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ON PRODUCTS OF FACTORIALS

BY
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Abstract. An old conjecture stated that (except for trivial cases)
the product of consecutive integers is never an exact power . This
conjecture was finally proved recently by Erdös and Selfridge . In the
same spirit one can ask when the product of two or more disjoint
blocks of consecutive integers can be a square or higher power . For
example, if A,, • . ., A„ are disjoint intervals each consisting of at
least 3 integers then perhaps the product Ilk=1 1 ,, ea ak is a nonzero
square only in a finite number of cases .

	

k k
In this paper we study products of factorials il k ak! . In par-

ticular, we investigate the equation
t

IT ak! = y5 ,
k=1

especially in the case that n, the value of the largest ak is given, and
the minimum number of factorials is required . It turns out that each
increase in the number t of factorials allowed rather dramatically
increases the set of n for which (1) is solvable until the value t 6
is reached, after which no increase in the set of n occurs .

Introduction. An old conjecture stated that (except for trivial
cases) the product of consecutive integers is never a power . This
conjecture was finally proved recently by Erdös and Selfridge [3]. In
the same spirit one can ask when the product of two or more dis-
joint blocks of consecutive integers can be a square or higher power .
For example, if A i , A„ are disjoint intervals each consisting of
at least 3 integers then perhaps the product ITk_, 11a keAk ak is a
square only in a finite number of cases .

In this paper we study products of factorials II ak ! . We prove
that the number of distinct integers of the form IL,< . . .<a,S. ak! is

exp {(1 + 0(1)) -n log log n }log n
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We also investigate the equation
f

(1)

	

IT ak! _ Y ,k-1

especially in the case that n, the value of the largest ak, is given
and the minimum number of factorials is required . It turns out

that each increase in the number t of factorials allowed rather
dramatically increases the set of n for which (1) is solvable until
the value t = 6 is reached after which no increase in the set of n

occurs .
Finally, we mention several questions which we did not look at

or were not able to resolve .

We make a few remarks concerning notation . All integers we
consider will be positive. In general pi will denote the ith prime,

p, q, qi, q2, . • • will denote primes and S, e and c (possibly with
subscripts) will denote suitably chosen positive constants . As usual
7r (x) will denote the number of primes not exceeding x, I XI will
denote the cardinality of the set X and [1, n] will denote the set

f1, 2, • .•,

nJ

.

The number of products . For a subset A C [1, n], let m(A)
denote the product

m(A) _ II a!
vlA

The following result shows that the set of possible values of m(A)
is rather sparse .

THEOREM 1 .

(2) m(n) _= I (m(A) : A C [1, n] # I = exp ~(1 + 0(1)) n log log nl .
log

	

Jn

Proof. (i) Upper bound. Write each product MeA a! in the

f orm

~a! =B11Ak=2a13"2 . . .pir
aeA

	

k

where t = z(n), Ak consists of all prime factors of the product
belonging to (n/2k{I, n/2k] for 0 < k < (2 log log n) /log 2 and all the
remaining primes (i, e ., those less than n/log' n) divide B. Clearly
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n2>a1>a2> . . .>at .

Thus the number of choices for B is at most

(n2)nJ1og2 n = exp (2n/log n) .

The number of primes in the interval (n/2k+1 , n/2k] is

(1 + 0(1))(n/2k+1 log n) (since 2k < loge n) . Since the a; for these
primes are all less than 2k+ 1 n, the number of choices for Ak is at
most

Therefore the total number of choices for 1Tk Ak is at most

(C log n) (1+o(1)) Fk nt(2k+Ilogn) 11 (2 k) n! (2 k log,,)
kk

	 exp{(1+o(1)) n log log n1
log

	

Jn

This estimate, combined with that for B, proves the upper bound
in (2) .

(3)

We first show
r

(4)

	

m(n) > II dk,
k=2

where r =7r (n) . For A C [-1, n], let

U(A) _ (%(A), us (A), . . .~ ur(A))

be defined by uk(A) = I €a c- A : yk-, < a < Pk1 I . The definition of
dk implies that uk(A) < dk . On the other hand, for any sequence
w = (wk, • • •, wr) with w k < dk, there exists a set A w C [I, n] with
uk(A .) = w k for all k. Namely, we just choose

We claim

2k+1 n + (1+0(1)) n
2k+1logn

	

(C • 22klog n)(i+o(1))n1(2k+I ~ogn)
2k+1

	

1
n

(ü) Lower bound. Define dk by

dk = yk - Yk-1 .

