ON THE NUMBER OF DISTINCT PRIME DIVISORS OF (,)

P. Erdös, H. Gupta and S. P. Khare

Denote by V(n,k) the number of distinct prime divisors of $\binom{n}{k}$. It is well known and easy to see that for $n > n_0(k)$, $V(n,k) \ge k$ and it is very likely that V(n,k) = k for infinitely many n. Denote by m_k the least positive integer n for which V(n,k) = k, by n_k the least one for which $V(n,k) \ge k$ and by N_k the smallest integer so that for every $n \ge N_k$, $V(n,k) \ge k$.

We have tabulated the complete factorizations of $\binom{n}{k}$ for $n \le 551$, $k \le 25$. We have thus obtained values of m_k for $k \le 25$. We cannot, however, prove that m_k exists for all k. It is interesting to note that m_k is not always less than m_{k+1} . Thus for example $m_{17} > m_{19} > m_{18}$, also $m_{51} > n_{51}$ and $m_{28} > m_{26} > m_{27}$. On the basis of our table one would guess that $n_k < k^2$ always holds. In fact, we shall prove that this conjecture completely fails. We have

THEOREM 1. $n_k > k^2$ for k > 4939. Further, for every $\epsilon > 0$ there is a $k_0(\epsilon)$ so that for all $k > k_0(\epsilon), n_k > (1-\epsilon) k^2 \log k$.

With somewhat longer computation we could determine all the integers k with $n_b \le k^2$. It seems certain that

$$\lim_{k \to \infty} \frac{n_k}{k^2 \log k} = \infty$$

is true and perhaps its proof is not too difficult, though we have succeeded in proving it.

THEOREM 2. $\limsup_{k \to \infty} \frac{\log n_k}{\log k} \le e$, $\lim_{k \to \infty} \inf \frac{\log N_k}{\log k} \ge e$.

It seems very difficult to get a good upper bound for $\ensuremath{\,{\rm N}_{\rm k}}\xspace$. Here we prove

UTILITAS MATHEMATICA Vol. 10 (1976), pp. 51-60.

THEOREM 3. For every $\varepsilon > 0$, $k > k_0(\varepsilon)$, $N_{L} < (e+\varepsilon)^k$.

P. Erdös has stated this without proof in [1]. P. Erdös and E. Szemeredi (unpublished) proved in fact a slightly stronger result: there is an $\alpha < e$ such that $N_k < \alpha^k$ for $k > k_0$.

$$\lim_{k=\infty} N_k^{1/k} = 1$$

certainly holds but we can not prove it.

Proof of Theorem 1. Let $2 = p_1 < p_2 < ...$ be the sequence of consecutive primes. A theorem of Rosser [2] states that for every j, $p_j > j \log j$. Thus by Stirling's formula, we obtain

(1)
$$\binom{n_k}{k} \ge \prod_{j=1}^{k} p_j \ge \prod_{j=1}^{k} t \log t = k! \prod_{j=2}^{k} \log t > k^k e^{-k} \prod_{j=2}^{k} \log t .$$

On the other hand, if $n_k \leq k^2$, we evidently have

(2)
$$\binom{n_k}{k} < \frac{n_k^k}{k!} \le \frac{k^{2k}e^k}{k^k} = k^k e^k$$

Now (1) and (2) imply that

k
$$\Pi$$
 log t < e^{2k},
t=2

or what is the same thing

$$\sum_{t=2}^{k} \log \log t < 2k .$$

This is false for k > 4939, thus for k > 4939, $n_k > k^2$. Further, for $k > k_0(\varepsilon)$ we obtain by a simple computation

 $\sum_{t=2}^{k} \log \log t > 2k + (1-\epsilon) k \log \log k.$ Thus from (1) and (2) we easily obtain that for $k > k_0(\epsilon), n_k > (1-\epsilon) k^2 \log k$, which completes the proof of Theorem 1.

