On a problem of Graham

By E. ERDŐS and E. SZEMERÉDI (Budapest)

Graham stated the following conjecture: Let p be a prime and $a_{1}, \ldots, a_{p} p$ non-zero residues $(\bmod p)$. Assume that if $\sum_{i=1}^{p} \varepsilon_{i} a_{i}, \varepsilon_{i}=0$ or $1\left(\right.$ not all $\left.\varepsilon_{i}=0\right)$ is a multiple of p then $\sum_{i=1}^{p} \varepsilon_{i}$ is uniquely determined. The conjecture states that in this case there are only two distinct residues among the a^{\prime} 's.

We are going to prove this conjecture for all sufficiently large p, in fact we will prove a sharper result. To extend our proof for the small values of p would require considerable computation, but no theoretical difficulty.

Our proof is surprisingly complicated and we are not convinced that a simpler proof is not possible, but we could not find one.

First we prove
Theorem 1. Let η_{0} be sufficiently small, $\eta<\eta_{0}, p>p_{0}(\eta): A=\left\{a_{1}, \ldots, a_{l}\right\}$, $l>\eta^{1 / 10} p$ is a set of non-zero residues mod p. Assume that for every t the number of indices i satisfying $a_{i} \equiv t(\bmod p)$ is less than $\eta \cdot p$. Then

$$
\sum_{i=1}^{1} \varepsilon_{i} a_{i} \equiv r(\bmod p) \quad \varepsilon_{i}=0 \quad \text { or } 1, \text { not all } \quad \varepsilon_{i}=0
$$

is soluable for every $r(\bmod p)$.
This theorem is perhaps of some interest in itself and casily implies Grahams conjecture in case each residue ossurs with a multiplicity $<\eta_{0} p$. To see this observe that if $n_{0}^{1 / 10}<\frac{1}{2}$ we can split our set a_{1}, \ldots, a_{p} into two disjoint sets which satisfy the requirements of Theorem 1 and thus $\sum_{i=1}^{p} \varepsilon_{i}$ cannot be unique for $\sum_{i=1}^{p} \varepsilon_{i} a_{i} \equiv 0$ $(\bmod p)$.

Now we prove Theorem 1. Put $\eta^{1 / 10}=\delta$. First we prove the following.
Now denote by $F(D)$ the set of all residues of the form $\sum_{x_{i} \in D} \varepsilon_{i} x_{i}$ and with $X+Y=\{x+y ; x \in X, y \in Y\}$.

Lemma. Let $B \subset A,|B|=\frac{|A|}{2},(|A|=l=\delta p)$. Then there is a $D \subset B$ so that $|F(D)|$ is greater than $\frac{1}{2 \delta^{2}}|D|$.

To prove the Lemma observe that we can assume that there is a $B_{1} \subset B,\left|B_{1}\right|>$ $>\frac{1}{2}|B|$ that every residue occurs in B_{1} with a multiplicity at least $\eta^{2} p^{1 / 2}$. For if not then a simple argument shows that B contains more that $3 p^{1 / 2}$ distinct residues and then by a theorem of Erdös and Heilbronn $\sum_{a_{i} \in A} \varepsilon_{i} a_{i} \equiv r(\bmod p)$ is solvable for all r [1] which contradicts our hypothesis.

Henceforth we only consider B_{1}. By the theorem of Dirichlet to every $b \in B_{1}$ there is an integer $t_{b}<\frac{1}{\delta^{2}}$ so that the residue of $t_{b} \cdot b(\bmod p)$ is an absolute value $<\delta^{2} p$. We want to show that there is a $b \in B_{1}$ for which this $t_{b} b(\bmod p)$ is an absolute value $=\frac{\delta^{3}}{8 \eta}$. The number of distinct b 's in B_{1} is greater than $\frac{\delta}{4 \eta}$ (B_{1} has at least $\frac{\delta}{4} p$ elements and at most ηp of them are in the same congruence class). Now there are at most $\frac{1}{\delta^{2}}$ choices for t_{b} thus there are at most $\frac{1}{\delta^{2}}$ distinct $b^{\prime} s$ for which $t_{b} \cdot b$ is in the same residue class, hence there are at most $\frac{1}{\delta^{2}} \cdot 2 \frac{\delta^{3}}{8 \eta}=\frac{\delta}{4 \eta}$ distinct values of b for which $t_{b} \cdot b$ is not greater than $\frac{\delta^{2}}{8 \eta}$, but since there are more than $\frac{\delta}{4 \eta}$ distinct b 's in B_{1} there is a $b \in B_{1}$ for which

$$
\begin{equation*}
\frac{\delta^{3}}{8 \eta}<\left|t_{b} \cdot b\right|<\delta^{2} p \tag{1}
\end{equation*}
$$

as stated.
Now we are ready to construct D. We can assume without loss of generality that 1 occurs in B_{1} (and is different from the b which we just constructed). Now our set D consists of $t_{b}\left[\frac{1}{\delta^{2}}\right] b^{\prime}$'s and $\left[\frac{\delta^{a}}{8 \eta}\right]$ I's (by our conditions we have at least $\eta^{2} p^{1 / 2} 1^{\prime}$'s and b^{\prime} 's). It easily follows from (1) that the number of sums $\sum \varepsilon_{i} d_{i}, d_{i} \in D$ is at least

$$
\begin{equation*}
\left[\frac{1}{\delta^{2}}\right]\left[\frac{\delta^{3}}{8 \eta}\right]>\frac{\delta}{9 \eta}>\frac{1}{2 \delta^{2}}\left(t_{b}\left[\frac{1}{\delta^{a}}\right]+\left[\frac{\delta^{3}}{8 \eta}\right]\right) \tag{2}
\end{equation*}
$$