A.= U 2V : Pk-1 < V < r5k-i + wk~
k

(5)

	

m(A,,,) =m (A,,.)

	

w = w' .
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If m = m(A.) = m(A u,.) then certainly w,. = w,, since this is just
the power of p._1 which occurs in m. Suppose that m(A,o) =m(A.,)=
implies wi = w{ for i > k . Then it is clear that the only way for
the powers of p k_, in m(Aw) and m(A.,) to be equal is to have
W* = wk. Thus, by 'induction, wk = tvk for all k, and (5) follows .
Since there are 11ka2dk choices for w, then (4) is proved .

Finally, to establish the lower bound in (2) it will be (more
than) enough to show

(6)

	

JT dk = exp (1 + 0(1)) nbog logn
D k<n

	

log n
By the prime number theorem there are (1 + 0(1)) (-n/log n) factors
in the product in (6) . Since Zpks% dk = p., the product is maximized
when all the factors are equal. Thus

JTyy

	

~ ( n)
dk <

	

_ (log n) (1+0(f))nlloen
r k :S n

	

7r(n)

= exp (1 + o (1)) nlog log n
log n

To prove the inequality in the other direction, we argue as follows .
Write

1Idk=17,172 ,
D k<n

where in 17, we take all the dk < ( log n)/log log n and in H2 we
take all the dk > (log n)/Iog log n . It is well known (and follows
immediately from Brun's method) that the number of dk<n satisfy-
ing dk = t is less than

1og2 n H (1 + 1/p) < logn log log t .

Thus the number of k for which pk < n and dk < (log n)/log log n
is less than

(7)

Since H1
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c2, n 109 109 109 n
log n log log n

has o(n/log n) factors,

~ dk > nz > (	 logn ~ U+0{1))nllog n

D ktn

	

log log n

> exp l(1 + 0(1)) nloglogn l
log

	

jn
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This proves (6) and the proof of (2) is complete . I
With a little more complicated argument, we could show that

for all sufficiently large n,

(8)

	

dk < exp (nlog log nl
p k<n

	

log"

Perhaps it is true that (8) holds for all n. We can prove that
m (n) /ITk`i' dk --> ,m but we do not give the proof, since we certainly
cannot at present give an asymptotic formula for m(n) .

One could ask, f or a fixed m, which choice of B with B = n
minimizes I WA) : A C B} 1 . Presumably it is B = [1, n]. Also,
if b(n) denotes

max f I B I - : B9[1, n] and all m(A)
are distinct for all A C Bj ,

then is it true that b(n)/r(n) - co?

Products which are squares . For k > 1 define Fk by

Fk -- f n : for some A C [1, n] with max,, EA f al = n
and I AI < k, m(A) = y2 for some integer y

and define Dk by

Dk = Fk - Fk-1,

where Fo is defined to be empty . The main results of this paper
deal with various properties of the F k and Dk .

To begin with it is clear that for any prime p

(9)

	

p O- Dk for any k .

On- the°-oth& hand, if n is composite, then n certainly belongs
to Uk Dk . In fact :

(i) If n = a2 then n! (n - 1) ! = y2 and ne F2 ;
(ü) If n = a2 b with a>1, b>1 then n! (n-1) ! b! (b-1) ! = y2

and n E F4 ;

(iii) If

	

n = ab

	

and

	

a>1,

	

b>1,

	

a b,

	

then
n! (n-1)!a! (a-1)!b! (b-1)! =y2 and ncF6 . ( If ja-bI =1
then in fact _'n a F4.)

Thus we have
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Fact 1 . Dk = 95 for k > 6 .
Of course, it is immediate that A = €1 } . A result of Erd6s-

Selfridge [3] shows that no nontrivial product (i . e., having more
than one term) of consecutive integers can be a square . This
implies

Fact 2 . D2 = € n2 : n > 11 .
Consequently, all integers excluding the primes and squares are

partitioned into the four sets Ds, D4, D5 and Ds . We next examine
each of these sets a little more carefully.

