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1 . For a natural number a, denote by P(a) the greatest prime factor
of a. Stewart [10] proved that there exists an effectively computabl e
constant c > 0 such that

P(2"—1)
(logp) 1 ~4

p

for all primes p > c. In § 2, we shall prove that P(2' -1) /p exceeds constant
times log p for all primes . In § 5, we shall prove that for `almost all' primes p,

P(2" -1)

	

(logp)2
(2)

	

p

	

(loglogp) 3

For the definition of 'almost all', see § 5 . Let u > 3 and k > 2 be integer s
and denote by P(u, Ic) the greatest prime factor of (u+1) . . . (u + k) . It
follows from Mahler's work [6a] that P(u, 1c) > loglogu. See also [6 ]
and [8]. In § 4, we shall show that for u > 1c 312

P(u, 1c) > c1 kloglog u

where cl > 0 is a constant independent of u and k . It follows from well -

known results on differences between consecutive primes that P(u, k)
u +1 whenever k u 7c3I2 . Let a < b be positive integers which are

composed of the same primes. Then, in § 3, we shall show that there exis t
positive constants c2 and c3 such that

b—a> c,( log a)'3 .

Erdös and Selfridge [5] conjectured that there exists a prime between a
and b .

The proof of all these theorems depend on the following recent resul t
on linear forms in the logarithms of algebraic numbers .

Let n > 1 be an integer. Let al , . . ., an be non-zero algebraic number s
of heights less than or equal to A1 , . . ., An respectively, where each Az > 27 .

(1)



258

	

P . Erdös and T . N . Shore y

Let ~ 1 f . . . , 13 n_, denote algebraic numbers of heights less than or equa l
to B (> 27) . Suppose that a l , . . ., an and X 17 . . ., /3n_ , all lie in a field of
degree D over the rationals . Set

A = logA 1 . . . logA n , E = (logA+loglogB) .

LEMMA 1 . ' Given s > 0, there exists an effectively computable number
C > 0 depending only one such tha t

~l log a,_ + . . . + 13n1 logan_1 —loga n
exceeds

exp ( — ( D)cnA(logA) 2 (log (AB))2E2n+2+E )

provided that the above linear forms does not vanish .

This was proved by the second author in [9] . It has been assumed
that the logarithms have their principal values but the result woul d
hold for any choice of logarithms if C were allowed to depend on thei r
determinations .

The earlier results in the direction of Lemma 1 (i .e. lower boun d
for the linear form with every parameter explicit) are due to Baker [1 ]
and Ramachandra [8] . Stewart applied the result of [1] to obtain (1) .
We remark that the result of [8] gives the inequality (1) with constan t
times (logp) 1 '2 J(loglogp). The theorems on linear forms of [1] and [8 ]
also give (weaker) results in the direction of the inequality (2) and the
other results of this paper .

2. For a natural number a, denote by w(a) the number of distinct
prime factors of a .

LEMMA 2 . Let p (> 27) be a prime. Assume that

P(2'—1) <p 2 .

Then there exists an effectively computable constant c4 > 0 such that

OJ (2p -1) > c4 logp Jloglogp .

We mention a consequence of Lemma 2 .
THEOREM 1 . There exists an effectively computable constant cs > 0

such that
P(2"—1) csplogp

for all primes p .

Proof. Assume that

P(2r —1) <plogp .

Without loss of generality, we can assume that p > 27 . Then P(2" -1) p 2.

By Lemma 2, we have

co (2 v -1) > c4 logp Jloglogp .
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By using Brun-Titchmarsh theorem ([7], p . 44) and the fact that the
prime factors of 2P -1 are congruent to 1 mod p, we obtain

P (2P -1) c6plogp

for some constant c 6 > 0. Set c5 = min(1, c6 ) . Thus

P(2P -1) c,plogp .

This completes the proof of Theorem 2 .
Proof of Lemma 2 . Let 1 > s l > 0 be a small constant to be suitably

chosen later . Set

r = [8,logp /log logp] ± 1 .

W e shall assume that
w (2P - 1) r

and arrive at a contradiction . Write

2p -1 = el . . . q rnr

where for i = 1, . . . .r, qi p 2 are primes and u i <p are non-negative
integers. We have

2-p = I(2p —1)2`p —1l = qu' . . . grr2 -p —11 .

From here, it follows that

( 3 )

	

0 < Íuilogq,+. . . +ur logq,.-plog2l < 2-11+1 .

By Lemma 1, it is easy to check that

Iul logq, . . . 4- u.r logg r -plog2l > exp ( - p£ln )

where D > 0 is a certain large constant independent of e l . If we take
8, = 1!4D, the inequalities (3) and (4) clearly contradict each other .