(2) follows from $t_{b} \equiv\left[\frac{1}{\delta^{2}}\right]$ and $\delta=\eta^{1 / 10}$ which proves the Lemma.

Unit D from A and apply the Lemma repeatedly. Thus we obtain disjoint sets $D_{i}, 1 \leqq i \leqq r$ each of which satisfy the Lemma and their union has at least $\frac{|A|}{2}$ elements (since by the Lemma if

$$
\begin{equation*}
\left|A-\bigcup_{i=1}^{r} D_{i}\right|>\frac{1}{2}|A| \geqq \frac{\delta}{2} p \tag{3}
\end{equation*}
$$

we can select another set D_{r+1}).

Now denote by $F\left(D_{i}\right)$ the set of all residues of the form $\sum_{d_{j} \in D_{i}} \varepsilon_{i} d_{i}$ by our Lemma

$$
\left|F\left(D_{i}\right)\right|>\left|D_{i}\right| \frac{1}{2 \delta^{2}} .
$$

Now clearly

$$
\begin{equation*}
F\left(\bigcup_{i=1}^{r} D_{i}\right)=F\left(D_{1}\right)+F\left(D_{2}\right)+\cdots+F\left(D_{r}\right) \tag{5}
\end{equation*}
$$

By the Cauchy-Davenport theorem [2]

$$
\left|F\left(\bigcup_{i=1}^{r} D_{i}\right)\right| \geqq \min \left(p, \sum_{i=1}^{n}\left|F\left(D_{i}\right)\right|\right)=p
$$

by (3), (4) and (5), which completes the proof of Theorem 1 .
Henceforth we can assume that at least one residue occurs at least $\eta_{0} p$ times amongst the a^{\prime} 's. Without loss of generality we can assume that this residue is 1 and that 1 occurs $t \geqq \eta_{0} p$ times.

We have to distinguish several cases. First assume $t>\frac{9}{10} p$. Several subcases have to be distinguished. First assume that all a 's are $\leqq p-t, 1<a_{1}<\ldots<a_{p-t} \leqq p-t$. Let $a_{r}+\ldots+a_{k} \geqq p-t$ be the smallest k with this property, $k<p-t$ is easy to see also $a_{1}+\ldots+a_{k+1}<p$ is obvious thus

$$
a_{1}+\ldots+a_{k}+\left(p-a_{1}-a_{2}-\ldots-a_{k}\right) 1 \quad \text { and } \quad a_{1}+\ldots+a_{k+1}+\left(p-a_{1}-\ldots-a_{k+1}\right) 1
$$

give two representations of 0 with different $\sum_{i=1}^{p} \varepsilon_{i}$.
Thus at least one of the a 's are $>p-t$. Clearly one cannot have two incongruent a^{\prime} 's in $(p-t, p)$ otherwise $\sum \varepsilon_{i}$ is clearly not unique. Let $p-t<a_{p-t}<p$. If $a_{p-t} \geqq t$ it must clearly occur with multiplicity one (since otherwise $t>\frac{9}{10} p$ again gives non-uniqueness for $\sum \varepsilon_{i}$). Observe that in this case $a_{1}+\ldots+a_{p-t-1} \geqq 2(p-t-1) \geqq$ $\geqq p-t$ since $t \equiv p-2$. Let now k be the smallest integer satisfying

$$
t>a_{1}+\ldots+a_{k} \geqq p-t
$$

and now $a_{p-1}+\left(p-a_{p-t}\right) 1$ and $a_{1}+\ldots+a_{k}+\left(p-a_{1}-\ldots-a_{k}\right) 1$ give two different values for $\sum_{i=1}^{p} \varepsilon_{i}$ what is contradiction.

Thus we can assume $a_{p-t}<t$. But then $a_{1}+a_{p-t}<p$ and thus we again get using $p-a_{p-1}$ resp. $p-a_{1}-a_{p-1}$ ones two different values of $\sum_{i=1}^{p} \varepsilon_{i}$. This disposes the case $t>\frac{9}{10} p$.

