{0}\left(\xi_{1}, \eta_{1}\right)\right), \nu_{0}\right)=1 .
$$

Then, by (6), we can choose

$$
x\left(\xi_{1}, \eta_{1}\right) \in C\left(\theta_{0}\left(\xi_{1}, \eta_{1}\right)\right) \cap S\left(\xi_{1}, \eta_{1}\right)
$$

This completes the definition of $x(\xi, \eta)$ for $\xi, \eta<\omega_{\alpha}$, and we can define $A\left(\theta_{0}\right)$ by (3). Since $x(\xi, \eta) \in S(\xi, \eta)$, we have $\operatorname{tp} A\left(\nu_{0}\right)=\omega_{\alpha}^{2}$. Let $\mu_{0}<\nu_{0}$. We now show that (1) holds for $(\mu, \nu)=\left(\mu_{0}, \nu_{0}\right)$. There is a least number $\phi_{0}<\omega_{\alpha}$ such that $B\left(\phi_{0}\right)=A\left(\mu_{0}\right)$.

Case A. $f\left(\mu_{0}, \nu_{0}\right)=0$. We shall show that

$$
\begin{equation*}
A\left(\mu_{0}\right) \cap A\left(\nu_{0}\right) \subset \bigcup_{\xi, \eta}\left(\xi, \eta \leqslant \eta\left(\phi_{0}\right)\right) S(\xi, \eta) \tag{8}
\end{equation*}
$$

which would imply $\operatorname{tp}\left(A\left(\mu_{0}\right) \cap A\left(\nu_{0}\right)\right) \leqslant\left(\eta\left(\phi_{0}\right)+1\right)^{2}<\omega_{\alpha}$. Assume that ξ_{2}, η_{2} are such that $\eta\left(\phi_{0}\right)<\max \left\{\xi_{2}, \eta_{2}\right\}<\omega_{a}$. Then, by (7),

$$
\eta\left(\phi_{0}\right)<\max \left\{\xi_{3}, \eta_{2}\right\} \leqslant \eta\left(\theta_{0}\left(\xi_{2}, \eta_{2}\right)\right)
$$

[^0]and hence, by (4) and (5), $\phi_{0}<\theta_{0}\left(\xi_{2}, \eta_{2}\right)$. If, in the definition of $x\left(\xi_{2}, \eta_{2}\right)$, Case $2 a$ applies, then we conclude that
\[

$$
\begin{equation*}
x\left(\xi_{2}, \eta_{2}\right) \notin B\left(\phi_{0}\right)=A\left(\mu_{0}\right) . \tag{9}
\end{equation*}
$$

\]

If, on the other hand, Case $2 b$ applies in the definition of $x\left(\xi_{2}, \eta_{2}\right)$, then

$$
B\left(\phi_{0}\right)=A\left(\mu_{0}\right) \neq B\left(\theta_{0}\left(\xi_{z}, \eta_{2}\right)\right),
$$

in view of $f\left(\mu_{0}, \nu_{0}\right)=0$ and $f\left(\mu\left(\theta_{0}\left(\xi_{2}, \eta_{2}\right)\right), \nu_{0}\right)=1$. By the definition of $C\left(\theta_{0}\left(\xi_{2}, \eta_{2}\right)\right)$, we again deduce that (9) holds. This proves (8).
Case B. $f\left(\mu_{0}, \nu_{0}\right)=1$. Then we can write

$$
\left\{\phi<\omega_{a}: B(\phi)=A\left(\mu_{0}\right)\right\}=\left\{\phi(0), \ldots, \hat{\phi}\left(\omega_{\alpha}\right)\right\}<\cdot
$$

We shall show that

$$
\left.\begin{array}{r}
A\left(\mu_{0}\right) \cap A\left(v_{0}\right) \subset \cup(\xi, \eta \leqslant \eta(\phi(0))) S(\xi, \eta) \tag{10}\\
\cup\left\{x(\xi(\phi(\beta)), \eta(\phi(\beta))): 0<\beta<\omega_{\alpha}\right\}
\end{array}\right\}
$$

