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Abstract

Let I < a,< . . . < ak < x ; b, < - • • < b, < x . Assume that the number of solutions of a, b, = m
is less than c. The authors prove that then

(1)

	

ki< ló x- (log log x)"`'
g

They also give a simple proof of Szemerédi's theorem : If the products a ;b; are all distinct then

(2)

	

ki < c2x

	

(i .e . f(1)=0) .log x

They conjecture that (2) holds for c_ = 1 + E if x > x o(e ) . Several other unsolved problems are stated .

Let a, < . . . < ak < x be a sequence of integers for which the products a ;a,
are all distinct . Erdős proved that

'77'(x ) + c2x
314/(log x ) 312 < max k < -;r (x) + c,x "'/(log x)"' .

Perhaps there is an absolute constant c so that

	 x3"(1)

	

max k = ;r (x ) + cx 3 "/ (1og x )3'2
+ o, ((1OX)3/2 )g

but we can not prove (1) . (c, c,, • denote absolute constants not necessarily the
same.)

Erdős (1964a) also proved that if a, < . . . < ak ~ x is such that the number
of solutions of a;aj = t is less than 2' + 1 then

(2)

	

max k = (1 + Q(1)) n(log logn)` - '
(1 - 1)! log n

In fact (2) holds if the number of solutions is < 2' - ' + 1 .
Let a, < • • •, denote by g(n) the number of solutions of n = a;a1. (2) easily
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implies that if g (n) > 0 for all n then lim sup, -x g (n) = -.It is curious to remark
that the additive analogoues of this result present great difficulties . An old
problem of Erdös and Turán states : Denote by f (n) the number of solutions of
n = a, + a, Then if f (n ) > 0 then üm sup,--f(n) = x. The proof or disproof of
this conjecture seems to present surprising difficulties and Erdös offered 300
dollars for a proof or disproof of this conjecture .

Raikov proved that if a, < • - • is such that g(n) > 0 for all n then

limsupA(x)
(log	 x)'` >0

-

	

x

where A (x) _ 1, - r I . P. Erdös asked: Is there a sequence a, < . . . for which
g(n)>O and A (x) < cx/log x for infinitely many x . Wirsing (197) answered this
question affirmatively, in fact he showed that g(n)>O for all n > n„ implies
A(x)> x/logx (I + E) for some E > 0 and that this result is best possible : that is,
for every F > 0 there is a sequence a, < • • • satisfying g (n ) > 0 for all n > n„ and
A(x) < x /log x (I + e ) for infinitely many x .

Let I r a, < . . . < a k ~ x, I - b, < . . . < b, ~- x. Assume that there are
at least cx distinct integers not exceeding x of the form a;b ; . Then

It might be worth while to investigate that if g(n ) > 0 and A (x) < cx/log .v
holds for infinitely many x is it then true that A (x) > cx for infinitely many x, or
if this would not be true, how fast must A (x ) increase for a suitable infinite
sequence x; - x .

One more question in this direction :. Let a, < - < ak < x be a sequence of
integers for which the products II ;`=, a e i = 0 or I are all distinct. Erdös (1966)
proved k < T(x)+cx'''/logx and probably

max k -

	

x "`- ..('x) + 7,- (x") 0-
log x

In fact, perhaps the following more precise statement can be made : Let
1 s rt, < . . . < uk be a sequence of integers for which all the sums `k-, F,u„ f, = 0
or 1 are all distinct . Put min u k = a, Erdös-and Pósa observed that

(3) max k - rr (x '")

and there could be equality in (3) . A very old problem of Erdös asks : Is it true
that a k > `d k

	

for every k where c is an absolute constant?
Let I <a,<-- - < a k -_ix, 1 < b,< . . . < b, < x be two sequences on inte-
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gers. Assume that all the products a;b;, 1 - i - k ; 1 j - 1 are distinct . Erdős
conjectured and Szemerédi proved that then [Szemerédi (to appear)]

(4)

	

kl < ex
z

log x'

First of all wee give a simpler proof of (4), which nevertheless uses many of
the ideas of the original proof. We conjecture that in fact

(5)

	

kl = (1 + Q(1))
xz

log x'

It is easy to see that (5) if true is best possible. To see this, let the a's be the
primes in (x 1 t, x) and the b's are the integers not exceeding x all whose prime
factors are < x/t. Clearly the products a,b; are all distinct and the prime number
theorem implies kl > (1 + o-)) x zhog x if t = tx -~ x but t/x E -> 0 for every e >0.
In fact by choosing t = log x (1 + a-(1)) we maximize k1 and we then get
sequences a, < . . . <a, ; b,< . . . < b, with the products a;b; all distinct and

(6)

	

kl >
x2

	

x zlog log x+

	

X21	 og log x
log x

	

(log X),
0- ( (log x )~ ~'

It would be of interest to see if (b) can be improved . Conceivably it is best
possible, but we have no evidence for it .