This completes the proof of Lemma 2 .
For any integer n > 0 and relatively prime integers a, b with a > b > 0,

we denote 0,? (a, b) the nth cyclotomic polynomial, that i s

(4)

0,,(a, b)
n
7~

( ( (a - 5 2 b )ii=11
(,n)= 1

where ' is a primitive nth root of unity. We write

Pn _ P ( On( a , b)) .

Stewart [10] proved the following theorem .

THEOREM 2 . For any K with 0 K 1 /log 2 and any integer n (> 2 )
with at most Kloglogn distinct prime factors, we hav e

Pn /n > .f(n)
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where f is a function, strictly increasing and unbounded, which can be specified
explicitly in terms of a, b and K .

The proof of Theorem 3 depends on Baker's result [3] on linea r
forms in the logarithms of algebraic numbers . If that is replaced by
Lemma 1 in Stewart's paper [10], then the method of Stewart [10] gives
the following result for the size of f .

THEOREM 3 . Ire have

f (n) = c7 (logn)'/loglog n

where 2 = 1—Klog2 and c, > 0 is` an effectively computable number de -
pending only on a, b and K .

3. Let b > a > 2 be integers . We recall that a and b are compose d
of the same primes if

( 5 )

	

a =p;l . . .pss,

	

b =p" . . .pss

where p i , . . ., ps are positive primes and u 1 , . . ., u s , v 1 , . . ., v s are positiv e
integers. We prove the following

THEOREM 4 . Let b > a > 2 be integers that are composed of the same
primes. Then there exist effectively computable positive constants e, and c ,
such that

b —a> c$ (loga)e 9 .

Proof . Let 0 < E 2 < 1 be a small constant which we shall choose
later . Without loss of generality, we can assume that a> a, where as
is a large positive constant depending only on 8 27 since

b—a> 2 = (2/logao)loga,> (2/logao)log a

whenever a < ao . We shall assume that

b —a < (log a)e2

and arrive at a contradiction . Recall the expressions (5) for a and b. Notice
that

Pi . . . p s <b—a<(log a) E2 .

From here, it follows that

8e 2 1oglog a
s

logloglog a

Further observe that P(a) = P(b) < (loga) E2 and the integers ut and v 2
do not exceed 81oga. Now

la -1) =
a

(b — a) < loáa < a-'12 .
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Further

a- 1 t2 > (
b

-1) _ Ipil-v' . . . p8s- vs -1 1

a

> 1-1( n 1 —v1) logp1+ . . . +(us —vs) logp 8 I > 0 .

From these inequalities, we obtain

(6) 0 < i(
a1 —v 1) logp1+ . . . +( u 8 —vs) logpsl < a-'1 .

By Lemma 1, it is easy to check that

(7) I( ,v. 1 —v1) logp1+ . . . ±( us —vs) logp s > exp(—(loga)EE2 )

where E > 0 is a certain large constant independent of 8 2 . If we take

82 = 114E, then the inequalities (6) and (7) clearly contradict each other .
This completes the proof of Theorem 4 .

Let b > a > 2 be integers such that P(a) = P(b) . Then Tijdeman [11]
proved that

THEOREM 5 .
b—a> 10-5 logloga .

The proof of Tijdeman [11] for this theorem depends on Baker' s
work [2] on y 2 = x3 +k. We remark that Theorem 5 follow ;; easily from
Lemma 1. The details for its proof are similar to those of Theorem 4 .

By using Baker's work [2] on y2 = x 3 +k, Keates [6] an
d Ramachandra [8] proved

THEOREM 6. Let a (> 3) be an integer. Then

P((u+1) (u+2)) > c l ologlogu .

Theorem 6 also follows immediately from Lemma 1 . The detail s
for its proof are similar to those of Theorem 4 . We shall use Theorem 6
for the proof of Theorem 7 .

4 . In this section, we shall prove the followin g
THEOREM 7 . Let v > 3 and lc?, 2 be integers . Assume tha t

(8) u > k312 .

Then there exists an effectively computable constant c 11 > 0 independent of a

and k such that
P(u, k) > c ll kloglogs .

Proof. In view of Theorem 6, we can assume that k h o where ko
is a large constant . Erdös [4] proved that P(u, k) > c12 klogk for some
constant c12 > 0 . So it is sufficient to prove the theorem whe n

(9) log k

	

loglogn .
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We write, for brevity ,

P = P(u, k), r = [2n(P)/k] +2 .

Let us write u = m ' m" where u < n < u + k and m' is the product
of all powers of primes not exceeding k and m" consists of powers of
primes exceeding k. Observe that

Y cw(m• " )

	

n(P) .

