MATHEMATICAL NOTES

Edited by Richard A. Brualdi

Material for this Department should be sent to Richard A. Brualdi, Department of Mathematics, University of Wisconsin, Madison, WI 53706.

ON A PROBLEM OF HIRSCHHORN

Paul Erdōs and Miklos Simonovits

Introduction. Hirschhorn gave the following problem [1]: Let $q_{1}>1$ be given and

$$
\begin{equation*}
q_{n+1}=q_{n}+\prod_{i \leq n}\left(1-\frac{1}{q_{i}}\right)^{-1} . \tag{1}
\end{equation*}
$$

is it true that $q_{n}=(1+o(1)) n \log n$?
The background of this problem is that, if p_{n} denotes the nth prime, then the well-known sieve method gives that the number of integers between a and b which are not divisible by any of p_{1}, \cdots, p_{n}, is approximately

$$
(b-a) \prod_{i=n}\left(1-\frac{1}{p_{i}}\right) .
$$

The interval (p_{n}, p_{n+1}], contains exactly one prime, i.e., exactly one integer not divisible by any $p_{i}(i \leqq n)$. This suggests that

$$
p_{n-1}-p_{n}=\prod_{i \leq n}\left(1-\frac{1}{p_{i}}\right)^{-1} .
$$

We know in this special case by the prime number theorem that $q_{n}=(1+o(1)) n \log n$. This shows why we are interested in this particular sequence. (Of course, the argument is only a heuristic one. the sieve method cannot be applied to short intervals and from our point of view ($p_{n} . p_{n-1}$) is too

$$
\left(q_{n+1}-q_{n}\right) / \log n \rightarrow 1
$$

and, consequently,
(3)

$$
q_{n}=(1+o(1)) n \log n
$$

so that the conjecture of Hirschhorn is proved.
Remark. We can prove (2) and (3) in two different ways, and the way we shall prove them is the shorter, more formal one. But just because of this we first give a short heuristic argument why (1) implies (2).

Let

$$
\begin{equation*}
r_{n}=\prod_{i \leq n}\left(1-\frac{1}{q_{i}}\right)^{-1}, \quad r_{0}=1 \tag{4}
\end{equation*}
$$

Then

$$
\begin{equation*}
q_{n+1}=q_{n}+r_{n} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{n+1}=r_{n}\left(1-\frac{1}{q_{n+1}}\right)^{-1}=r_{n}+\frac{r_{n}}{q_{n+1}}+O\left(\frac{r_{n}}{q_{n+1}^{2}}\right) \tag{6}
\end{equation*}
$$

Now, r_{n} and q_{n} form a "self-regulating" system in the following sense: if q_{n} were essentially larger than $n \log n$ for $n \in(a, b)$ and the interval (a, b) were long enough, then, by (4) r_{n} should become much smaller than $\log n$ and, by (5), after a while q_{n} would become smaller than $n \log n$. Similarly, if q_{n} were essentially smaller than $n \log n$ for a long period, then r_{n} would become larger than $\log n$ and, consequently, q_{n} also would become larger than $n \log n$. Of course, this argument does not exclude the possibility that r_{n} and q_{n} are oscillating about $\log n$ and $n \log n$ respectively, but, because of (6) the "inertia" of r_{n} is too great, more exactly, r_{n} changes only very slowly and does not "feel" minor changes in q_{n}. Thus the system $\left\{r_{n}, q_{n}\right\}$ is unable to oscillate.