Henceforth assume $\eta_{0} p<t \leqq \frac{9}{10} p$. Again we have to distinguish several cases. First assume that there are at most $\frac{t}{100}$ residues amongst the a 's greater than
$\frac{t}{100}$. Since there are $p-t a^{\prime}$'s not congruent 1 there clearly are at least $\frac{p-t}{2}+1 a$'s greater than one but less than $\frac{t}{100}$. Their sum is thus greater than $p-t$. Let $a_{1}+\ldots$ $\ldots+a_{r}$ the smallest r for which $a_{1}+\ldots+a_{r} \geqq p-t$ then also $a_{1}+\ldots+a_{r}+a_{r+1} \leqslant$ $<p-t+\frac{t}{50}<p$ thus $a_{1}+\ldots+a_{r}+\left(p-a_{1}-\ldots-a_{r}\right) \cdot 1$ and $a_{1}+\ldots+a_{r}+a_{r+1}+(p-$ $\left.-a_{1}-\ldots-a_{r}-a_{r+1}\right) 1$ again give two different values for $\sum_{i=1}^{p} \varepsilon_{i}$.

Henceforth we can assume that there are at least $\frac{t}{100} a$'s greater than $\frac{t}{100}$ and in fact we can assume that they are all less than $\frac{p-t}{2}$ (since as we proved in the previous case at most one a can be greater than $\frac{p-1}{2}$).

Let now S_{1} be a set of $\frac{t}{100} a^{\prime}$ s which are congruent one and S_{2} a disjoint set of $\frac{t}{200} a$'s which are also congruent one. Let a be one of the residues in $\left(\frac{t}{100}, \frac{p-t}{2}\right)$. Clearly

$$
\left|F\left(a \cup S_{1}\right)\right| \geqq \frac{2 t}{100}=\frac{t}{50} \quad \text { and } \quad\left|F\left(A-S_{1}-S_{2}-a\right)\right|>
$$

$$
\begin{equation*}
|A|-\left|S_{1}\right|-\left|S_{2}\right|-1 \geqq p-\frac{t}{100}-\frac{t}{200}-1 . \tag{6}
\end{equation*}
$$

Thus by Cauchy-Davenport

$$
\left|F\left(a \cup S_{1} \cup A-S_{1}-S_{2}-a\right)\right| \geqq \min \left\{p_{1}\left|F\left(a \cup S_{1}\right)\right|+\mid F\left(A-S_{1}-S_{2}-a\right)\right\}=p
$$

Hence

$$
\begin{equation*}
0 \equiv \alpha_{1} \cdot 1+\sum_{i} \alpha_{\alpha_{i}} a_{i}, \quad \alpha_{1} \leq t-\frac{t}{100} . \tag{7}
\end{equation*}
$$

Now we again have to distinguish two cases. Assume first

$$
\sum_{i} \alpha_{a_{i}}>\eta_{0}^{2} p \quad\left(t \geqq \eta_{0} p\right) .
$$

As stated previously we can assume by the theorem of Erdors and Heilbronn that the number of distinct a^{\prime} 's is less than $3 \sqrt{p}$ thus we can assume $\alpha_{a_{1}}=\frac{\eta_{0}^{2}}{3} p^{1 / 2}$. Thus by the theorem of Dirichlet there is an $s \leqq \frac{\alpha_{a_{1}}}{2}$ for which

$$
\left|s a_{1}\right|<p^{1 / 2} \frac{3}{\eta_{0}^{2}}<\frac{t}{200}
$$

If $s a_{1}>p-\frac{t}{200}$ then $s a_{1}+\left(p-s a_{1}\right) 1$ and $2 s a_{1}-\left(p-2 s a_{1}\right) 1$ give two representations of D with different $\sum \varepsilon_{i}$. Thus we can assume $s a_{1}<\frac{t}{200}$ but then $s a_{1}$ can be replaced by $s a_{1}$ ones from S_{2} and since $s a_{1} \neq s$ this again gives two distinct value of $\sum_{i} \varepsilon_{i}$.

Thus we can assume $\sum \alpha_{\alpha_{i}}<\eta_{0}^{2} p$. Thus we have at least $p-t-\eta_{0}^{2} p>\frac{p-t}{2} a^{\prime}$'s distinct from 1 which have not been used in (7). By Erdős-Heilbronn (as used before) at least one of these a 's have a high multiplicity and thus there is an $s a<\frac{t}{100}$. Thus $\alpha_{1}<\frac{t}{100}$ since otherwise we could replace sa of the ones by $s a$ and thus we again get two distinct values of $\sum \varepsilon_{i}$.

Now we omit from A all the a^{\prime} s occuring in (6) and we obtain a new set A^{\prime}. Using (6) for A^{\prime} we again get representation of $0\left(7^{\prime}\right)$ (we remark that we can assume that α_{1} in (7) and α_{1}^{\prime} in (7) are both $\cong t-\frac{t}{100}$ thus we do not run out of ones). Adding the two representations of D we obtain our contradiciton.

References

[1] P. Erdös and H. Herlbronn, On the addition of residue classes mod p, Aeta Arithmetica 9 (1964), $149-159$.
[2] H. Halberstam and K. F. Roth, Sequences, Oxford, 1969.