Three factors . It is easy to see that Ds is somewhat larger
than D2 . For observe that if 4(x) denotes the square-free part of
x, then for any a > 1 the integer n = b2 4 (a! ) E Ds f or b sufficiently
large, since in this case

(10)

	

n! (n - i)W a! = y 2 .

Another class of elements of Ds is generated as follows. Write
a! = uv with (u, v) = 1 . Let x and y be any solution of the Pell
equation

ux2 -uy2 =1,

and take ai = ux 2, a2 = vy2 - 1 = ai - 2. Thus

(11)

	

4(a,! a2! a!) = q(al(al -1) uv)
= 4(ux2 . vy2 uv) = 1

and so, when u is not a square, al C-D3 . Perhaps there are Just
finitely many elements of Ds which are not in either of these two
classes. On the other hand, Ds is still relatively sparse as the
following result shows, where S(n) denotes the number of elements
of a set S which do not exceed n.

THEOREM 2. D3(n) D(n) .

Proof . Suppose a l E Ds. Then there exist a2 and as with
a l > a2 > as such that

al! a2! as! = y2 .

Write a, = a2 + k . Then we have

(12)

	

a, (a, - 1) . . . (a l - k + 1) as! = z2 .
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The product of the primes in (? as, as) exceeds cl e(112+o(1))ae . Since
each of these primes occurs to the first power in as!, each must
also divide al (al - 1) • • • (al - k + 1) . Hence

(13)

i . e .,

i . e .,

al > cl ea,12 ,

as < ca k log a, .

We shall use the following well-known result of Sylvester and Schur

[1]
Fact 3 . The product of k consecutive integers > k is divisible

by some prime p > k.
Usually we can assume that P occurs only to the first power,

as the next result shows .
Fact 4 . The number of n < x such that for some k the largest

prime factor of n(n - 1) . . . (n - k + 1) occurs to a power > 1 is
o(x) .

Proof of Fact 4 . Let us call an integer bad if it belongs to an
interval [a, a - 1, • • •, a - k + 1] for some a and k such that the
largest prime dividing a(a - 1) . . . (a - k + 1) occurs to a power

> 2 . It suffices to prove that there are only o(x) bad integers
n :5 x. To do this, we use the following known result of Erdös [2] .

Fact 5. A set of k consecutive integers always contains an
integer which is either prime or divisible by a prime exceeding
ck log k .

Consider a fixed prime P and an interval Ik of length k contain-
ing a bad integer which is bad because of p . Thus p is the largest

prime dividing an integer in Ik and some integer in Ik is divisible
by pa for some ix > 2 . This implies that no integer in Ik can be
prime. Thus, by Fact 5,

p > ck log k,

(14)

	

k < cs P/log P .

Up to x there are at most x/p2 multiples of p2, so that the
total number of bad integers :5x which are bad because of the
prime p is at most
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(15)

	

x , c3p -C3 x
P, log p

	

p log p

However, this is being more generous than -necessary with the small
primes . For a large fixed integer D, it is not hard to obtain the
estimate

(16)

	

i {a:< x : a has all prime factors < D} I < C41ogD X .

Any interval Ik containing such an integer a and having all its
terms with prime factors < D must have length < 2D, for other-
wise since there is a prime q with D < q < 2D (by Chebyshev)
and this q must divide some integer in Ik, we would have a
contradiction . The sum of the lengths of these Ik is at most
c(D) logD x, which is certainly o(x) .

Thus from (15) we have as an upper bound on the number of
bad integers < x the sum

Y' C3	 x + o(x) ,
D<y<x p log p

which is bounded above by e (D) x, where e (D) - 0 as D- co . This
proves Fact 4 .

Continuing now the proof of Theorem 2, by Fact 2 we may
assume the largest prime factor p of a, (a l -1) . . . (a, - k + 1) occurs
to the first power . Furthermore, we may also assume that a l itself
has a prime factor > al since those a l for which this does not
occur have density < c(e), where c(e) goes to zero with e . Thus

(17)

	

p>ai .

