ON THE NUMBER OF DISTINCT PRIME DIVISORS OF ($\left(\begin{array}{l}\mathrm{n}\end{array}\right)$

P. Erdös, H. Gupta and S. P. Khare

Denote by $V(n, k)$ the number of distinct prime divisors of $\left(\frac{n}{k}\right)$. It is well known and easy to see that for $n>n_{0}(k), V(n, k) \geq k$ and it is very likely that $V(n, k)=k$ for infinitely many n. Denote by m_{k} the least positive integer n for which $V(n, k)=k$, by n_{k} the least one for which $V(n, k) \geq k$ and by N_{k} the smallest integer so that for every $n \geq N_{k}, V(n, k) \geq k$.

We have tabulated the complete factorizations of $\binom{\mathrm{n}}{\mathrm{k}}$ for $n \leq 551, k \leq 25$. We have thus obtained values of m_{k} for $k \leq 25$. We cannot, however, prove that m_{k} exists for all k. It is interesting to note that m_{k} is not always less than m_{k+1}. Thus for example $m_{17}>m_{19}>m_{18}$, also $m_{51}>n_{51}$ and $m_{28}>m_{26}>m_{27}$. On the basis of our table one would guess that $n_{k}<k^{2}$ always holds. In fact, we shall prove that this conjecture completely fails. We have

THEOREM 1. $\mathrm{n}_{\mathrm{k}}>\mathrm{k}^{2}$ for $\mathrm{k}>4939$. Further, for every $\varepsilon>0$ there $i s a k_{0}(\varepsilon)$ so that for all $k>k_{0}(\varepsilon), n_{k}>(1-\varepsilon) k^{2} \log k$.

With somewhat longer computation we could determine all the integers k with $n_{k} \leqslant k^{2}$. It seems certain that

$$
\lim _{k=\infty} \frac{n_{k}}{k^{2} \log k}=\infty
$$

is true and perhaps its proof is not too difficult, though we have succeeded in proving it.

THEOREM 2. $\quad \lim _{k=\infty} \sup \frac{\log n_{k}}{\log k} \leq e, \lim _{k=\infty}^{\ln f} \frac{\log N_{k}}{\log k} \geq e$.

It seems very difficult to get a good upper bound for \mathbb{N}_{k}. Here we prove

THEOREM 3. For every $\varepsilon>0, k>k_{0}(\varepsilon), N_{k}<(e+\varepsilon)^{k}$.
P. Erdos has stated this without proof in [1]. P. Erdos and E. Szemeredi (unpublished) proved in fact a slightly stronger result: there is an $\alpha<e$ such that $N_{k}<\alpha^{k}$ for $k>k_{0}$.

$$
\lim _{k=\infty} N_{k}^{1 / k}=1
$$

certainly holds but we can not prove it.

Proof of Theorem 1. Let $2=p_{1}<p_{2}<\ldots$ be the sequence of consecutive primes. A theorem of Rosser [2] states that for every j, $p_{j}>j \log j$. Thus by Stirling's formula, we obtain
(1)

$$
\left({ }_{k}^{n}{ }^{k}\right) \geq \prod_{i=1}^{k} p_{i} \geq \prod_{t=2}^{k} t \log t=k!\prod_{t=2}^{k} \log t>k^{k} e^{-k} \prod_{t=2}^{k} \log t
$$

On the other hand, if $n_{k} \leq k^{2}$, we evidently have

$$
\begin{equation*}
\left({ }_{k}^{n_{k}}\right)<\frac{n_{k}^{k}}{k!} \leq \frac{k^{2 k} e^{k}}{k^{k}}=k^{k} e^{k} \tag{2}
\end{equation*}
$$

Now (1) and (2) imply that

$$
{\underset{t=2}{k} \log t<e^{2 k}, ~, ~, ~}_{n=1}
$$

or what is the same thing

$$
\sum_{t=2}^{k} \log \log t<2 k
$$

This is false for $k>4939$, thus for $k>4939, n_{k}>k^{2}$. Further, for $k>k_{0}(\varepsilon)$ we obtain by a simple computation
$\sum_{t=2}^{k} \log \log t>2 k+(1-\varepsilon) k \log \log k$. Thus from (1) and (2) we easily obtain that for $k>k_{0}(\varepsilon), n_{k}>(1-\varepsilon) k^{2} \log k$, which completes the proof of Theorem 1 .