Let $\eta(\phi(0))<\max \left\{\xi_{2}, \eta_{2}\right\}<\omega_{a}$. Then, by (4), (5) and (7), $\phi(0)<\theta_{0}\left(\xi_{2}, \eta_{2}\right)$.
Case B1. $\theta_{0}\left(\xi_{2}, \eta_{2}\right) \neq \phi(\beta)$ for $\beta<\omega_{\alpha}$. Then it follows from the procedure in the Cases $2 a$ and $2 b$ that (9) holds.
Case B2. $\theta_{0}\left(\xi_{2}, \eta_{2}\right)=\phi\left(\beta_{0}\right)$ for some $\beta_{0}<\omega_{\alpha}$. Then $\beta_{0}>0$. Let

$$
\text { . }\left(\xi_{2}, \eta_{2}\right) \neq\left(\xi\left(\phi\left(\beta_{0}\right)\right), \eta\left(\phi\left(\beta_{0}\right)\right)\right) .
$$

Then, again, (9) follows. This completes the proof of (10). The relations (4) and (5) imply that

$$
\begin{equation*}
\operatorname{tp}\left(A\left(\mu_{0}\right) \cap A\left(\nu_{0}\right)\right) \leqslant \omega_{\alpha} . \tag{11}
\end{equation*}
$$

On the other hand, we shall now show that

$$
\begin{equation*}
x(\xi(\phi(\beta)), \eta(\phi(\beta))) \in A\left(\mu_{0}\right) \cap A\left(\nu_{0}\right) \text { for } \beta<\omega_{x} . \tag{12}
\end{equation*}
$$

Let $\beta<\omega_{\alpha}$ and $\left(\xi_{3}, \eta_{3}\right)=(\xi(\phi(\beta)), \eta(\phi(\beta)))$. Then

$$
B(\phi(\beta))=A\left(\mu_{0}\right) ; \quad f\left(\mu_{0}, v_{0}\right)=1 ; \quad \xi_{3}<\eta_{3}<\omega_{\alpha},
$$

We first show that $\theta_{0}\left(\xi_{3}, \eta_{3}\right)=\phi(\beta)$. This means that $\eta(\phi(\beta)) \geqslant \eta_{3}$ and $\eta(\phi)<\eta_{3}$ for $\phi<\phi(\beta)$. But these two statements are true because of the equation $\eta_{3}=\eta(\phi(\beta))$ and the fact that, by (4) and (5), $\eta(\phi)$ increases with ϕ. This proves that $\theta_{0}\left(\xi_{3}, \eta_{3}\right)=\phi(\beta)$. We conclude that

$$
\begin{aligned}
& \xi\left(\theta_{0}\left(\xi_{3}, \eta_{3}\right)\right)=\xi(\phi(\beta))=\xi_{3}, \\
& \eta\left(\theta_{0}\left(\xi_{3}, \eta_{3}\right)\right)=\eta(\phi(\beta))=\eta_{3},
\end{aligned}
$$

and that $\mu\left(\theta_{0}\left(\xi_{3}, \eta_{3}\right)\right)=\mu(\phi(\beta))=\mu_{0}$, by the definitions of $\mu(\theta)$ and $\phi(\beta)$. Finally, we have

$$
f\left(\mu\left(\theta_{0}\left(\xi_{3}, \eta_{3}\right)\right), \nu_{0}\right)=f\left(\mu_{0}, \nu_{0}\right)=1
$$

Hence, by Case $2 b$,

$$
x\left(\xi_{3}, \eta_{3}\right) \in C\left(\theta_{0}\left(\xi_{3}, \eta_{3}\right)\right)=C(\phi(\beta))=B(\phi(\beta))=A\left(\mu_{0}\right),
$$

and this implies (12). However, (12) yields $\operatorname{tp}\left(A\left(\mu_{0}\right) \cap A\left(\nu_{0}\right)\right) \geqslant \omega_{\alpha}$ which, together with (11), gives $\operatorname{tp}\left(A\left(\mu_{0}\right) \cap A\left(\nu_{0}\right)\right)=\omega_{k}$. This completes the proof of Theorem 1 .
5. Proof of Theorem 2. Let the family ($A_{\eta}: v \in I$) satisfy the hypothesis of the theorem. Put

$$
m=\mathrm{N}_{\alpha} ; \quad n=\mathrm{N}_{\beta} ; \quad p=\mathrm{N}_{\gamma} ; \quad \quad c f m=\mathrm{N}_{\phi} .
$$

