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1 Introduction . For a given index set I, let us consider a family (A, : v c- I) of subsets
of a set E. In this note we deal with some aspects of the following question : to what
extent is it possible to prescribe the cardinalities, or the order types in case E is
ordered, of the sets A v and of their pairwise intersections? In (1) the authors have
shown that, given any regular cardinal a, there is a family of a+ sets of cardinal a whose
pairwise intersections are arbitrarily prescribed to be either less than or equal to a .
In Theorem 1 below we prove a stronger result which states that if a is regular, say
a = ida , and if E is well-ordered and of order type wá, then one can find a+ subsets A„
of E, each of type wá, whose pairwise intersections are arbitrarily prescribed to be
either of type wa or of a type less than w a . By way of contrast, Theorem 2 below implies -
this is its special case m = 21 W ; n = 1~2 ; p = k o -that, assuming the Generalized
Continuum Hypothesis (GCH), there do not exist X.+i sets A v , each of cardinal at most
Nom , such that .I 2 of them have pairwise finite intersections, whereas all other pairs of
sets Av have a denumerable intersection . Theorem 3 gives another case in which some
type of prescription of the sizes of the intersections cannot be satisfied . Finally,
Theorem 4 asserts that in Theorem 3 the condition cfp + cfm cannot be omitted . The
paper concludes with some remarks on open questions .

2 . Notation . We use the obliterator an operator which removes from a well-ordered
sequence the term above which it is placed . Roman capital letters denote sets . If A is
ordered then tp A denotes the order type of A . If A v is a set, for v c- I, where I + o ,
then we putt A [1] _ ( 1 (v c- I)A v . The relation A -- B denotes inclusion in the wide sense,

v

and symbols such as {,a, v}-, have their obvious meaning . For every cardinal a, we put
a = {y : y = ordinal ; 171 < a}, and if a , No then cfa denotes the least cardinal b such
that there is a representation a = E (v E b) xv , where xv < a for v c b . Thus a is regular
if and only if cfa = a .

	

v

3. Results . THEOREM 1 . Let a be a regular cardinal, a = x., and f(,u, v) e {0, 1} for
,u < v < wa+i . Then there are subsets A(0), A(1)	(wa+1) of {0, 1, . . ., Q,} each of type
w,, such that, for a < v < wa+v

tp (A (It) fl A(v)) < wa if f (u, v) = 0,

	

(1)

= wa if f (It, v) = i .}
f For typographical convenience we place the conditions relating to operations Z, U, n next

to the operational symbol .
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THEOREM 2. Assume GCH. Let m, n-,'p >, Ya o ; m > n ; m > p+ ;

cfm+p+ ; JII =m+; J-I; IJI =n

Then there is no family (A, : vc1) such that IA,I < m for vet ;

IA. n A„I < p if {,a, v}+ - J,
= p if ,a + v ; jtCI-J ; VC-I .

THEOREM 3. Assume GCH. Let xo < p < m ; cfp + cfm ;

III = m+; JAI = IB,I = m ; IA n B,I = p for vel .

Then there is M-- I such that I MI= m+ and I A n B, I = p and hence IB,z A By I> p
for ,a, v c- M .

THEOREM 4. Assume GCH. Let N o < p < m ; cfp = cfm ; III = m+ ; JAI = m. Then
there is a family (B„ : v c- I) such that I B„ I = m and IA n B y I = p for v e I, whereas
IB,nB,I <pfor{,a,v}$-I .

4. Proof of Theorem 1 . Put, for 6, ,q < (o,

S(6, Y) _ {(0áM + (0aV + 0 : 0 < (O'}.

We shall construct A(v) inductively . Let vo < (oa+l ;

A(0), . . ., A(vo )

	

{0, . . ., wá},

tp A (v) _ (,)á for v < vp,

IA(v) n S(~,y)I = 1 if v < v0 and 6,r/<(o,

Suppose that (1) holds for ,a < v < v o. We shall define A(vo ), and in such a way that (1)
holds for a < v = va .

In what follows dependence on v0 will often not be shown in our notation . It is clearly
possible to choose sets B(0), . . ., A(t) in such a way that

t < ()x ; {B~T) : T < t) _ {A (p) : v < v 0}
and, for p < v o ,

J{T < t : B(T) = A(,a)}J = 1

	

if f (,a, v0 ) = 0 }

= tda if f (h, v0) = 1 .