Proof of Theorem 2. First we prove that for every $\alpha>1$ and $k \rightarrow \infty$

$$
\begin{equation*}
\sum_{n=k}^{k^{\alpha}} v(n, k)=(1+o(1)) k^{1+\alpha} \log \alpha \tag{3}
\end{equation*}
$$

To prove (3) observe that if p is any prime greater than k then $p \left\lvert\,\binom{\mathrm{n}}{\mathrm{k}}\right.$ if and only if $\mathrm{p} \mid(\mathrm{n}-\mathrm{j})$ for some $\mathrm{j}, 0 \leq \mathrm{j}<\mathrm{k}$. Thus we evidently have

$$
\begin{equation*}
\sum_{n=k}^{k^{\alpha}} v(n, k)=\sum_{k \leq p \leq k^{\alpha}} k \frac{k^{\alpha}}{p}+0\left(k^{\alpha} \pi(k)\right)+0\left(k \pi\left(k^{\alpha}\right)\right) . \tag{4}
\end{equation*}
$$

The first error term in (4) is contributed by the primes not exceeding k and the second by the primes $k<p \leq k^{\alpha}$. From (4) we obtain (3) from $\pi(k)=o(k)$ and the well known theorem of Mertens

$$
\sum_{k<p<k} \alpha \frac{1}{p}=\log \alpha+o(1) .
$$

$$
\text { From (3) we obtain that for } k>k_{0}(\varepsilon) \text {, }
$$

$$
\begin{equation*}
\frac{1}{k^{e+\varepsilon}-k} \sum_{n=k}^{k^{e+\varepsilon}} v(n, k)>1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{k^{e-\varepsilon}-k} \sum_{n=\frac{k}{k}}^{k^{e-\varepsilon}} V(n, k)<1-n, n=n(\varepsilon) . \tag{6}
\end{equation*}
$$

(5) implies that, for some $n \leq k^{\alpha+\varepsilon}, V(n, k)>k$ or $n_{k}<k^{e+\varepsilon}$, and (6) implies that, for some $n>k^{e+\varepsilon}, V(n, k)<k$ or $N_{k}>k^{e-2 \varepsilon}$ which proves theorem 2 .

One is tempted to conjecture

$$
\begin{equation*}
\lim _{k=\infty} \frac{\log n_{k}}{\log k}=\lim _{k=\infty} \frac{\log N_{k}}{\log k}=e, \tag{7}
\end{equation*}
$$

but if (7) is true it must be very deep. As a modest step towards the proof of (7) we conjecture

$$
\begin{equation*}
\sum_{n=k}^{k^{\alpha}} v(n, k)^{2}=(1+o(1)) k^{2+a}(\log a)^{2} \tag{8}
\end{equation*}
$$

(8) would imply that for all but $o\left(k^{\alpha}\right)$ integers $n<k^{\alpha}$, $V(n, k)=(1+o(1)) k \log \alpha$.

Proof of Theorem 3. We say the prime p belongs to $(n-i), 0 \leq i<k$, if $p^{\alpha} \|(n-i), p^{\alpha}>k$ holds. It is easy to see that if p belongs to $(n-i)$, then $p \left\lvert\,\binom{ n}{k}\right.$. Observe further that a prime p can belong to at most one integer ($n-i$), $0 \leq i<k$. Clearly if for every $i, 0 \leq i<k$, at least one prime belongs to $n-i$, we obtain $V(n, k) \geq k$. The theorem now follows from the

LEMMA. To every $\varepsilon>0$, there is a $k_{0}(\varepsilon)$ so that for every $\mathrm{k}>\mathrm{k}_{0}(\varepsilon)$ and $\mathrm{n}>(\mathrm{e}+\varepsilon)^{\mathrm{k}}$ at least one prime beiongs to $\mathrm{n}-1$ for every $i, 0 \leq i<k$.