Also, since p > k by Fact 3, p divides exactly one of the k integers
a,, a l - 1, • - •, al - k + 1 . Since p only occurs to the first power,
(12) implies that p must divide a3? and so

(18)

	

a3>p •

Therefore by (13), (17) and (18)

(19)

	

k > C4 a 3/log a l > C4 M/log al > C5 al" .

Also, by a well-known result of Huxley [4], we must have a l > k"
(since otherwise [a l, a l - k] will contain a prime) . We may now
apply the following result of Ramachandra [5] :
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THEOREM . Let k1 ' 2 < 2i ::_<
klog log k Then the largest prime divisor

P(u, k) of TEL, (u + i) satisfies
(u,

P(u, k) > ki+2 ,l k) ,

where 2 (u, k) _ - (( log v) / (log k) + 8) .

In particular, for some ó = 6(e) > 0, there is a prime q > kt+a

dividing a, (a, - 1) . . . (a, - k + 1) . Consequently, by (18),

(20)

	

a3 > p > q > k i+s

Also by (13) and (19),

(21)

	

a3 < c2 k log a, < ct (E) k log k .

However, (19), (20) and (21) are clearly inconsistent for large x
(and we may assume, for example, that a, > x12 ) . Thus,
except for o(x) integers al < x, (12) is impossible . This proves
Theorem 2. 1

Suppose we call an integer n bad' if its greatest prime factor
P(n) occurs with an exponent > 1 . An old result of one of the
authors states that the number of bad' n -<,x is

xe (1+0(1)) (log X log log T),
12

No doubt almost all bad' numbers n are bad' because they have
P(n) 2 q n .

One can modify badness as follows : Call n bad" if it occurs
in some interval [a - k, a] such that all prime factors > k of
T, (a - i) occur with an exponent > 1. It seems likely -that the
number B (x) of bad" integers < x not only satisfies B (x) /Vx -c,
but in fact is asymptotic to the number of "powerful" numbers
:!-<x, (i,e., numbers with all prime factors occurring to a power
> 1) .

The two classes of examples of elements of .D3 given at the
beginning of this section both have

345

a2 >a,-2 .

Examples do exist for which a2 = a, - 3, e. g ., 10! 7! 6!, 50! 47! 3!
and 50! 47! 4! are all squares . Are there others? Can a,! a2 ! a 3 !
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ever be a square for a3 < az < a l - 3 ? It is not difficult to show
that if ai e D3 and a,= 2P for some odd prime P, then a i is either
6 (with 6! 5! 3! = y2 ) or a , is 10 (with 10! 7! 6! = ,y') . We are sure
now that D3 (x) _ (c + 0(1)) x 112 but we cannot prove it.

Four factors . To begin with, observe that if n has a nontrivial
square factor, say n = m2 r with m > 1, then

«n! (n - 1)! r! (r - 1)!) = q(nr) = 1

so that n e F4 . Thus all multiples of 4 belong to F4 and so D4 has
positive density and we have by Theorem 2

Fact 6 . lim„-.D4(n)/D3(n) _ co .
On the other hand, there are certainly squarefree elements of

F4 . For example, if a and a+1 are both squarefree then by setting

ai =a(a+1),

a2=a(a+1)-1,

a 3 =a+1,

a4 =a-1,

we have q(ai ! a2 ! a3 ! a 4 ! ) = q(a(a + 1) • (a + 1) a) = 1 and so a i e F4 .
However, squarefree integers of this form are relatively rare and
in fact it seems likely that almost all squarefree integers do not
belong to F4. It can be shown that for any fixed prime q, almost
all n of the form Pq, P prime, do not belong to F4 . The proof uses
the previously mentioned result of Ramachandra and we do not give
it here.

Five factors . It was first pointed out by E. G. Straus (oral
communication) that those n with a very small prime factor all
belong to Fs . The precise statement of this is given as follows .

Fact 7 . If PC- (2, 3, 5, 7, 11i is a proper divisor of n, then
MEF5.

. Proof. We simply observe that each of the five expressions is
a square :
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(11m)! (llm - 1) ! (7m) ! (7m - 1) ! W . I

On the other hand, the prime 13 (as well as all larger primes)
behaves differently as the following result indicates .

THEOREM 3. For almost all primes .p,

(22)

	

13p 0- F5 .