Hence the number of integers n with w (m") r does not exceed k/2 .
Hence there exist at least [k(2] integers n with 03 (m") < r . For each
prime q k, we omit amongst these n, one n for which q divides n to
a maximal power . If star denotes omission of these n, then it follows ,
by an argument of Erdös, that

n

The number of n's counted in this product is at leas t

[k!2]-n(k)> k/4 .

So there exist, among these n, the integers nl , n 2 (n 1

	

n 2 ) whose m'
do not exceed k n0 . Write

nl = m:í pi l . . . prr,

	

n 2 = m q1' . . . qY r

where nai, rre . < k20 , p i , . . ., p , , , q1, . . ., q.r are primes greater than k and.
not exceeding P. Observe that for i = 1, . . ., r, u i and v2 are non-negative
integers not exceeding 81ogu . Using (8), we get

r
(10) 0 < J~ 2c i lozpi —

	

v'i logp; + log
m7

1 < 2c- ' tb .

By Lemma 1 and (9), the left-hand side of this inequality exceed s

(11) exp ( — (rlogPloglogu)°13r) .

Now the theorem follows immediately from (9), (10) and (11) .
The following theorem follows from the work of Baker and Sprindžuk .

THEOREM 8 . Let f (x) be a polynomial with rational integers as coef-
ficients . Assume that f (x) has at least two distinct roots . Then for every integer
X>3,

P (f (X)) > c14 loglog X

where c 14 > 0 is an effectively computable constant depending only on f .
By using a result of Baker on diophantine equations, Keates [6 ]

rpoved Theorem 8 for polynomials of degree two and three . The proof
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of Baker and Sprindžuk for Theorem 8 depends on p-adic versions o f
inequalities on linear forms in logarithms. We remark that it is easy
to deduce Theorem 8 from Lemma 1 .

5. A property U holds for 'almost all' primes if given e > 0, there
exists xo > 0 depending only on s such that for every x xo, the numbe r
of prime- p x for which the property U does not hold is at most ex/logx .
We shall prove that for almost all primes p ,

P(2P —1) _	 ( logp ) 2
p

	

> (loglogp) 2
.

In fact we shall prove that

THEOREM 9. Given s > 0, there exist positive constants n o and e1, de -
pending only on e such that for every n no, the number of primes p between n
and 2n for which

P(2p —1)

	

logp \ 2
(13)	 	 <c-

	

,
p

	

1 ' loglogp

is at most síallogn .

It i easy to see that the inequality (12) for 'almost all' primes p
follows from Theorem 9 .

Proof of Theorem 9 . We shall assume that no is a large positive
constant depending only on E . Set

r = [sn,llogn] +1 .

Assume that there are r primes p 1 , . . ., p r between n and 2n satisfyin g

P(2"i—1)

	

loge, 1 2

(14) 	 	
<(

	

)

	

(i =1, . . .,r) .
pi

	

loglogpi

By Lemma 2,
log pi

	

log e
co (Bpi

1)

	

c4
loglogpi >

e4
loglogn

for every i = 1, . . , r. Observe that for distinct i, j (1 j -<_,r), the

prime factors of 2 pZ -1 and 2''i -1 are distinct . This is because if q is
a prime number and q divides both 2"i -1 and 2-"J -1, then q 1 (mod pi )
and q = 1 (mod pi ) . Therefore q = 1 (mod pip,) . Since pip; > p2 , the
inequality (14) is contradicted . Hence

r
log n

(15) (O(2 pi —1) > ( 4 1.

	

> e4 s

	

.
loglogn

	

loglog n
i= 1

Denote by
P = maxP (22'i — 1) .

1<i<r

(12)
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If a prime number q divides 2-Pi --1 for some i = 1, . . . , r, then

(i) qP.
(ii) q -1 = api with an integer a.

(iii) 1 < a < (log n) 2.

By Brun's Sieve method, we get
r

	

log logn
(16)

	

cc(2''i —1) <c 16P	 (logn) 2
i- 1

for some constant e 16 > O . (For this, see page 207 of a paper of P . Erdös :
On the normal number of prime factors of p -1 and some related problems
concerning Euler function, The Quaterly Journ. of Math. 6 (1935), pp .
203-213 .) Comparing (15) and (16), we obtain

c 17 n 	 loge

	

2
P >

	

,
(loglogn

for some positive constant cl, depending only on s . Observe that the
primes p i , . . ., p,. lie between n and 2n. Now the theorem follows im-
mediately .

logloglogn
i sRemark. In fact the inequality (16) with c16P

—(logn)2

	

valid .

For this, one can refer to the above mentioned paper of Erdös . In view
of this, the Theorem 9 holds with

P(2P —1)

	

(logp) 2

P

	

cis (loglogp) (logloglogp )

in place of the inequality (13) .
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