Assume that no prime belongs to some $n-i, 0 \leq i<k$.
Let $n-i=I p_{h}{ }^{h}$ be the canonical decomposition of ($n-i$) as a product of primes. Then since each of the factors in the expression is less than or equal to k, we must have

$$
n-i \leq k^{\pi(k)}=e^{\pi(k) \log k}=e^{(1+o(1)) k},
$$

an evident contradiction. Thus our lemma and the theorem are proved. On the basis of our tables, we can now state that

$$
\begin{aligned}
& N_{2}=4, \quad N_{3}=9, \quad N_{4}=15, \quad N_{5} \geq 33, \quad N_{6} \geq 63 \\
& N_{7} \geq 88, \quad N_{8} \geq 170, \quad N_{9} \geq 133
\end{aligned}
$$

and with a little more computation we could easily determine N_{k} for small values of k.

By the way, it seems certain that for $2 \leq k \leq n / 2,\binom{n}{k}$ is the
product of consecutive primes only for a finite number of values of n and k , but we can not even prove that

$$
\binom{n}{2}=\prod_{i=1}^{k} P_{i}
$$

has only a finite number of solutions; $n=21$ is probably the largest such n.

It seems certain that for every k there are infinitely many integers n for which $\binom{n}{i}, 1 \leq i \leq k$ is the product of i distinct pritines.

In the tables that follow, we iist some interesting facts of this twne besides giving the comolete factorizations of $\left({ }_{k}^{n_{k}}\right)$ for $k \leq 25$. Within the limits of our table $\binom{378}{22}$ is the only one which is divisible by each of the first 13 primes.

REPERENCES

.1. F. Erdos, Über Z Anzahl der Primfaktoren von $\binom{n}{k}$, Archiv der Nath. 25 (1973), 53-57.

2 B. Rosser and L. Schoenfeld, Approximate formulas for some To. cions of frime numbere, Illinois J. Math 6 (1962), 69-94.

Hungarian Academy of Sciences
5tadeyes:
402 Munforainan?
A.11ahabad 2, India

Allakabac Lnivers: $\%$
aly ansbad, india

Table 1

Complete factorization of $\left(k_{k}^{n}\right), 1 \leq k \leq 25$.		
k	n	$\left({ }_{k}^{n_{k}}\right)$
1	2	2
2	4	2.3
3	9	$2^{2} \cdot 3.7$
4	10	2.3.5.7
5	22	$2.3^{2} \cdot 7 \cdot 11.19$
6	26	2.5.7.11.13.23
7	40	$2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \cdot 19 \cdot 37$
8	50	$2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 \cdot 23 \cdot 43 \cdot 47$
9	54	$2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \cdot 23 \cdot 47 \cdot 53$
10	55	$2 \cdot 3 \cdot 5 \cdot 7.11 \cdot 13.17 \cdot 23 \cdot 47.53$
11	78	$2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 37.71 .73$
12	115	$2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 19 \cdot 23 \cdot 37 \cdot 53.107 \cdot 109.113$
13	123	$2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 17 \cdot 19.23 \cdot 29.37 .41 \cdot 59.61 .113$
14	154	$2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 17 \cdot 19 \cdot 29 \cdot 37 \cdot 47 \cdot 71 \cdot 73 \cdot 149.151$
15	155	$2^{2} \cdot 3 \cdot 5 \cdot 7.11 .17 \cdot 19.29 .31 \cdot 37.47 .71 .73 .149 .151$
16	209	3.5 .7 .11 .13 .17 .19 .23 .29 .41 .67 ,97.101.103.197.199
17	288	$2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 19 \cdot 23 \cdot 31 \cdot 41 \cdot 47 \cdot 71.137 \cdot 139.277 .281 .283$
18	220	$2 \cdot 3 \cdot 5.7 .11 .19 .23 .29 .31 .41 .43 .53 .71 .73 .103 .107 .109 .211$
19	221	2 2. 5.7.11.13.17.23.29.31.41.43.53.71.73.103.107.109.211
20	292	2.3 . 7.11 .13 .17 .23 .29 .31 .41 .47 .71 .73 .97 .137 .139 .277 .281 .283
21	301	2 2. 5.7.11.13.17.23.29.37.41.43.47.59.71.73.97.149.281.283.293
22	378	$2 \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23.29 \cdot 31.37 \cdot 41,47 \cdot 53 \cdot 61.73 \cdot 179.181 .359$
23	494	$\begin{aligned} & .367 \cdot 373 \\ & 2^{4} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 29 \cdot 37 \cdot 41 \cdot 43 \cdot 53 \cdot 59 \cdot 61 \cdot 79 \cdot 97 \cdot 163 \cdot 239 \cdot 241 \end{aligned}$
24	494	.479 .487 .491 $2 \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 29 \cdot 37 \cdot 41 \cdot 43 \cdot 53 \cdot 59.61 \cdot 79.97 .157 .163 .239$
25	551	$.241 \cdot 479.487 \cdot 491$ $2^{2} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 53 \cdot 59 \cdot 61 \cdot 67 \cdot 89 \cdot 107 \cdot 109 \cdot 137 \cdot 179$
		.181.269.271.541.547

