On the greatest prime factor of $2^{p}-1$ for a prime p and other expressions

by

P. Erdös (Budapest) and T. N. Shorey (Bombay)

1. For a natural number a, denote by $P(a)$ the greatest prime factor of a. Stewart [10] proved that there exists an effectively computable constant $c>0$ such that

$$
\begin{equation*}
\frac{P\left(2^{p}-1\right)}{p} \geqslant \frac{1}{2}(\log p)^{1 / 4} \tag{1}
\end{equation*}
$$

for all primes $p>c$. In §2, we shall prove that $P\left(2^{p}-1\right) / p$ exceeds constant times $\log p$ for all primes. In §5, we shall prove that for 'almost all' primes p,

$$
\begin{equation*}
\frac{P\left(2^{p}-1\right)}{p} \geqslant \frac{(\log p)^{2}}{(\log \log p)^{3}} \tag{2}
\end{equation*}
$$

For the definition of 'almost all', see $\S 5$. Let $u>3$ and $k \geqslant 2$ be integers and denote by $P(u, k)$ the greatest prime factor of $(u+1) \ldots(u+k)$. It follows from Mahler's work [6a] that $P(u, k) \gg \log \log u$. See also [6] and [8]. In § 4, we shall show that for $u \geqslant k^{3 / 2}$

$$
P(u, k)>c_{1} k \log \log u
$$

where $c_{1}>0$ is a constant independent of u and k. It follows from wellknown results on differences between consecutive primes that $P(u, k)$ $\geqslant u+1$ whenever $k \leqslant u \leqslant k^{3 / 2}$. Let $a<b$ be positive integers which are composed of the same primes. Then, in §3, we shall show that there exist positive constants c_{2} and c_{3} such that

$$
b-a \geqslant c_{2}(\log a)^{c_{3}}
$$

Erdös and Selfridge [5] conjectured that there exists a prime between a and b.

The proof of all these theorems depend on the following recent result on linear forms in the logarithms of algebraic numbers.

Let $n>1$ be an integer. Let $\alpha_{1}, \ldots, \alpha_{n}$ be non-zero algebraic numbers of heights less than or equal to A_{1}, \ldots, A_{n} respectively, where each $A_{i} \geqslant 27$.

Let $\beta_{1}, \ldots, \beta_{n-1}$ denote algebraic numbers of heights less than or equal to $B(\geqslant 27)$. Suppose that $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \beta_{n-1}$ all lie in a field of degree D over the rationals. Set

$$
A=\log A_{1} \ldots \log A_{n}, \quad E=(\log A+\log \log B)
$$

Lemma 1.' Given $\varepsilon>0$, there exists an effectively computable number $C>0$ depending only on ε such that

$$
\left|\beta_{1} \log \alpha_{1}+\ldots+\beta_{n-1} \log \alpha_{n-1}-\log \alpha_{n}\right|
$$

exceeds

$$
\exp \left(-(n D)^{C n} \Lambda(\log \Lambda)^{2}(\log (A B))^{2} E^{2 n+2+\varepsilon}\right)
$$

provided that the above linear forms does not vanish.
This was proved by the second author in [9]. It has been assumed that the logarithms have their principal values but the result would hold for any choice of logarithms if C were allowed to depend on their determinations.

The earlier results in the direction of Lemma 1 (i.e. lower bound for the linear form with every parameter explicit) are due to Baker [1] and Ramachandra [8]. Stewart applied the result of [1] to obtain (1). We remark that the result of [8] gives the inequality (1) with constant times $(\log p)^{1 / 2} /(\log \log p)$. The theorems on linear forms of [1] and [8] also give (weaker) results in the direction of the inequality (2) and the other results of this paper.
2. For a natural number a, denote by $\omega(a)$ the number of distinct prime factors of a.

Lenma 2. Let $p(>27)$ be a prime. Assume that

$$
P\left(2^{p}-1\right) \leqslant p^{2}
$$

Then there exists an effectively computable constant $c_{4}>0$ such that

$$
\omega\left(2^{p}-1\right) \geqslant c_{4} \log p / \log \log p
$$

We mention a consequence of Lemma 2.
Theorem 1. There exists an effectively computable constant $c_{5}>0$ such that

$$
P\left(2^{p}-1\right) \geqslant c_{5} p \log p
$$

for all primes p.
Proof. Assume that

$$
P\left(2^{p}-1\right)<p \log p
$$

Without loss of generality, we can assume that $p>27$. Then $P\left(2^{p}-1\right) \leqslant p^{2}$. By Lemma 2, we have