In this paper we prove the following theorem . To every c there is an f (c) so
that if l-a,< . . .<ak-xb,< . . .<b,-x are such thatg(n)-cforalln
then

(7)

	

kl < -lógx (log log x y ( ' ) .

(7) is best possible apart from the value of f (c ) . The proof is not entirely
trivial and we only outline it . Let r > 1 be given . The sequence B consists of all
the squarefree integers b satisfying x12 < b < x, and v (b) < r (v (b) is the number
of prime factors of b) . The sequence A consists of all the integers a < x which
do not have two divisors d, < d z < 2d,, v(d,) r, v (dz) C r .

It is not difficult to show that

A (x) > c, x, B (x) > c z x (log log x )' /log x

and the number of solutions of a;b; = n is less than c, where c, depends only on r.
We do not discuss the details .

We further outline the proof of the following two theorems :
1 . Assume A (x) > c,x, B (x) > c zx . Then

(S) max g (n ) > (log x )`3 .
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Again apart from the value of c, this is best possible . (To see this, let the a's and

b's have - log log n prime factors) . Finally assume A U B is the set of all

integers and A (x) > cx, B (x) > cx . Here

(9) maxg(n)> (log x)

and apart from the value of c, this is best possible . To see this, let the a's have
log log n prime factors and the b's have > log log n prime factors . Perhaps (9)

holds for every c, < 1 - E . The above example shows that it can not hold for
C,>I+E .

Now we are ready to prove (4) . In other words we prove the following .

THEOREM 1 . Let l _ a, < - • < ak - x ; 1 - b, < . . . < b, f x be two sequ-
ences of integers . Assume that the products a;b, are all distinct. Then for some

absolute constant c

k1 <
~xc

€ r .
Denote by A respectively B the sequences {a,,

	

a,} and {b,,

	

b,},
A (y) will denote the number of terms of A not exceeding y. A prime p is
associated with A if there are at least k/100p log p multiplies of p in A, similarly
p is associated with B if there are at least l/(1 00p log p) multiples of p in B . Let
p, < p, < . . . be the primes which are not associated with A -omit all the a's
which are multiples of any of the p's . Thus we obtain the new sequence A,
having k, terms . Repeat the same process and also apply it to B with the primes
not associated with B . Since s P (1/(100 p log p)) < ;, eventually we obtain a
sequence U={u,< • • • < u,,), UCA,A,>k/2 and V={v ;< . • • < vj . VCB •
A, > 1/2 with the property that if p u ; then p is associated with U and if p j v,
then p is associated with V. To prove our theorem it clearly suffices to show

(10)

	

A'A < Cx'/logx .

Let now t (2 < x"') be the greatest integer for which there are more than

2` 2 p's in (2`, 2"') which are associated with both U and V. Denote these primes
by P" . . ., p . .

(11)

		

< p,< . . .<p <2`+'

	

s>2".

Consider the set of all pairs of integers

(12)

	

U
'

V
1~1~s

{P , p }

where u, _= 0 (mod p,), v,, = 0 (mod p, ) . Since p; is associated with both U and V
there are by (11) at least (A, = U(x), A2 = V(x))
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	 CA ,A-

	

CA,A2

(13)

	

10°(t + )`-2" > t 223r/2

pairs (12) .
Now observe that the pairs (12) are unique . If

a = ~ _

	

and a = vj; = vj~-u, -
P1,

	

P»

	

P11

	

Pn

then 1,;,v;_ = u;_v;, = a,dp„ piz which contradicts our assumptions .
Now we estimate the number of pairs (12) from above . Denote

2"' < P, < . . . < x the primes associated with both U and V. By the maximality
of t there are at most 2" 2 primes P in the interval (2', 2"') for every l > t. Thus
trivially

(14)

	

E 1 < 8 .

Denote by q, < . . . the primes in (2"', x) not associated with U and by
r, < . . . the primes in (2", x) not associated with V. Clearly the integers (12)
satisfy

u

	

x v •

	

x

	

u

	

v •(15)

	

-' <
x

, -' <
x

and -' 0 (mod q), L =- 0 (mod r)
P

	

P

	

P=

	

R

for all the primes q and r defined above. By Brun's method we immediately
obtain from (15) that the number of integers of the form u;/p, is less than

(16)

	

C, 2` 7r (1 - q 1

and the number of integers of the form v; /p; is less than

(17)

	

C, 2` 7r (1 - ; } .