The exact proof. We introduce two new sequences: $s_{n}=n r_{n}$ and $d_{n}=s_{n}-q_{n}$. Since

$$
\frac{1}{q_{n}}-\frac{1}{q_{n+1}}=\frac{r_{n}}{q_{n} q_{n+1}}
$$

and q_{n} is monotone increasing, (6) can be replaced by the more convenient

$$
\begin{equation*}
r_{n+1}=r_{n}+\frac{r_{n}}{q_{n}}+O\left(\frac{r_{n}}{q_{n}^{2}}\right)=r_{n}+\frac{s_{n}-q_{n}}{n q_{n}}+\frac{1}{n}+O\left(\frac{r_{n}}{q_{n}^{2}}\right) \tag{7}
\end{equation*}
$$

Further by (7)

$$
\begin{align*}
d_{n+1}-d_{n} & =\left(s_{n+1}-s_{n}\right)-\left(q_{n+1}-q_{n}\right)=n\left(r_{n+1}-r_{n}\right)+r_{n+1}-r_{n} \\
& =(n+1)\left(r_{n+1}-r_{n}\right)=\left(1+\frac{1}{n}\right) \frac{s_{n}}{q_{n}}+O\left(\frac{s_{n}}{q_{n}^{2}}\right) \tag{8}
\end{align*}
$$

(A) First we need that q_{n} / n tends to infinity. A trivial induction gives that $q_{n}>n$ and it is also trivial that r_{n} is monotone increasing. From the left side of (7) we get

$$
\begin{equation*}
r_{n+1}-r_{n}=(1+o(1)) \frac{r_{n}}{q_{n}}=(1+o(1)) \frac{s_{n}}{n q_{n}} \tag{9}
\end{equation*}
$$

$$
q_{n}=q_{1}+\sum_{i=1}^{-1} r_{i}<q_{1}+(n-1) r_{n}<s_{n}+q_{1}
$$

Thus

$$
r_{n-1}-r_{n} \geqq(1+o(1)) \frac{1}{n}
$$

This implies that $r_{n} \geqq \log n-o(\log n)$ and, consequently,

$$
\begin{equation*}
q_{n} \geqq n \log n-o(n \log n) . \tag{10}
\end{equation*}
$$

(B) By (10) $s_{n} / q_{n}<2 s_{n} / n \log n=o\left(r_{n}\right)$, i.e., $s_{n} / q_{n}=o\left(q_{n+1}-q_{n}\right)$, and it follows from (8) that

$$
\begin{equation*}
s_{n+1}-s_{n}=(1+o(1))\left(q_{n+1}-q_{n}\right) . \tag{11}
\end{equation*}
$$

Since s_{n} and q_{n} tend to infinity, (11) yields

$$
\begin{equation*}
s_{n} \mid q_{n} \rightarrow 1 . \tag{12}
\end{equation*}
$$

Now, applying (12) to (9) we obtain

$$
\begin{equation*}
r_{n+1}-r_{n}=(1+o(1)) / n \tag{13}
\end{equation*}
$$

Thus

$$
\begin{equation*}
r_{n}=(1+o(1)) \log n \quad \text { and } q_{n}=(1+o(1)) n \log n \tag{14}
\end{equation*}
$$

which proves (2) and (3).
(C) (14) can be improved in the following way: By (12) and (8)

$$
\begin{equation*}
d_{n+1}-d_{n}=1+o(1) \tag{15}
\end{equation*}
$$

and hence

$$
\begin{equation*}
d_{n}=n+o(n) \tag{16}
\end{equation*}
$$

But (16) and (7) give

$$
r_{n+1}-r_{n}=\frac{1}{n}+(1+o(1)) \frac{1}{n \log n}+O\left(\frac{1}{n^{2}}\right)
$$

Thus

$$
\begin{equation*}
r_{n}=\log n+(1+o(1)) \log \log n \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{n}=n \log n+(1+o(1)) n \log \log n . \tag{18}
\end{equation*}
$$

Here we used $q_{n}=\sum_{i=1}^{n-1} r_{i}+q_{1}$ and

$$
\begin{gather*}
\sum_{i=1}^{n} \log i=n \log n-n+O(\log n) \tag{19}\\
\sum_{i=2}^{n} \log \log i=n \log \log n+O(n / \log n) . \tag{20}
\end{gather*}
$$

(D) Iterating the method of (C) we can improve (17) and (18) in the following way: From (8)

$$
d_{n+1}-d_{n}=(1+1 / n)\left(1+O\left(\frac{\log \log n}{\log n}\right)\right)=1+O\left(\frac{\log \log n}{\log n}\right)
$$