$$
\omega\left(2^{p}-1\right) \geqslant c_{4} \log p / \log \log p
$$

By using Brun-Titchmarsh theorem ([7], p. 44) and the fact that the prime factors of $2^{p}-1$ are congruent to $1 \bmod p$, we obtain

$$
P\left(2^{p}-1\right) \geqslant c_{6} p \log p
$$

for some constant $c_{6}>0$. Set $c_{5}=\min \left(1, c_{6}\right)$. Thus

$$
P\left(2^{p}-1\right) \geqslant c_{5} p \log p
$$

This completes the proof of Theorem 2.
Proof of Lemma 2. Let $1>\varepsilon_{1}>0$ be a small constant to be suitably chosen later. Set

$$
r=\left[\varepsilon_{1} \log p / \log \log p\right]+1
$$

We shall assume that

$$
\omega\left(2^{p}-1\right) \leqslant r
$$

and arrive at a contradiction. Write

$$
2^{p}-1=q_{1}^{u_{1}} \ldots q_{r}^{u_{r}}
$$

where for $i=1, \ldots, r, q_{i} \leqslant p^{2}$ are primes and $u_{i}<p$ are non-negative integers. We have

$$
2^{-p}=\left|\left(2^{p}-1\right) 2^{-p}-1\right|=\left|q_{1}^{u_{1}} \ldots q_{r}^{u_{r}} 2^{-p}-1\right| .
$$

From here, it follows that

$$
\begin{equation*}
0<\left|u_{1} \log q_{1}+\ldots+u_{r} \log q_{r}-p \log 2\right|<2^{-p+1} \tag{3}
\end{equation*}
$$

By Lemma 1, it is easy to check that

$$
\begin{equation*}
\left|u_{1} \log q_{1}+\ldots+u_{r} \log q_{r}-p \log 2\right|>\exp \left(-p^{\varepsilon_{1} D}\right) \tag{4}
\end{equation*}
$$

where $D>0$ is a certain large constant independent of ε_{1}. If we take $\varepsilon_{1}=1 / 4 D$, the inequalities (3) and (4) clearly contradict each other. This completes the proof of Lemma 2.

For any integer $n>0$ and relatively prime integers a, b with $a>b>0$, we denote $\Phi_{n}(a, b)$ the nth cyclotomic polynomial, that is

$$
\Phi_{n}(a, b)=\prod_{\substack{i=1 \\(i, n)=1}}^{n}\left(a-\zeta^{i} b\right)
$$

where ζ is a primitive nth root of unity. We write

$$
P_{n}=P\left(\Phi_{n}(a, b)\right)
$$

Stewart [10] proved the following theorem.
Theorem 2. For any K with $0<K<1 / \log 2$ and any integer $n(>2)$ with at most $K \log \log n$ distinct prime factors, we have

$$
P_{n} / n>f(n)
$$

where f is a function, strictly increasing and unbounded, which can be specified explicitly in terms of a, b and K.

The proof of Theorem 3 depends on Baker's result [3] on linear forms in the logarithms of algebraic numbers. If that is replaced by Lemma 1 in Stewart's paper [10], then the method of Stewart [10] gives the following result for the size of f.

Theorem 3. We have

$$
f(n)=c_{7}(\log n)^{2} / \log \log n
$$

where $\lambda=1-K \log 2$ and $c_{7}>0$ is an effectively ${ }_{i}^{\prime \prime}$ computable number depending only on a, b and K.
3. Let $b>a \geqslant 2$ be integers. We recall that a and b are composed of the same primes if

$$
\begin{equation*}
a=p_{1}^{u_{1}} \ldots p_{s}^{u_{s}}, \quad b=p_{1}^{v_{1}} \ldots p_{s}^{v_{s}} \tag{5}
\end{equation*}
$$

where p_{1}, \ldots, p_{s} are positive primes and $u_{1}, \ldots, u_{s}, v_{1}, \ldots, v_{s}$ are positive integers. We prove the following