We shall define x(6, rl) E S(6, ,q) for 6, ,q < (o, and we shall put

A(v0 ) _ { x (6, V) : 6,y < w a } .

(2)

(3)

Case 1 . t < (o, Then, by (2), f (,a, v.) = 0 for a < vo , and we have vo < o), Hence we
can choose, for all 6, ,q < (o, x(6,rl)ES(6,rl)-U (v < vo)A(v) . Then, by (3), tpA(vo ) = wá .

v

Moreover, if ,a < v o then f (,a, v0) = 0 and, as required,

tp (A (p) n A(v o )) = 0 < (o,

Case 2 . t = o), We shall define E(0), y(0) for 0 < (o a in such a way that, for all 0 < (o,

~(0) < 0) < (0,

V(0') < ~(0) for 0' < 0 .
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Let 00 < &), and assume that 6(0) and V(0) have been defined for 0 < Oo in such a way
that (4) and (5) hold for 0 < Co . We shall define 6(Oo) and q(00) . Put

7l(00) = sup {Y(0) : 0 < 00} if Oo > 0,
= 0

	

if 00 = 0 .

Since Kx is regular, we have 77(00) < o), There is ,a(O,) < vo such that B(0o) = A(,a(O,)) .
Putt

	

C(O,) = B(Oo)- U (0 < Co ; B(O) + B(00))B(O) •
0

If ¢ < Oo and B(O) + B(OO), then tp (B(O) n B(O,)) < wa . Hence tpC(0o) = tpB(0o) = w2
It now follows that there are numbers 6(Oo), r7(Oo) such that

V(00) < 6(00) < ál(00) < N,
C(00) n S(ó(00), Wo)) + 0

	

(6)
This completes the definition of 6(0) and r7(O) for 0 < wa so that (4), (5), (6) hold for
0, Oo < (o, We now define x(6, 91) for 6, 77 < wa . Let 6,, ?71 < cva . By (4) and (5) there is
00(61, V,) < a.)a such that

V (O) < max { v ~/1}

	

~l (Co( v X71))

	

(7)
for 0 < Oo(6,, ~q,,) . For, this only means that Oo(61, 911) is the least ordinal A < wa
satisfying r7 (A) >, max {61, V,}, and such an ordinal A exists by (4) and (5) .

Case 2a. Either (i)
(9v r/i) + (6(0001' vi)), 9/(000,, X71)))'

or (ü)

	

(61, 9h) _ (6(00(61, 9h)), 97(00(61' 9h)))

and

	

f (70o(1, 9h)), 1'o) = 0 .
In this case we can choose

Case 2 b .

x(E1, 9/1) E S(~1, 9h) - U (~ < 041, 9h)) BM .

(~1, ~71) _ (~(0

	

1' vi», rr(eo(1, rl1)))
and

	

f (1041, 9h)), 1'o) = 1 .
Then, by (6), we can choose

x(61' X71) E C(Oo(1, 971)) n S(61, 9h) •

This completes the definition of x(5, V) for 6,77 < w, and we can define A(00) by (3) .
Since x(6, ~7) ES(6,,q), we have tpA(vo) _ o)á . Let /,to < 1'o . We now show that (1) holds
for (a, v) _ (,to,1'o) . There is a least number 00 < wa such that B(0o) = A(,a,) .

Case A . f (ao,1'o) = 0 . We shall show that

A(/to) n A (1'o) c U (6, V < 97(00)) S(6, 91),

	

(8)

which would imply tp (A(Ito) A A(vo)) < (,q (~o) + 1)2 < tea . Assume that 92, 972 are such
that q(0o) < max{E2,V2} < (oa . Then, by (7),

%(00) < max {62, %2} ~< 97(0002, 972))

t See footnote in section 2 .
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I

and hence, by (4) and (5), ~o < 00(62, V2) • If, in the definition of x(62 , V2), Case 2 a applies,
then we conclude that

x(E2, V2) 0B(0o) = A(It,) .

	

(9)

If, on the other hand, Case 2 b applies in the definition of x(6 2 , V 2 ), then

B(00) = A(lt0) $ B(vo(~2, V2))á

in view off(,u o , vo ) = 0 and f(A(0421 V2)), PO) = 1 . By the definition of C( 0o(2, Y2)), we
again deduce that (9) holds . This proves (8) .