Table 2

Factorization of $\left(\begin{array}{c}\mathrm{n}\end{array}\right)$ where the factors are distinct primes.
n
$26 \quad 2.13$
43 2.3.7.13.19.29.31.37.41.43
61 3.7.13.19.29.37.41.43.47.53.59.61
62 2.3.7.13.19.29.31.41.43.47.53.59.61
125 3.5.11.13.17.29.31.37.41.53.59.61.101.103.107.109.113
223 3.13.17.29.31.37.41.43.53.67.71.73.101.103.107.109.199.211.223
233 2.3.7.11.19.29.31.37.43.53.71.73.107.109.113.211.223.227.229.233
286 2.3.11.13.19.31.47.53.67.71.89.131.137.139.263.269.271.277.281.283
287 3.7.11.13.19.31.41.47.53.67.71.89.137.139.263.269.271.277.281.283
314 2.3.7.13.29.31.37.43.59.61.73.97.101.103.149.151.157.293.307.311.313
377 5.11.13.17.19.29.31.37.41.47.53.59.61,71.73.89.179.181.353.359.367 . 373

431 2.11.13.17.37.41.43.47.53.59.61.71.83.103.107.137.139.211.409.419 .421 .431

475 3.11.13.19.29.31.41.43.47.59.67.79.113.151.157.227.229.233.457 .461.463.467
$538 \quad 2.13 .23 .29 .31 .37 .41 .43 .47 .53 .59 .67 .89 .103 .107 .131 .173 .179 .257$.263.269.521.523

Table 3
Factorization of $\binom{23}{k}, 1 \leq k \leq 11$ and $\binom{47}{k}$,
$1 \leq k \leq 20$ which are all products of distinct primes.

k	$n=23$	k	$n=47$
1	23	1	47
2	11.23	2	23.47
3	7.11 .23	3	3.5.23.47
4	5.7 .11 .23	4	3.5 .11 .23 .47
5	7.11.19.23	5	3.11 .23 .43 .47
6	3.7.11.19.23	6	3.7 .11 .23 .43 .47
7	3.11 .17 .19 .23	7	3.11.23.41.43.47
8	2.3.11.17.19.23	8	3.5 .11 .23 .41 .43 .47
9	2.5 .11 .17 .19 .23	9	5.11 .13 .23 .41 .43 .47
10	2.7.11.17.19.23	10	11.13 .19 .23 .41 .43 .47
11	2.7.13.17.19.23	11	13.19 .23 .37 .41 .43 .47
		12	3.13 .19 .23 .37 .41 .43 .47
		13	$3 \cdot 5 \cdot 7 \cdot 19.23 .37 \cdot 41.43 .47$
		14	3.5 .17 .19 .23 .37 .42 .43 .47
		15	$3.11 .17 .19,23.37,42,43.47$
		16	2.3.11.17.19.23.37.4., 3.44
		17	$2 \cdot 3.11 \cdot 2.23,31 \cdot 37,41,43,47$
		18	2.5.21.19.23,31.37,41, 43,47
		19	2.5.11.23.25.31.77.41,43.2
		20	2.7.11.23.29.32, 37.41, 32.81