Proof . Suppose 13gEF5 for a large prime q. By the com-
ment at the end of the preceding section that lap O- Fa for
almost all primes p, we may assume 13q E D5 . Thus there exist
a l = 13q > a2 > a 3 > as > a5 such that

(23)

From (23) we have

(24)

	

a l (a l - 1) . . .(a2 + 1 a 3 (a 3 - 1)-

(25)

al! a2! as! aa! a5! = y2 .

h

	

12

where h and 12 are defined to be the intervals da l ,

	

a 2 + 1) and
€ as, • • • , a4+ 11, respectively .

Fact 8 .

a 5 < cal'3

Proof of Fact 8. In (24) no prime can occur in A . Thus, by a
result of Huxley [4],

(26)

	

a l - a 2 < ai/8

Of course, we may assume a s > al/s , since otherwise we are done .
Now for large a l there are two possibilities :

(i) If as - as ? a4/5 then by Huxley [4J we have

ai l
a 3/b

	

,~
y

,
> Cl e(l+o(1))(a4-a3)

Q 4~fiGR 3
p prime

aa+1)a5! = z2 ,

(2m) ! (2m - 1) ! (m) ! (m - 1) ! 2! ,

(3m) ! (3m - 1) ! (2m) ! (2m - 1) ! 3! ,

(5m) ! (5m - 1) ! W! (m - 1) ! 6! ,

(7m) ! (7m - 1) ! (5m) ! (5m - 1) ! 7! ,
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since any prime P E 72 must divide at least one integer in 1, in order
for (24) to hold. Therefore

(ü) If a3 - a4 < a4 15 then automatically we have
Hence in either case

But
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a3 - a4 < C2 a1J5 109 a1 .

3Za 3/6
x < a3 1 log al .

a 4 <x<a3

11 P > c3
e(í12+o(1»a,

a 512<pCa,
p príma

and any prime p E (a5/2, a5 ] must divide some integer in h u 12 .

Theref ore

C3 ea 5 12 < a32a1/Dlogaí , a a 115 '

as < C4 ai(5 109 2 aí < C ai13

for a suitable constant c . I

Note that the same argument applies to the product

aí! a2! . . . asr+í! for any fixed r,

where the constant c now depends on r .
Fact 9. For almost all(') primes p, all of the expressions

lap ± 1, 12p ± 1, 11P ± 1, • • • , P :t 1 have a prime factor exceeding

Proof. We only give the argument for p - i (the other cases
are similar) . Denote by 7r,W the number of primes p < x for
which all prime factors of P - 1 are < xE . Put

AE (n) _
11

pa ,
Pall .
PSx f

where pa 11 n denotes the fact that Pa divides
divide n. Then

11 A, (p - 1) C ]j q(aq+clg2 + . . .) ,

pcx q_x

( 2 ) 1 . e., for all but cE ,r(x) primes S x, where c, 0 as e 0.

a3 - a4<a
315.

n but p 11}1 does not
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and for q' < x,

Thus

But

and

Therefore

A,(p - 1) < (x c
l e)c-r"09x xx 1 J'+ E

?Sz

< eC2 ex

which easily implies

(28)

	

;r E (x) < ca E x/log x .

Similar arguments give the inequalities corresponding to (28) for
13p ± 1, 12p ± 1, etc., and by the prime number theorem, Fact 9

f ollows, j

It follows from (24) that 11 cannot contain a prime . Hence the
only multiple of q which can belong to 11 is a, = 13q. But Fact 8
implies that q > a 5 . Thus, by (24), Iz contains at least one multiple
of q, say aq .

Fact 10. Ia contains exactly one multiple of q.