Case B . f(,ao , vo ) = 1 . Then we can write

{0 < o)a : B(0) = A(fto)} _ {0(0), . . . ' (tea)}< .
We shall show that

A(go) n A(vo) c U (~, V < V(~(0))) 8(E, V)
~.V

	

(10)
U {x~( Mfl)) VMM)) : 0 < 8 < toa}

Let,q(0(0)) < max{~2,V2} < (o, Then, by (4), (5) and (7), 0(0) < 0002,V2) •
Case B 1 . 042, Y2) $ 0(fá) for 8 < (o, Then it follows from the procedure in the

Cases 2a and 2b that (9) holds .
Case B2 . Co(2> ái2) _ 0(f3o) for some,80 < (o, Then fjo > 0. Let

(~2, V2) $ ( 6(000)), V(06 0))) •

Then, again, (9) follows . This completes the proof of (10) . The relations (4) and (5)
imply that

tp (A(,ao) n A(vo)) 5 tea •

	

(11)

On the other hand, we shall now show that

x(~(O(f3)), 71(0(,3))) EA(l,to) n A(vo) for f3 < tea .

	

( 12)

Let P < (o a, and ( 3, ~3) _

	

á/(0(f3))) . Then

B(0(fl)) = A(,ao) ; f(It0, v0) = 1 , ~3 < Y3 < tea,

We first show that 00(53,%3) _ 0(p) . This means that

	

>, r/3 and V(O) < ál3 for

0 < 0(f3) . But these two statements are true because of the equation ál3 = á/0(f3)) and
the fact that, by (4) and (5), V(O) increases with 0 . This proves that 80(63,'q3)
We conclude that

ó(00(63,V3)) _ 6(068)) _ 63,

V (00(b'3,á33)) _ 9%(0(18)) _ V3,

and that ,a (00(ó3, YO) _ ,a(0(f3)) _ ,to, by the definitions of ,a(0) and 0(f3) . Finally, wehave

	

h
z

(Bo(S3, 713)), v0) = f (l)'o' v0) = 1 .
Hence, by Case 2 b,

x031 V3) E C(B0(931 VA = Q00)) C -8 (068)) = A(PO),

and this implies (12) . However, (12) yields tp (A(,ao ) n A(vo )) ~> (i)a which, together
with (li), gives tp (A(,ao ) n A(vo)) _ o)a . This completes the proof of Theorem 1 .
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5 . Proof of Theorem 2 . Let the family (A, : v E I) satisfy the hypothesis of the
theorem. Put m = Xa ; n = K'6 ; p = NY ; cfm = k s •

Then a > 8, a > y+1 ; 8 y+i. By enlarging the sets A„ suitably, we can achieve
that, in addition, I A v I = m for v e I . Also, without loss of generality, we assume that
I = m+ and J = n. Letµ, v, p, o - always denote ordinals such that

/CG, V < CJ,6 ~< P, a- < (')"+11

Put S = U (µ < v) A P A A, . Then I S I S np < m. Put A * = A ll - S for all µ. Then

IA, I = m and A n A,* _ 0 for µ < v. Put

N(p) _ {µ: A* n A P + o} ; W = {p : IN(A )I , p} .

Case 1 . I W I = m+. Since I {A p n S : p c W}i < 2 1 sl < m, there are sets W' and So such
that W'- W; I W'I = I WI and AP n S = So for p c W' .
Let {p, o-}+ - W' . Then

ISoi = I (AP n S) n (A, A S) I <, J AP n AP I = p .

Since I {N(p) : p e W'}I <, 2n < m, there are sets W", No such that

W" c-- W'; IW"I = IW'I ; INOI gyp ; N(A) =No for pcW" .

Let po e W" and µ ON,. Then

µ ONO = N(po) ; A,*u n Apo = 0 ; AP n A Po - S ; AP n A Po - APo n S = S o .

Since J {A,, n A po : ItONo}I < 21soi <, m, there are numbers µ1,µ20N0 such that µ l + µ2 ;
APl n Apo = AP2 n A po . Then

p = IA,,, n Apol = I (AP, n Apo) n (A P2 n AP,)I <, JA I, , n APZI < p,

which is the required contradiction .
Case 2 . I WI < m . Put W* _ {p : (,)Q < p <

	

W. Then I W*I = m+ ; N(p) > p
for p e W*. Since

{N(p) : pcW*} = U (M- n ; IMI = p+){N(p) : peW* ; N(p) M}
M

and

	

If-M- n : IMI =p+}I = np+ S 2np+ < m,

there are sets W**, Nl such that W**- W*; I W**I = I W*I ; INiJ = p+ ; N(p) Nl for
p E W** . If p c W** and µ ENl , then A P n A* + 0, and we can choose xPP c A P n A* .
Put XP = {xpP : µ E Nl} for p e W** . Then xpP + xP„ if p c W** and {/,t, vJ + c-- N, . If
{p, o'} + - W**, then

IXP nX,I < I APnAQI = p < IN1I = IXPI

Hence (XP :AEW**) is a family of m+ almost disjoint transversals of the family
(A~ : µEND of p+ disjoint sets of cardinal m .