Thus, from (16) and (17) we obtain that the number of pairs (12) is less than

(18)

	

c,c z Zzt , (1 - 1} ~ r (1-
q

	

r) .
From (14) and the theorem of Mertens we obtain

(19)

	

~q+~r =~p-~P>loglogx-logs-C

where in 1, the summation is extended over all the primes in (2`'', x). From (18)
and (19) we obtain that the number of pairs (12) is less than

(20) x 2 t
c32" log x '

by
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From (13), (20) and the uniqueness of the pairs (12) we thus obtain

CA, A2

	

C,x 2 t
í 223r/2 < 2 2, log x

or

A,A Z < car, log x3

which proves (10) and completes the proof of Theorem 1 .
Observe that if no t exists for which there are many primes in (2',2"')

associated with both U and V the proof gives

U(x)V(x) < cx 2/log x

if there is a large t then in fact U(x) V(x) = 0-(x 2/log x) .
Now let us try to obtain A (x)B(x) < (1 + 0-(1))x 2/log x . One can formulate

this as an extremal problem in number theory . Assume 1 -- a, < . . . < ak < x ;
1 _- b, < . . . < b, < x are such that the products a ib; are all distinct . What is the
maximum of kl and which sequences realize this maximum . Perhaps the
sequence defined in the introduction comes close but we have no evidence . One
could try first of all to prove that the extremal sequence has the following
structure : Split the primes into two classes q i and r;. The A's are the integers
composed of the q's and the B's are the integers composed of the r's . We have
not been able to show this-the method which we use in proving Theorem 1
gives : We can assume that the extremal sequence has the following structure :
The primes are split into three classes {q,}, {r;} {s,} S 1/s, < C and all the q's are
associated with A, all the is with B and the s's can be associated with both .

If we would succeed in eliminating the primes s then to prove A (x)B(x) <
(I + 0-(1)) x 2/log x we would need the following theorem on sieves which we can
not prove but which perhaps can be attacked by the experts: Let q, < • • • ;
r, < . . . be two disjoint sequences of primes a, < a 2 < • • • ; b, < b 2 < . . . are the
integers composed of the q's and is respectively . Is it true that

(21)

	

A(x)B(x)-(1+0-(1))
x 2

log x

As shown in the introduction, equality is possible in (21), but perhaps the
only way to achieve equality in (21) is to have min (7- 1/qi , 11/ri ) tend to 0 as
X

	

0C .

THEOREM 2 . Let A (x) > c, x, B (x) > c 2 x. Then for some n < x, g (n) >
log x)° .

Theorem 2 is an immediate consequence of an old theorem of Erdös (1960) .
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The number of products of the form a,b; is > c ;x z but there are fewer than
x'`/(log x)° distinct integers of the form kl, k < x, l < x . This implies Theorem 2 .

It would be interesting to determine the best possible value of a, a < 1/log2
is easy to prove, and at present it is not clear to us how much this can be
improved .

THEOREM 3 . Let A (x) > cx, B (x) > cx and assume that every m < x is either
in A or B . Then for some n < x and x > x,,(--),

(22 )

	

g(n)> (log x)'1-'1"9`9' .

Denote by I the interval ( ,r7 is sufficiently small)
(c(ios =),]

C
(Jogx )1a)

and p, < . . . < p, be the primes in I. Put

k = [~ ( log x )"'

	

l = I 1 = ~Z - T1 log log x + 0(1)P,

Denote by D the sequence d, < d, < . . . of integers not exceeding x which
have at least k distinct prime factors in I. It is easy to see that

(23)

	

D (x) > 21og x
I'-'/(k -1),

The proof of (23) follows the method of Hardy and Ramanujan (1920) and
will be suppressed .

Without loss of generality we can assume that at least D(x) of the d's are
in A (since A v B contains all the integers not exceeding x) .

It follows from Turán's method (1934) that all but o-(x) integers not
exceeding x have 1 + o-(l) distinct prime factors in L Thus by,B(x) > cx we can
assume that at least cx/2 of the b's have at least t distinct prime factors in I
where t = [(1 - s)1] . Consider now all the integers

(24)

	

a;b„ a ; E D n A, V(b,)- t.

By (24) the number of these products is greater than

(25)

	

(log x)z l` - '/( k -1)1 .

It is not difficult to see that almost all of these products are squarefree and these
then have at least k .+ l prime factors in L It is easy to see that the number of
integers not exceeding x which have at least k + 1 distinct prime factors in I is
less than



01

(26)

Representations of integers

k +1-'X

(±
1
)

	

/(k,+ l - 1)! = xl k + 1-1/(k + l - 1)! .
pi

From (25) and (26) we obtain that there is an n for which the number of
solutions of n = a;b; is at least

k+1-1

	

I

	

1
(logx)2 l k- '1(k -1)!