ON PRODUCTS OF FACTORIALS

where aq 2 is the number of primes P :< x with p = 1 (mod qr) . By
Brun-Titchmarsh [6] we have for qr < x112

aqr <
•

	 ex ,
q log x

agr

	

x
q r

(27)

	

A, (p - 1) <

	

giJgl
flog X

	

gzlg r

/xS

	

gtJ.xe

	

ySx E

g r 7x 112

11 q 11 q = exp (
	 logq) < xc 1 e

gsx

	

qsx

	

q

gxlg r < xx E ' i14r < xz IJ2}s

x E

g rZz 1 J a

where in E', q < xE, q' > x1" and so

349
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Proof of Fact 10 . Suppose I2 contains at least two multiples of
q . Then 112 I > q, so that

][I p>cegr2

P C-12
Since any prime p E 12 must divide some element of

(13q) 11 1 1 > ceg12 ,

i . e.,

h, then

IhI > log q

By the previously mentioned result of Huxley [4], this implies that
I, contains a prime, which is impossible . Since we have seen that
42 contains some multiple aq of q, Fact 10 is proved. I

Fact 11. 1111 + 1121>I
Proof of Fact 11 . Suppose 111 I = 1121 = 1 . Then

h = €13q# and 12 = €aq# for some a < 13 .

By (24),

(29)

	

13aa5 ! - x 2

must hold for some a5 and x. This forces a5 < 16. A check of all
these cases, however, reveals that (29) is in fact impossible . Since
1111 and 1121 are positive, Fact 11 is proved . I

Fact 12 . For any a < 13 and any m and almost all primes p,
the largest prime factor p' of ITke-. (ap - 13k - 1) occurs to the
first power .

Proof of Fact 12 . By Fact 9 and the prime number theorem, it
will be enough to prove that there are fewer than x 1_ 6 primes
p < x for which the largest prime divisor p' of IIx=-..(ap -13k -1)
satisfies :

(i) p' > xE,
(ü) (P')'1ITx=-. W - 13k - 1) .

Consider the arithmetic progression 1'= (ap - 13k - 1 : - m < k :< m}
and let us estimate for a fixed p' >x6 the number of primes P :< x
satisfying (ü) . For such a p, (p') 2 divides some element of I, say
tc(p') 2 , and we let d denote I ap - u (p') 2 I . By the previously
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mentioned result of Ramachandra, modified to apply to arithmetic
progressions (he informs us that his proof gives this without
essential change), we obtain

(30)

	

d < (p') 1-
*

for some n = 71 (e) > 0. Thus for a fixed p', since there are just
x/ (p') 2 multiples of (P')' less than x, there are at most

	 cx2d •
	 x

(PT < (pá)1+ 71

possible values of p satisfying (ü) . Hence the total number of these
p for all p' satisfying (i) is at most

~ cx
~-: E (p')1+n

	 < x E m1+
< XE ^ < x1-s

p•> x l

	

mss

This proves Fact 12 . I

Of course, the same conclusion holds for Ilk ?_,. , (OP - 13k - 1)
as well as for IIk?_ ml , k a (ap - k), where in the second product
ml + m2 > 1 . Thus we may henceforth assume that the largest
prime p' dividing any element = -1 (mod 13) in It U 12 occurs to
the first power and the largest prime p" dividing any element in
I2 - faq} occurs to the first power . Define p* by

* _ p" if III I = 1 ,P,

	

1p , if III I > 1 .

It follows from Fact 9 that we may assume

p* > qE .

Fact 13. P* divides at most one element of h u r2 ,
Proof of Fact 13. Suppose p * divides at least two elements of

h u I2 . There are two possibilities.
(a) Suppose I11I = 1 . Then 1121 >p * > qE so that by Rama-

chandra [5] there must be a prime divisor of R e r„ x~a, x exceeding

1 r2 l 1+8 > (Y*) 1+8 ,

which is a contradiction to the definition of p* .
(b) Suppose 11, I > 1 . Then p* = p', and if p* divides two

elements of Ik for either k = 1 or k = 2, we reach a contradiction
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by the arguments used in case (a) . Hence we must have p* dividing
some element of 1, and some element of 1 -2, say

where d2 0 . Thus

ulp* =13(q-d1)-leli,

u2p* =aq±d2e12,

(31)

	

p*(13u2 - au,) = 13ad1 ± 13d2 - a .

If 13u2 - a2S1 = 0 then 131 a, which is a contradiction. Thus
may assume

(32)

	

I-Du2 - au, f 0 .

By (31) this implies

(33)

	

d, + d2 > cp* , i . e ., I h 1 + 112 1 > c, p* .