Then $\alpha>\beta ; \alpha>\gamma+1 ; \delta \neq \gamma+1$. By enlarging the sets A_{ν}, suitably, we can achieve that, in addition, $\left|A_{\nu}\right|=m$ for $\nu \in I$. Also, without loss of generality, we assume that $I=\underline{m}^{+}$and $J=\underline{n}$. Let μ, ν, ρ, σ always denote ordinals such that

$$
\mu, \nu<\omega_{\rho} \leqslant \rho, \sigma<\omega_{\alpha+1} .
$$

Put $S=\bigcup \underset{\mu, \nu}{\cup}(\mu<\nu) A_{\mu} \cap A_{\nu,}$. Then $|S| \leqslant n p<m$. Put $A_{\mu}^{*}=A_{\mu}-S$ for all μ. Then $\left|A_{p}^{*}\right|=m$ and $A_{\mu}^{*} \cap A_{\nu}^{*}=\varnothing$ for $\mu<\nu$. Put

$$
N(\rho)=\left\{\mu: A_{\mu}^{*} \cap A_{\rho} \neq \varnothing\right\} ; \quad W=\{\rho:[N(\rho) \mid \leqslant p\} .
$$

Case 1. $|W|=m^{+}$. Since $\left|\left\{A_{\rho} \cap S: \rho \in W\right\}\right| \leqslant 2^{[S \mid} \leqslant m$, there are sets W^{\prime} and S_{0} such that $W^{\prime} \subset W ;\left|W^{\prime}\right|=|W|$ and $A_{\rho} \cap S=S_{0}$ for $\rho \in W^{\prime}$.

Let $\{\rho, \sigma\}_{+} \subset W^{\prime}$. Then

$$
\left|S_{0}\right|=\left|\left(A_{\rho} \cap S\right) \cap\left(A_{\sigma} \cap S\right)\right| \leqslant\left|A_{\rho} \cap A_{\sigma}\right|=p .
$$

Since $\left|\left\{N(\rho): \rho \in W^{\prime}\right\}\right| \leqslant 2^{n} \leqslant m$, there are sets $W^{\prime \prime}, N_{0}$ such that

$$
W^{\prime \prime} \subset W^{\prime} ; \quad\left|W^{\prime \prime}\right|=\left|W^{\prime}\right| ; \quad\left|N_{0}\right| \leqslant p ; \quad N(\rho)=N_{0} \quad \text { for } \quad \rho \in W^{\prime \prime} .
$$

Let $\rho_{0} \in W^{\prime \prime}$ and $\mu \notin N_{0}$. Then

$$
\mu \notin N_{0}=N\left(\rho_{0}\right) ; \quad A_{\mu}^{*} \cap A_{\rho_{0}}=\varnothing ; \quad A_{\mu} \cap A_{\rho_{0}} \subset S ; \quad A_{\mu} \cap A_{\rho_{0}} \subset A_{\rho_{0}} \cap S=S_{0} .
$$

Since $\left|\left\{A_{\mu} \cap A_{\rho_{0}}: \mu \notin N_{0}\right\}\right| \leqslant 2^{\left|S_{0}\right|} \leqslant m$, there are numbers $\mu_{1}, \mu_{2} \notin N_{0}$ such that $\mu_{1} \neq \mu_{3}$; $A_{\mu_{1}} \cap A_{\rho_{0}}=A_{\mu_{2}} \cap A_{\rho_{0}}$. Then

$$
p=\left|A_{\mu_{1}} \cap A_{p_{0}}\right|=\left|\left(A_{\mu_{1}} \cap A_{p_{0}}\right) \cap\left(A_{p_{2}} \cap A_{p_{0}}\right)\right| \leqslant\left|A_{p_{1}} \cap A_{p_{0}}\right|<p,
$$

which is the required contradiction.
Case 2. $|W| \leqslant m$. Put $W^{*}=\left\{\rho: \omega_{\rho} \leqslant \rho<\omega_{\alpha+1}\right\}-W$. Then $\left|W^{*}\right|=m^{+} ; N(\rho)>p$ for $\rho \in W^{*}$. Since
and

$$
\left\{N(\rho): \rho \in W^{*}\right\}=\bigcup_{M}\left(M \subset \underline{n} ;|M|=p^{+}\right)\left\{N(\rho): \rho \in W^{*} ; N(\rho) \supset \mathbb{M}\right\}
$$

there are sets $W^{* *}, N_{1}$ such that $W^{* *} \subset W^{*} ;\left|W^{* *}\right|=\left|W^{*}\right| ;\left|N_{1}\right|=p^{+} ; N(\rho) \supset N_{1}$ for $\rho \in W^{* *}$. If $\rho \in W^{* *}$ and $\mu \in N_{1}$, then $A_{\rho} \cap A_{\mu}^{*} \neq \varnothing$, and we can choose $x_{\rho \mu} \in A_{\rho} \cap A_{\mu}^{*}$. Put $X_{\rho}=\left\{x_{\rho \mu}: \mu \in N_{\mathrm{y}}\right\}$ for $\rho \in W^{* *}$. Then $x_{\rho \mu} \neq x_{\rho \nu}$ if $\rho \in W^{* *}$ and $\{\mu, \nu\}_{+} \subset N_{1}$. If $\{\rho, \sigma\}_{4} \subset W^{* *}$, then

$$
\left|X_{\rho} \cap X_{\sigma}\right| \leqslant\left|A_{\rho} \cap A_{\sigma}\right|=p<\left|N_{\mathrm{I}}\right|=\left|X_{\rho}\right| .
$$