Theorem 4. Let $b>a \geqslant 2$ be integers that are composed of the same primes. Then there exist effectively computable positive constants c_{8} and c_{9} such that

$$
b-a \geqslant c_{8}(\log a)^{c_{9}}
$$

Proof. Let $0<\varepsilon_{2}<1$ be a small constant which we shall choose later. Without loss of generality, we can assume that $a \geqslant a_{0}$ where a_{0} is a large positive constant depending only on ε_{2}, since

$$
b-a \geqslant 2=\left(2 / \log a_{0}\right) \log a_{0} \geqslant\left(2 / \log a_{0}\right) \log a
$$

whenever $a \leqslant a_{0}$. We shall assume that

$$
b-a<(\log a)^{\varepsilon_{2}}
$$

and arrive at a contradiction. Recall the expressions (5) for a and b. Notice that

$$
p_{1} \ldots p_{s} \leqslant b-a<(\log a)^{\varepsilon_{2}}
$$

From here, it follows that

$$
s \leqslant \frac{8 \varepsilon_{2} \log \log a}{\log \log \log a}
$$

Further observe that $P(a)=P(b)<(\log a)^{\varepsilon_{2}}$ and the integers u_{i} and v_{i} do not exceed $8 \log a$. Now

$$
\left(\frac{b}{a}-1\right)=\frac{1}{a}(b-a)<\frac{\log a}{a}<a^{-1 / 2}
$$

Further

$$
\begin{aligned}
a^{-1 / 2} & >\left(\frac{b}{a}-1\right)=\left|p_{1}^{u_{1}-v_{1}} \ldots p_{s}^{u_{s}-v_{s}}-1\right| \\
& >\frac{1}{2}\left|\left(u_{1}-v_{1}\right) \log p_{1}+\ldots+\left(u_{s}-v_{s}\right) \log p_{s}\right|>0
\end{aligned}
$$

From these inequalities, we obtain

$$
\begin{equation*}
0<\left|\left(u_{1}-v_{1}\right) \log p_{1}+\ldots+\left(u_{s}-v_{s}\right) \log p_{s}\right|<a^{-1 / 4} \tag{6}
\end{equation*}
$$

By Lemma 1, it is easy to check that

$$
\begin{equation*}
\left|\left(u_{1}-v_{1}\right) \log p_{1}+\ldots+\left(u_{s}-v_{s}\right) \log p_{s}\right|>\exp \left(-(\log a)^{E \varepsilon_{2}}\right) \tag{7}
\end{equation*}
$$

where $E>0$ is a certain large constant independent of ε_{2}. If we take $\varepsilon_{2}=1 / 4 E$, then the inequalities (6) and (7) clearly contradict each other. This completes the proof of Theorem 4.

Let $b>a \geqslant 2$ be integers such that $P(a)=P(b)$. Then Tijdeman [11] proved that

Theorem 5.

$$
b-a \geqslant 10^{-5} \log \log a
$$

The proof of Tijdeman [11] for this theorem depends on Baker's work [2] on $y^{2}=x^{3}+k$. We remark that Theorem 5 follows easily from Lemma 1. The details for its proof are similar to those of Theorem 4.

By using Baker's work [2] on $y^{2}=x^{3}+k$, Keates [6] and Ramachandra [8] proved

Theorem 6. Let $u(>3)$ be an integer. Then

$$
P((u+1)(u+2))>c_{10} \log \log u
$$

Theorem 6 also follows immediately from Lemma 1. The details for its proof are similar to those of Theorem 4. We shall use Theorem 6 for the proof of Theorem 7.
4. In this section, we shall prove the following

Theoren 7. Let $u>3$ and $k \geqslant 2$ be integers. Assume that

$$
\begin{equation*}
u \geqslant k^{3 / 2} \tag{8}
\end{equation*}
$$

Then there exists an effectively computable constant $c_{11}>0$ independent of u and k such that

$$
P(u, k)>e_{11} k \log \log u
$$

Proof. In view of Theorem 6, we can assume that $k \geqslant k_{0}$ where k_{0} is a large constant. Erdös [4] proved that $P(u, k)>c_{12} k \log k$ for some constant $c_{12}>0$. So it is sufficient to prove the theorem when

$$
\begin{equation*}
\log k<\log \log u \tag{9}
\end{equation*}
$$

We write, for brevity,

$$
P=P(u, k), \quad r=[2 \pi(P) / k]+2
$$

Let us write $n=m^{\prime} m^{\prime \prime}$ where $u<n \leqslant u+k$ and m^{\prime} is the product of all powers of primes not exceeding k and $m^{\prime \prime}$ consists of powers of primes exceeding k. Observe that