Proof of Theorem 2. First we prove that for every a > 1 and $k \neq \infty$

(3)
$$\sum_{n=k}^{k^{\alpha}} V(n,k) = (1+o(1))k^{1+\alpha} \log \alpha .$$

To prove (3) observe that if p is any prime greater than k then $p \mid {n \choose k}$ if and only if $p \mid (n-j)$ for some j, $0 \le j < k$. Thus we evidently have

(4)
$$\sum_{n=k}^{k^{\alpha}} V(n,k) = \sum_{k \leq p \leq k^{\alpha}} k \frac{k^{\alpha}}{p} + O(k^{\alpha}\pi(k)) + O(k\pi(k^{\alpha})) .$$

The first error term in (4) is contributed by the primes not exceeding k and the second by the primes $k . From (4) we obtain (3) from <math>\pi(k) = o(k)$ and the well known theorem of Mertens

$$\sum_{k$$

From (3) we obtain that for $k > k_0(\varepsilon)$,

(5)
$$\frac{1}{k^{e+\varepsilon}-k} \sum_{n=k}^{k^{e+\varepsilon}} V(n,k) > 1$$

and

(6)
$$\frac{1}{k^{e-\varepsilon}-k} \sum_{n=k}^{k^{e-\varepsilon}} V(n,k) < 1-n, n = n(\varepsilon) .$$

(5) implies that, for some $n \le k^{\alpha+\epsilon}$, V(n,k) > k or $n_k < k^{e+\epsilon}$, and (6) implies that, for some $n > k^{e+\epsilon}$, V(n,k) < k or $N_k > k^{e-2\epsilon}$ which proves theorem 2.

One is tempted to conjecture

(7)
$$\lim_{k \neq \infty} \frac{\log n_k}{\log k} = \lim_{k \neq \infty} \frac{\log N_k}{\log k} = e ,$$

but if (7) is true it must be very deep. As a modest step towards the proof of (7) we conjecture

(8)
$$\sum_{n=k}^{k^{\alpha}} V(n,k)^{2} = (1 + o(1)) k^{2+\alpha} (\log \alpha)^{2}.$$

(8) would imply that for all but $o(k^{\alpha})$ integers $n < k^{\alpha}$, $V(n,k) = (1 + o(1)) k \log \alpha$.

Proof of Theorem 3. We say the prime p belongs to $(n-i), 0 \le i < k$, if $p^{\alpha} || (n-i), p^{\alpha} > k$ holds. It is easy to see that if p belongs to (n-i), then $p | \binom{n}{k}$. Observe further that a prime p can belong to at most one integer $(n-i), 0 \le i < k$. Clearly if for every i, $0 \le i < k$, at least one prime belongs to n-i, we obtain $V(n,k) \ge k$. The theorem now follows from the

LEMMA. To every $\varepsilon > 0$, there is a $k_0(\varepsilon)$ so that for every $k > k_0(\varepsilon)$ and $n > (e+\varepsilon)^k$ at least one prime belongs to n-1 for every $i, 0 \le i < k$.

Assume that no prime belongs to some n-i, $0 \le i < k$.

Let $n - i = I p_h^{a_h}$ be the canonical decomposition of (n-i) as a product of primes. Then since each of the factors in the expression is less than or equal to k, we must have

$$n - i \le k^{\pi(k)} = e^{\pi(k)} \log k = e^{(1 + o(1))k}$$

an evident contradiction. Thus our lemma and the theorem are proved.

On the basis of our tables, we can now state that

 $N_2 = 4$, $N_3 = 9$, $N_4 = 15$, $N_5 \ge 33$, $N_6 \ge 63$, $N_7 \ge 88$, $N_8 \ge 170$, $N_9 \ge 133$;

and with a little more computation we could easily determine $N_{\mathbf{k}}$ for small values of k.

By the way, it seems certain that for $2 \le k \le n/2$, $\binom{n}{k}$ is the

product of consecutive primes only for a finite number of values of n and k, but we can not even prove that

$$\binom{n}{2} = \frac{k}{1} p_i$$

has only a finite number of solutions; n = 21 is probably the largest such n.