Hence ($X_{p}: \rho \in W^{* *}$) is a family of m^{+}almost disjoint transversals of the family ($A_{\mu}^{*}: \mu \in N_{1}$) of p^{+}disjoint sets of cardinal m.
On the other hand, by (2), for $r, s \geqslant \mathrm{~N}_{0}$, no family of r disjoint sets of cardinal s has s^{+} almost disjoint transversals, provided $c f r \neq c f s$ and $c f r \neq s^{+}$. When applying this result with $r=p^{+}$and $s=m$ we obtain a contradiction, and this establishes Theorem 2.
6. Proof of Theorem 3. Case 1, $p<c \mathrm{fm}$. Then, by GCH, $m^{p}<m^{+}$, and there are sets X, M such that $|X|=p ; M \subset I ;|M|=m^{+} ; A \cap B_{v}=X$ for $\nu \in M$. Then $A \cap B_{[M}=X$.

Case 2: $c f m<c f p$. Then we can write $A=\bigcup_{\beta}(\beta \in \underline{c f m}) A_{\beta}$, where $\left|A_{p}\right|<m$ for $\beta \in c f m$. Let $\alpha \in I$. Then $A \cap B_{\alpha}=\bigcup_{\beta}(\beta \in c f m) A_{\beta} \cap B_{\alpha}$. Because of $c f m<c f p$, there is $\beta(\alpha) \in c f m$ such that $\left|A_{p(a)} \cap B_{\alpha}\right|=p$ for $\alpha \in I$. Then there is a number $\beta^{\prime} \in c f m$ and a set $M^{\prime} \subset I$ with $\left|M^{\prime}\right|=m^{+}$, such that $\beta(\alpha)=\beta^{\prime}$ for $\alpha \in M^{\prime}$. Then $\left|A_{\beta^{\prime} \cap} \cap B_{\alpha}\right|=p$ for $\alpha \in M^{\prime}$. Since $\left|A_{p^{\prime}}\right|^{p} \leqslant 2^{\left|A_{p^{\prime} D}\right|}<m^{+}$, there are sets X, M satisfying $|X|=p ; M \subset M^{\prime}$; $|M|=m^{+} ; A_{\beta^{\prime}} \cap B_{\alpha}=X$ for $\alpha \in M$. But now we have

$$
A \cap B_{[M]} \supset A_{\beta} \cap B_{[M]}=X
$$

Case 3. cfp $\leqslant c f m \leqslant p$. If $c f m=p$, then $c f p=p=c f m$ which is false. Hence $c f p<c f m<p$. We can write $A=\bigcup_{\beta}(\beta \in \subset f m) A_{\beta}$, where $\left|A_{\beta}\right|<m$ for $\beta \in c f m$. There is a representation $p=\sum_{\delta}(\delta \in \underline{c f p}) p_{\delta}$, where $p_{z}<p$ for $\delta \in \underline{c f p}$. Then $\sup \left\{p_{\delta}: \delta \in \underline{c f p}\right\}=p$. Let $\alpha \in I$ and $\delta \in c f p$. Then there is a number $\gamma_{\alpha}(\delta) \in \mathcal{C f m}$ such that

$$
\begin{equation*}
\left|\bigcup_{\beta}\left(\beta<\gamma_{\alpha}(\delta)\right) A_{\beta} \cap B_{\alpha}\right|>p_{\beta} . \tag{13}
\end{equation*}
$$