On the other hand, by (2), for r, s >, N o , no family of r disjoint sets of cardinal s has s+
almost disjoint transversals, provided efr + cfs and cfr + s+. When applying this result
with r = p+ and s = m we obtain a contradiction, and this establishes Theorem 2 .
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6 . Proof of Theorem 3 . Case 1 . p < cfm . Then, by GCH, mp < m+, and there are sets
X, M such that IX I = p, M- I ; IM I = m+; A n By = X for v EM. Then A n B[m, = X .

Case 2 : cfm < cfp . Then we can write A
= U

(f3 E cfm) A ,6 , where I A,6 I < m for

/3 E cfm . Let a eI . Then A n Ba = U (f3 E cfm) A~ n Ba . Because of cfm < cfp, there is

f3(a) E cfm such that I A~(a) n Ba I = p for a eI . Then there is a number fl' c- cfm and a
set M'- I with I M' J = m+, such that 8(a) = f' for a c M' . Then I A,6 , n Ba I = p for
a c- M' . Since I A'6 . I p < 2 1 A ,8 ,1 p < m+, there are sets X, M satisfying IXI = p ; M- M' ;
I MI= m+ ; A,8, n BL, = X for a E M . But now we have

A n B[m] A'8 , n BLu] = X .

Case 3. cfp < cfm < p . If cfm = p, then cfp = p = cfm which is false. Hence
cfp < cfm < p . We can write A =

U
(,8c- cfm) A fl , where 1A.1 < m for f3 E cfm . There is a

representation p = (8 E cfp) p s , where ps < p for d E cfp . Then sup {p8 : 6 E cfp} = p.
s

Let a E I and 6 E cfp . Then there is a number ya(8) E cfm such that

IU (Q < 7,t (6)) A'8 n BaI > pa .

	

( 13)

For otherwise we would have

IA n BaI = IU (yEefm) U (/< y)A,6 n Ba I

E (y E cfm) I U (fl < y) Afl n BaI < (cfm) ps < p,
v

	

#
which is a contradiction . Since cfp < cfm = cfcfm, we have sup {ya(8) : SECfp} = ya , say,
where ya cgfm . Then, by (13), I U (f3 < ya)A, n Ba I > ps for BECfp, and hence

IU (/8 <%)A'8nBaI %p = IAnBaI % Iá (,8<%)A,6nBa1,

so that I U (fi < ya ) A,~ n Ba i = p for a eI. Now there is an ordinal 7'e cfm and a set

M' I with IX' J = m+, such that for a c- M' . Then I
R

(f3 < y') A ,6 n Ba I = p

for a e M' . We have I
U

(/8 < y') A ,6 I < m and hence I U (f3 < y') A,6 IP < m+ . Therefore

we can find sets X, M such that I X I = p; M ,-- M' ; IMI = m+ ;

(U(f3 < y')A~) n Ba = X for ac-M.
P

Then A n B[ml U (f3 < y') A,6 n B[mj = X, and the theorem follows .

7. Proof of Theorem 4 . By a theorem of Tarski(3), there are almost disjoint sets
B' A for v c- I such that I B' J = p for v c- I . Put, for v E I, B„ = By U D,,, where the D,
are any sets satisfying I D„ I = m for v eI and A n D,, = B' n D„ = fő for ,a, v e I, and
D~ n D„ = 0 for a + v. Then I B„ I = m and IA n By I = IA n B' J = p for v E I, and

I B~ n B y I = I B' n By I < p for a + v .

This completes the proof .
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8. Open questions . Let A be a set, well-ordered and of order type wá . One can ask
this question : how far is it possible to choose subsets Ay of A such that, for all y, 8, the
sets Ay n AS are prescribed to have either an order type less than &)a or a type wa( Y ,8) ,

where g(y, 8) is a given ordinal less than f3? In Theorem 1 we only deal with a relatively
simple special case . We have some further results but do not state them as they have
not yet reached á satisfactory state .
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