It seems certain that for every k there are infinitely many integers n for which $\binom{n}{i}$, $1 \le i \le k$ is the product of i distinct primes.

In the tables that follow, we list some interesting facts of this type besides giving the complete factorizations of $\binom{n_k}{k}$ for $k \le 25$. Within the limits of our table $\binom{378}{22}$ is the only one which is divisible by each of the first 13 primes.

REFERENCES

- P. Erdös, Über die Anzahl der Primfaktoren von (ⁿ_k), Archiv der Math. 24 (1973), 53-57.
- B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math 6 (1962), 69-94.

Hungarian Academy of Sciences Sudepest 402 Mumfordzanj Allahabad 2, India Allahabad University Allahabad, India

Received March 7, 13/5.

Table 1								
		Complete factorization of $\binom{n_k}{k}$, $1 \le k \le 25$.						
k	n	$\binom{n}{k}{k}$						
1	2	2						
2	4	2.3						
3	9	2 ² .3.7						
4	10	2.3.5.7						
5	22	2.3 ² .7.11.19						
6	26	2.5.7.11.13.23						
7	40	2 ³ .3.5.13.17.19.37						
8	50	2.3.5 ² .7.11.23.43.47						
9	54	2 ² .3.5.7.13.17.23.47.53						
10	55	2.3.5.7.11.13.17.23.47.53						
11	78	2 ² .3.5.7.13.17.19.23.37.71.73						
12	115	2 ² .3.5.7.13.19.23.37.53.107.109.113						
13	123	2 ² .3.7.11.17.19.23.29.37.41.59.61.113						
14	154	2 ² .3 ² .5.7.11.17.19.29.37.47.71.73.149.151						
15	155	2 ² .3.5.7.11.17.19.29.31.37.47.71.73.149.151						
16	209							
17	288	2 ⁵ .3 ² .5.7.11.13.19.23.31.41.47.71.137.139.277.281.283						
18	220	2.3.5.7.11.19.23.29.31.41.43.53.71.73.103.107.109.211						
19	221	2.3.5.7.11.13.17.23.29.31.41.43.53.71.73.103.107.109.211						
20	292	2.3.5.7.11.13.17.23.29.31.41.47.71.73.97.137.139.277.281.283						
21	301	2.3.5.7.11.13.17.23.29.37.41.43.47.59.71.73.97.149.281.283.293						
22	378	2.3 ³ .5 ² .7.11.13.17.19.23.29.31.37.41.47.53.61.73.179.181.359						
23	494	.367.373 2 ⁴ .3 ³ .5.7.11.13.17.19.29.37.41.43.53.59.61.79.97.163.239.241						
		.479.487.491						
24	494	2.3 ³ .5.7.11.13.17.19.29.37.41.43.53.59.61.79.97.157.163.239						
		.241.479.487.491						
25	551	2 ² .3 ² .7.11.13.17.19.23.29.31.41.53.59.61.67.89.107.109.137.179						
		.181.269.271.541.547						

Factorization of $\binom{n}{25}$ where the factors are distinct primes.

n

- 26 2.13
- 43 2.3.7.13.19.29.31.37.41.43
- 61 3.7.13.19.29.37.41.43.47.53.59.61
- 62 2.3.7.13.19.29.31.41.43.47.53.59.61
- 125 3.5.11.13.17.29.31.37.41.53.59.61.101.103.107.109.113
- 223 3.13.17.29.31.37.41.43.53.67.71.73.101.103.107.109.199.211.223
- 233 2.3.7.11.19.29.31.37.43.53.71.73.107.109.113.211.223.227.229.233
- 286 2.3.11.13.19.31.47.53.67.71.89.131.137.139.263.269.271.277.281.283
- 287 3.7.11.13.19.31.41.47.53.67.71.89.137.139.263.269.271.277.281.283
- 314 2.3.7.13.29.31.37.43.59.61.73.97.101.103.149.151.157.293.307.311.313
- 377 5.11.13.17.19.29.31.37.41.47.53.59.61.71.73.89.179.141.353.359.367 .373
- 431 2.11.13.17.37.41.43.47.53.59.61.71.83.103.107.137.139.211.409.419 .421.431
- 475 3.11.13.19.29.31.41.43.47.59.67.79.113.151.157.227.229.233.457 .461.463.467
- 538 2.13.23.29.31.37.41.43.47.53.59.67.89.103.107.131.173.179.257 .263.269.521.523