For otherwise we would have

$$
\begin{aligned}
\left|A \cap B_{\alpha}\right| & =\left|\bigcup_{\gamma}(\gamma \in \underline{c f m}) \bigcup_{\beta}(\beta<\gamma) A_{\beta} \cap B_{\alpha}\right| \\
& \leqslant \sum_{\gamma}(\gamma \in c f m)\left|\bigcup_{\beta}(\beta<\gamma) A_{\beta} \cap B_{\alpha}\right| \leqslant(c f m) p_{\delta}<p
\end{aligned}
$$

which is a contradiction. Since $c f p<c f m=c f c f m$, we have $\sup \left\{\gamma_{a}(\delta): \delta \in c f p\right\}=\bar{\gamma}_{\alpha}$, say, where $\bar{\gamma}_{\alpha} \in c f m$. Then, by (13), $\left|\bigcup_{\beta}\left(\beta<\bar{\gamma}_{\alpha}\right) A_{\beta} \cap B_{\alpha}\right|>p_{\delta}$ for $\delta \in \underline{c f p}$, and hence

$$
\left|\bigcup_{\beta}\left(\beta<\bar{\gamma}_{\alpha}\right) A_{\beta} \cap B_{\alpha}\right| \geqslant p=\left|A \cap B_{\alpha}\right| \geqslant\left|\bigcup_{\beta}\left(\beta<\bar{\gamma}_{\alpha}\right) A_{\beta} \cap B_{\alpha}\right|
$$

so that $\left|\bigcup_{\beta}\left(\beta<\bar{\gamma}_{\alpha}\right) A_{\beta} \cap B_{\alpha}\right|=p$ for $\alpha \in I$. Now there is an ordinal $\gamma^{\prime} \in c f m$ and a set $M^{\prime} \subset I$ with $\left|M^{\prime}\right|=m^{+}$, such that $\bar{\gamma}_{\alpha}=\gamma^{\prime}$ for $\alpha \in M^{\prime}$. Then $\left|\bigcup_{\beta}\left(\beta<\gamma^{\prime}\right) A_{\beta} \cap B_{\alpha}\right|=p$ for $\alpha \in M^{\prime}$. We have $\left|\bigcup_{\beta}\left(\beta<\gamma^{\prime}\right) A_{\beta}\right|<m$ and hence $\left|\bigcup_{\beta}\left(\beta<\gamma^{\prime}\right) A_{\beta}\right|^{p}<m^{+}$. Therefore we can find sets X, M such that $|X|=p ; M \subset M^{\prime} ;|M|=m^{+}$;

$$
\left(\bigcup_{\beta}\left(\beta<\gamma^{\prime}\right) A_{\beta}\right) \cap B_{\alpha}=X \quad \text { for } \quad \alpha \in M
$$

Then $A \cap B_{[M \cap} \supset \bigcup_{\beta}\left(\beta<\gamma^{\prime}\right) A_{\beta} \cap B_{[M]}=X$, and the theorem follows.
7. Proof of Theorem 4. By a theorem of Tarski(3), there are almost disjoint sets $B_{v}^{\prime} \subset A$ for $\nu \in I$ such that $\left|B_{\nu}^{\prime}\right|=p$ for $\nu \in I$. Put, for $\nu \in I, B_{v}=B_{v}^{\prime} \cup D_{v}$, where the D_{v} are any sets satisfying $\left|D_{\nu}\right|=m$ for $\nu \in I$ and $A \cap D_{y}=B_{\mu}^{\prime} \cap D_{\nu}=\varnothing$ for $\mu, \nu \in I$, and $D_{\mu} \cap D_{\nu}=\varnothing$ for $\mu \neq \nu$. Then $\left|B_{\nu}\right|=m$ and $\left|A \cap B_{\nu}\right|=\left|A \cap B_{\nu}^{\prime}\right|=p$ for $\nu \in I$, and

$$
\left|B_{\mu} \cap B_{\nu}\right|=\left|B_{\mu}^{\prime} \cap B_{\nu}^{\prime}\right|<p \text { for } \mu \neq \nu
$$

This completes the proof.
8. Open questions. Let A be a set, well-ordered and of order type ω_{α}^{β}. One can ask this question: how far is it possible to choose subsets A_{γ} of A such that, for all γ, δ, the sets $A_{\gamma} \cap A_{\delta}$ are prescribed to have either an order type less than ω_{a} or a type $\omega_{\alpha}^{0(\gamma, h)}$, where $g(\gamma, \delta)$ is a given ordinal less than β ? In Theorem 1 we only deal with a relatively simple special case. We have some further results but do not state them as they have not yet reached a satisfactory state.

REFERENCES

(1) Erdös, P., Miliner, E. C. and Rado, R. Intersection theorems for systems of sets (III), Lemma 6. J. Austral. Math. Soe. 13 (1974), 22-40.
(2) Milner, E. C. Transversals of digjoint sets. J. London Math. Soc. 43 (1968), 495-500.
(3) Tarskt, A. Sur la décomposition des ensembles en sous-ensembles presque disjoints. Fund. Math. 14 (1929), 205-215.

[^0]: \dagger See footnote in section 2.