$$
\sum_{n} \omega\left(m^{\prime \prime}\right) \leqslant \pi(P) .
$$

Hence the number of integers n with $\omega\left(m^{\prime \prime}\right) \geqslant r$ does not exceed $k_{/} 2$. Hence there exist at least [k/2] integers n with $\omega\left(m^{\prime \prime}\right)<r$. For each prime $q \leqslant k$, we omit amongst these n, one n for which q divides n to a maximal power. If star denotes omission of these n, then it follows, by an argument of Erdös, that

$$
\prod_{n}^{*} m^{\prime} \leqslant k^{k}
$$

The number of n 's counted in this product is at least

$$
[k / 2]-\pi(k) \geqslant k / 4 .
$$

So there exist, among these n, the integers. $n_{1}, n_{2}\left(n_{1} \neq n_{2}\right)$ whose m^{\prime} do not exceed k^{20}. Write

$$
n_{1}=m_{1}^{\prime} p_{1}^{u_{1}} \ldots p_{r}^{u_{r}}, \quad n_{2}=m_{2}^{\prime} q_{1}^{v_{1}} \ldots q_{r}^{v_{r}}
$$

where $m_{1}^{\prime}, m_{2}^{\prime}<k^{20}, p_{1}, \ldots, p_{r}, q_{1}, \ldots, q_{r}$ are primes greater than k and not exceeding P. Observe that for $i=1, \ldots, r, u_{i}$ and v_{i} are non-negative integers not exceeding $8 \log u$. Using (8), we get

$$
\begin{equation*}
0<\left|\sum_{i=1}^{r} u_{i} \log p_{i}-\sum_{i=1}^{r} v_{i} \log p_{i}+\log \frac{m_{1}^{\prime}}{m_{2}^{\prime}}\right|<u^{-1 / 6} . \tag{10}
\end{equation*}
$$

By Lemma 1 and (9), the left-hand side of this inequality exceeds

$$
\begin{equation*}
\exp \left(-(r \log P \log \log u)^{c_{13} r}\right) \tag{11}
\end{equation*}
$$

Now the theorem follows immediately from (9), (10) and (11).
The following theorem follows from the work of Baker and Sprindžuk.
THEOREM 8. Let $f(x)$ be a polynomial with rational integers as coefficients. Assume that $f(x)$ has at least two distinct roots. Then for every integer $X>3$,

$$
P(f(X))>c_{14} \log \log X
$$

where $c_{14}>0$ is an effectively computable constant depending only on f.
By using a result of Baker on diophantine equations, Keates [6] rpoved Theorem 8 for polynomials of degree two and three. The proof
of Baker and Sprindžuk for Theorem 8 depends on p-adic versions of inequalities on linear forms in logarithms. We remark that it is easy to deduce Theorem 8 from Lemma 1.
5. A property U holds for 'almost all' primes if given $\varepsilon>0$, there exists $x_{0}>0$ depending only on ε such that for every $x \geqslant x_{0}$, the number of primes $p \leqslant x$ for which the property U does not hold is at most $\varepsilon x / \log x$. We shall prove that for almost all primes p,

$$
\begin{equation*}
\frac{P\left(2^{p}-1\right)}{p} \geqslant \frac{(\log p)^{2}}{(\log \log p)^{3}} \tag{12}
\end{equation*}
$$

In fact we shall prove that
Theorex 9. Given $\varepsilon>0$, there exist positive constants n_{0} and c_{15} depending only on ε such that for every $n \geqslant n_{0}$, the number of primes p between n and $2 n$ for which

$$
\begin{equation*}
\frac{P\left(2^{p}-1\right)}{p}<c_{15}\left(\frac{\log p}{\log \log p}\right)^{2} \tag{13}
\end{equation*}
$$

is at most $\varepsilon n / \log n$.
It is easy to see that the inequality (12) for 'almost all' primes p follows from Theorem 9 .

Proof of Theorem 9 . We shall assume that n_{0} is a large positive constant depending only on ε. Set

$$
r=[\varepsilon n / \log n]+1
$$

Assume that there are r primes p_{1}, \ldots, p_{r} between n and $2 n$ satisfying

$$
\begin{equation*}
\frac{P\left(2^{p_{i}}-1\right)}{p_{i}}<\left(\frac{\log p_{i}}{\log \log p_{i}}\right)^{2} \quad(i=1, \ldots, r) \tag{14}
\end{equation*}
$$