((k + 1- 1)!) > 1, > (log x)"- E

which proves (21) .
Perhaps (21) holds with 1 - E instead of - ~. To make the proof

would have to be the interval

(c(1ogz),, c('°gz''-°)

	

k = ((log x)'-1 ]

But then we could not prove (23), but we hope to return to this question .
Finally we prove

THEOREM 4 . To every c there is an f(c) so that if 1 7 a, < . . . < ak --<_x ;
1 b, < . . . < b, - x are such that g(n) < c then (7) holds .

For simplicity we only prove this for c = 4 . Assume that

(27)

	

kl > log x
(log log X) ,

where a is sufficiently large . We are going to prove that (27) implies that there
are integers z, y and four primes p (,", p ;', p, , p;" so that for all choices of E; = 0
or 1, i = 1,2,

(28)
2

	

2

y 11 P'` E A, z • 11 p''i ) E B .

42 5

work, I

(28) clearly implies that g(zyp ;°' p," pz°j P'21')-- 4, hence to prove Theorem 4

it suffices to prove (28) . In view of the fact that we do not try to get best possible
values of a, the proof of this will in some respect be simpler than the proof of
Theorem 1 .

We say that the prime p belongs to A if there are at least k 1(p (log log p)')
multiples of it in A . This is a slight modification of the definition in Theorem 1
(which as the attentive reader will later see is really needed here) but since
E 1/(p (log log p)2) converges, this makes no difference .

Let t, be the smallest integer satisfying (log x )c < T< x 12 (where c is
sufficiently large) for which there are more than 2`~/(t,(log t 1 )2) primes which
belong to both A and B . If no such interval exists, then Brun's sieve gives as in
the proof of Theorem 1 that kl < cx'loglogx/logx which implies that in this
case our theorem holds .
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2
p1 , p2, . . ., P-

	

s > t,(log t ,)2

be the primes in (2`x .2' , `) which belong to both A and B . Denote by A,,
respectively B, the set of integers

{~}, b' }, a; = 0(mod p, ), b,-= 0(i -nod p,) .
p ,

	

p

Let now t Y ' be the smallest integer satisfying (log x)` < TP ) < (x /p;)"' for
which there are more than T1''/(t(,-"(log ti')'-) primes p," in (22` 1,22(") which
belong to both A,,, and B r, . if such a t~" does not exist then every prime q in
((log X),, (x/p,)"2 ) belongs to at most one of the sequences A n , B p; (we neglected
a set of primes the sum of whose reciprocals goes to 0 as x - x and which may
belong to both A and B) . But then as in the proof of Theorem 1 we obtain by
Brun's method
	 log log x

(3Ó)

	

' A, Bp, . <
cx 2

p ; log x

Thus from (30) and the definition of A P ,, B r,, we have

kl =' A ~ ~ B 1 :5 1A p , 1 ~ B,,, I p ( log log p; )° <
cx `(log log

x)5

ck

	

ck

(log x)3

loxg

which again proves Theorem 4 .
The number of possible for t`" is at most log x, thus there are at least

t,(log t,)' log x

primes p, (in

	

2'~`)) which have the same 12 .
Let p;, 1 : i < s be the primes (28) and q,, •

	

q, the set of primes in
(2 ', = ') To every p, there are at least 2',/(tz (1og t 2 ) z ) p,"'s (which are q's) so that
there are at least

p, p ;"(log log p,)`(log log p ")2

	

2` ,"2(log t,)'(log t 2 )2

> 2' "'(log t,)'(log t ,)l log x

	

(since k > log x

integers u < x /p,p," so that up,p," E A . Therefore by a simple computation there
is an integer U to which there are at least

[91
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products pip"' for which Up,p," E A . Henceforth we only consider these pairs
pp," which belong to U . To each of these pairs there are at least

cx
log x 2` ,- `2(log t)-(log t,)-

integers c < x/p,p" so that vp;p"' E B . Thus again by a simple averaging process
there is a V so that there are at least

(log x )'

pairs p - q for which Upq E A, Vpq E B .
Now we use following simple lemma on graphs . Let G be a bipartite graph

of L, white and L black vertices and more than

L ; 'L,

edges (L, < L,). Then the graph contains a rectangle. Since 2`~ > (log x)"',
2`>(logx)'"°, the lemma applies and the rectangle gives the information which
we require .

For c = 2' the proof is similar . We have to apply our procedure k times and
have to use the theorem on k-tuples in (1964b) .
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