Again by Ramachandra we conclude that there must be a prime
divisor of the integers- -1 (mod 13) in some 1k exceeding

1rk1 1+8 > (c2e* ) 1+8

which is impossible . This proves Fact 13 . 1

From Fact 13 and the assumption that p* occurs only to the
first power in its multiple in h u12, we must have a 5 > p*. As
before, since all primes in (a5/2, a5 ) must divide elements in f, o12 ,
then

we

(34)

	

(13q) 1 li 1 '121 >

	

x >

	

e > e(112+0(Wa5 > ceP*11.
xC11U12

	

a5J2<P<a 5

i . e .,

II11+II21> c1 p* >
C16P *

log q

	

log p *

Finally, once more by Ramachandra, we conclude that either
12 - { aq} has an element with a prime divisor exceeding
(c2 Ep*/(loge*))1+"° or 1,u12 has an element = -1 (mod 13) with a
prime divisor exceeding (c 2 ep*/(loge*)) 1 +~ . However, this is
impossible for large q, since it contradicts the definition of p*.

Thus the assumption that 13q e F5 has led to a contradiction for
almost all primes q. This completes the proof of Theorem 3 . 1
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The reason this proof works for 13 (and all larger primes) but
not for 2, 3, 5, 7 or 11 is because Fact 11 fails to hold for these
smaller primes, i . e., (24) has solutions when 13 is replaced by a
smaller prime .

It seems certain that almost all products of two primes do not

belong to F5 .
The following problem may be of interest here . Consider the

following two-variable sieve : Omit all integers n which are con-
gruent to i(mod p2) for some i with I i I < cp where p > pk. For
which k and c are there infinitely many integers which are not
omitted?

Also we might ask whether it is true that for every k there

exist k consecutive integers each having its greatest prime factor
occurring to a power greater than 1 .

Six factors . As pointed out earlier, every composite n belongs
to F6 . It is of interest to determine the least element n* of
D6=Fs- Fs .

Fact 14. n*=527=17 .31 .
Proof. By Fact 7, no element of D6 can be divisible by 2, 3, 5,

7 or 11. The remaining composite numbers less than 527 are listed
below

TABLE 1

The fact that 527=17 . 31 has no such representation can be verified
by a direct (but lengthy) computation . 1

n Square, product of factorials
221=13 .17 221!220!18!11!7!
247 = 13 -19 247! 246! 187! 186! 20!
299 = 13 -23 299! 298! 27! 22!
323. = 17 • 19 323! 322! 20! 14! 6 !
377 = 13 -29 3771 376! 29! 23! 10!
391 = 17 • 23 3911389! 24! 21! 17!
403,= 13 -31 403! 402! 33! 30! 14
437 = 19 • 23 437! V361 51! 49! 28
481 = 13 • 37 481! 479! 38! 033! 22!
493 = 17-29 493! 491! 205! 202! 7
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We are reasonably certain that

D6(n) > en .

Miscellaneous remarks . Let A denote the set {a : a is squarefree
and abk! = y2 for some y, b, k with a > b > k~ . Of course, A C F5
since for any a e A, a! (a - 1) ! b! (b - 1) ! k! is a square . Note that
a E A implies to r= A since (ta) (tb) k! is a square if abk! is a square .
It can be shown that

Then

8

Y- 1 <m,
,EA a

so that the density of the nonmultiples of the a's exists and is
positive .

If eight factors are allowed, then for almost all n we can find
nearly equal factorials, the largest being n!, whose product is a
square. Specifically, for n = ni n 2 , set

Hak! =y2
k=i

and a8/ai is essentially equal to (1 - 11ná) (1 - 1/n2) . Since for
almost all n we can take ni > W, n2 > w, the assertion follows .

Finally, one could ask the preceding questions f or cubes and
higher powers instead of squares . For example, it is not hard to
show that for any k there is an m(k) such that M,'-, a L ! = yk has
infinitely many solutions for some m < m(k) . These, however, we
leave for a later paper .

The authors wish to acknowledge the useful comments given to
them by J. Lagarias and A . M. Odlyzko.

ai =n=ni n2 , a2 =ai -1,

a3=(nl-1)n2 , a4 =a3 -1,

a5=721(112 - 1), a6 =a5-1,

a,= (n1 -1)(n2a8=a,-1 .
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