By Lemma 2,

$$
\omega\left(2^{p_{i}}-1\right) \geqslant c_{4} \frac{\log p_{i}}{\log \log p_{i}}>c_{4} \frac{\log n}{\log \log n}
$$

for every $i=1, \ldots, r$. Observe that for distinct $i, j(1 \leqslant i, j \leqslant r)$, the prime factors of $2^{p_{i}}-1$ and $2^{p_{j}}-1$ are distinct. This is because if q is a prime number and q divides both $2^{p_{i}}-1$ and $2^{p_{j}}-1$, then $q \equiv 1\left(\bmod p_{i}\right)$ and $q \equiv 1\left(\bmod p_{j}\right)$. Therefore $q \equiv 1\left(\bmod p_{i} p_{j}\right)$. Since $p_{i} p_{j}>n^{2}$, the inequality (14) is contradicted. Hence

$$
\begin{equation*}
\sum_{i=1}^{r} \omega\left(2^{p_{i}}-1\right) \geqslant c_{4} r \frac{\log n}{\log \log n}>c_{4} \varepsilon \frac{n}{\log \log n} \tag{15}
\end{equation*}
$$

Denote by

$$
P=\max _{1 \leqslant i \leqslant r} P\left(2^{p_{i}}-1\right)
$$

If a prime number q divides $2^{p_{i}}-1$ for some $i=1, \ldots, r$, then
(i) $q \leqslant P$.
(ii) $q-1=a p_{i}$ with an integer a.
(iii) $1 \leqslant a \leqslant(\log n)^{2}$.

By Brun's Sieve method, we get

$$
\begin{equation*}
\sum_{i=1}^{r} \omega\left(2^{p_{i}}-1\right) \leqslant c_{16} P \frac{\log \log n}{(\log n)^{2}} \tag{16}
\end{equation*}
$$

for some constant $c_{16}>\mathbf{0}$. (For this, see page 207 of a paper of P. Erdös: On the normal number of prime factors of $p-1$ and some related problems concerning Euler φ-function, The Quaterly Journ. of Math. 6 (1935), pp. 203-213.) Comparing (15) and (16), we obtain

$$
P \geqslant c_{17} n\left(\frac{\log n}{\log \log n}\right)^{2},
$$

for some positive constant c_{17} depending only on ε. Observe that the primes p_{1}, \ldots, p_{r} lie between n and $2 n$. Now the theorem follows immediately.

Remark. In fact the inequality (16) with $c_{16} P \frac{\log \log \log n}{(\log n)^{2}}$ is valid. For this, one can refer to the above mentioned paper of Erdös. In view of this, the Theorem 9 holds with

$$
\frac{P\left(2^{p}-1\right)}{p}<c_{15} \frac{(\log p)^{2}}{(\log \log p)(\log \log \log p)}
$$

in place of the inequality (13).

References

[1] A. Baker, Linear forms in the logarithms of algebraic numbers (IV), Mathematika 15 (1968), pp. 204-216.
[2] - Contributions to the theory of diophantine equations: IX. The diophantine equation $y^{2}=x^{3}+k$, Phil. Trans. Royal Soc. (London), A 263 (1968), pp. 193-208.
[3] - A sharpening of the bounds for linear forms in logarithms (III), Acta Arith. 27 (1975), pp. 247-251.
[4] P.Erdös, On consecutive integers, Nieuw Arch. Voor Wisk. 3 (1955), pp. 124-128.
[5] P. Erdös and J. L. Selfridge, Some problems on the prime factors of consecutive integers II, Proc. Wash. State Univ., Conference on Number Theory, Pullman (Wash.), 1971.
[6] M. Keates, On the greatest prime factor of a polynomial, Proc. Edinb. Math. Soc. (2), 16 (1969), pp. 301-303.
[6a] K. Mahler, ひ̈ber den grössten Primteiler spezieller Polynome zweiten Grades, Archiv for math. naturvid. 41 Nr 6 (1935).
[7] K. Prachar, Primzahlverteilung, Berlin 1957.
[8] K. Ramachandra, Applications of Baker's theory to two problems considered by Erdös and Selfridge, J. Indian Math. Soc. 37 (1973).
[9] T. N. Shorey, On linear forms in the logarithms of algebraic numbers, Acta Arith. 30 (1976), pp. 27-42.
[10] C. L. Stewart, The greatest prime factor of $a^{n}-b^{n}$, Acta Arith. 26 (1975), pp. 427-433.
[11] R. Tijdeman, On integers with many small prime factors, Compositio Math. 26 (1973), pp. 319-330.

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES
Budapest, Hungary
SCHOOL OF MATHEMATICS
TATA INSTITUTE OF FUNDAMENTAL RESEARCH
Bombay, India