Factorization of $\binom{23}{k}$, $1 \le k \le 11$ and $\binom{47}{k}$, $1 \le k \le 20$ which are all products of distinct primes.

k	n = 23	k	n = 47
1	23	1	47
2	11.23	2	23.47
3	7.11.23	3	3.5.23.47
4	5.7.11.23	4	3.5.11.23.47
5	7.11.19.23	5	3.11.23.43.47
6	3.7.11.19.23	6	3.7.11.23.43.47
7	3.11.17.19.23	7	3.11.23.41.43.47
8	2.3.11.17.19.23	8	3.5.11.23.41.43.47
9	2.5.11.17.19.23	9	5.11.13.23.41.43.47
10	2.7.11.17.19.23	10	11.13.19.23.41.43.47
11	2,7.13.17.19.23	11	13,19,23,37,41,43,47
		12	3.13.19.23.37.41.43.47
		13	3.5.7.19.23.37.41.43.47
		14	3.5.17.19.23.37.41.43.47
		15	3.11.17.19.23.37.41.43.47
		16	2.3.11.17.19.23.37.41.43.47
		17	2.3.11.19.23.31.37.41.43.47
		18	2.5.11.19.23.31.37.41.43.47
		19	2.5.11.23.29.31.37.41.43.47
		20	2.7.11.23.29.32.37.41.42.47

Solutions of $\binom{n}{k}$ = product of consecutive primes.

 $\binom{4}{2} = 2.3$ $\binom{14}{4} = 7.11.13$ $\binom{6}{2} = 3.5$ $\binom{15}{2} = 3.5.7$ $\binom{7}{3} = 5.7$ $\binom{15}{6} = 5.7.11.13$ $\binom{10}{4} = 2.3.5.7$ $\binom{21}{2} = 2.3.5.7$

Table	5
Laber	-

Values of V(n,k), where they are consecutive integers.

k	n	4	9	11	27	99	420	468	503
1		1	1	1	1	2	4	3	1
2		2	2	2	2	3	5	4	2
3			3	3	3	4	6	5	3
4				4	4	5	7	6	4
5					5	6	8	7	5
6					6	7	9	8	6
7						8	10	9	7
8						9		10	
9								11	
10								12	

APPENDIX

Values of k for which $n_k \leq k^2$.

While we were searching for k's for which $n_k \le k^2$, by sheer brute force, Ernst S. Selmer, working on the UNIVAC 1110 at the University of Bergen, completed his project of computing n_k for $k \le 200$. His table shows that (within its limits)

$$n_k \le k^2$$
 only for $k = 2, 3, ..., 30, 32, 36, 37$.

It is almost certain that this list is complete. Our thanks are due to Selmer for his making a copy of his work available to us. His table also brought to light a small slip we had made in computing m_{20} .

The only note-worthy facts that our calculations have brought out are:

- (i) $m_{51} = 3446 > n_{51} = 3445;$
- (ii) $\binom{1007}{30}$ is square-free.

The relevant factorizations are:

$$\binom{3446}{51}$$
 = 1723.53.313.1721.181.191.491.859.229.101.3433.
73.7.127.857.149.571.137.107.163.59.311.263.1709.
67.61.683.569.3413.853.379.487.71.3407.131.227.
83.3³.179.103.1699.79.283.2².11.13.19.31.37.
41.43;

- $\binom{1007}{30}$ = 53.503.67.251.59.167.5.37.499.997.83.199.71. 331.2.31.991.43.47.197.41.983.491.109.7.89. 163.11.17.19.

Received August 25, 1975.

- 60 -