Table 4

Solutions of $\binom{n}{k}=$ product of consecutive primes.

$$
\begin{array}{ll}
\binom{4}{2}=2.3 & \binom{14}{4}=7.11 .13 \\
\binom{6}{2}=3.5 & \binom{15}{2}=3.5 .7 \\
\binom{7}{3}=5.7 & \left(\frac{15}{6}\right)=5.7 .11 .13 \\
\left(\frac{10}{4}\right)=2.3 .5 .7 & \binom{21}{2}=2.3 .5 .7
\end{array}
$$

Table 5

Values of $V(n, k)$, where they are consecutive integers.

k	4	9	11	27	99	420	468	503
1	1	1	1	1	2	4	3	1
2	2	2	2	2	3	5	4	2
3		3	3	3	4	6	5	3
4			4	4	5	7	6	4
5				5	6	8	7	5
6				6	7	9	8	6
7					8	10	9	7
8					9		10	
9							11	
10							12	

APPENDIX

Values of k for which $n_{k} \leq k^{2}$.
While we were searching for $k^{\prime} s$ for which $n_{k} \leq k^{2}$, by sheer brute force, Ernst S. Selmer, working on the UNIVAC 1110 at the University of Bergen, completed his project of computing n_{k} for $\mathrm{k} \leq 200$. His table shows that (within its limits)

$$
n_{k} \leq k^{2} \text { only for } k=2,3, \ldots, 30,32,36,37
$$

It is almost certain that this list is complete. Our thanks are due to Selmer for his making a copy of his work available to us. His table also brought to light a small slip we had made in computing $m_{30^{*}}$.

The only note-worthy facts that our calculations have brought out are:
(i) $m_{51}=3446>n_{51}=3445$;
(ii) $\binom{1007}{30}$ is square-free.

The relevant factorizations are:

$$
\binom{1007}{30}=53.503 .67 .251 .59 .167 \cdot 5 \cdot 37.499 .997 .83 .199 .71
$$

$$
331.2 .31 .991 .43 .47 .197 .41 .983 .491 .109 .7 .89 .
$$

$$
163.11 .17 .19
$$

Feceived August 25, 1975.

$$
\begin{aligned}
& \binom{3446}{51}=1723.53 .313 .1721 .181 .191 .491 .859 .229 .101 .3433 . \\
& \text { 73.7.127.857.149.571.137.107.163.59.311.263.1709. } \\
& 67.61 .683 .569 .3413 .853 .379 .487 .71 .3407 .131 .227 \text {. } \\
& 83.3^{3} \cdot 179.103 \cdot 1699.79 .283 \cdot 2^{2} \cdot 11 \cdot 13 \cdot 19 \cdot 31 \cdot 37 \text {. } \\
& \text { 41.43; } \\
& \binom{3445}{51}=53.313 .1721 .181 .191 .491 .859 .229 .101 .3433 .73 .7^{2} . \\
& 127.857 .149 .571 .137 .107 .163 \text {. } 59.311 .263 .1709 \text {. } \\
& 67.61 .683 .569 .3413 .853 .379 .487 .71 .3407 .131 .227 \text {. } \\
& 83.3^{3} \cdot 179,103.1699 .79 .283 .97 \text {.2.5.11.13.19.31. } \\
& \text { 37.41.43; }
\end{aligned}
$$

