
ON THE NUMBER OF DISTINCT PRIME DIVISORS OF ( )

P . Erdős, A . Gupta and S . P. Khare

Denote by V(n,k) the number of distinct prime divisors of (k) .

It is well known and easy to see that for n > n0 (k), V(n,k) Z k and

it is very likely that V(n,k) - k for infinitely many n . Denote

by mk the least positive integer n for which V(n,k) = k, by n k

the least one for which V(n,k) >_ k and by N k the smallest integer

so that for every n ? Nk , V(n,k) t k .

We have tabulated the complete factorizations of (k) for

n 5 551, k 5 25. We have thus obtained values of mk for k 5 25. We

cannot, however, prove that mk exists for all k . It is interesting

to note that m k is not always less than mk}l . Thus for example

m17 > m19 > m18, also m51 > n51 and m28 > m26 > m27 . On the basis

of our table one would guess that nk < k` always holds . In fact,

we shall prove that this conjecture completely fails . We have

THEOREM 1. nk > k` for k > 4939 . Further, for every E > 0 there

is -- k0 (E) so that for all k > k 0 (E).n k > (1-E) k2log k .

With somewhat longer computation we could determine all the

integers k with nk 5 k 2 . It seems certain that
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_
k m

k 2lo8 k
m

is true and perhaps its proof is not too difficult, though we have

succeeded in proving it .

log nk

	

log Nk
THEOREM 2 .

	

lira sup log k 5 e, lira inf log k > e .
k

	

g

	

k--

	

g

It seems very difficult to get a good upper bound for N k .

Here we prove
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THEORM 3 . For every c > 0, k > k0 (E), Nk < (e+t) k .

P . ErdSs has stated this without proof in [1] . P . Erdüs and

E. Szemeredi (unpublished) proved in fact a slightly stronger result :

there is an a < e such that Nk <
CL k for k > k0 .

certainly holds but we can not prove it .

Proof of Theorem 1 .

	

Let 2 - p l < p2 < . ., be the sequence of

consecutive primes . A theorem of Rosser [27 states that for every j,

p
J
. > j log j . Thus by Stirling's formula, we obtain

nk

	

k

	

k

	

k

	

k -k k(1)

	

(k ) a R pi ? R t log t= k! R log t> k e

	

R log t
i=1

	

t=2

	

t=2

	

t-2

On the other hand, if nk s k 2 , we evidently have

k

(2)

	

(k ) < k <
k2kkek = k

k ek .
k

Now (1) and (2) imply that

or what is the same thing

k
log log t < 2k .

t=2

This is false for k > 4939, thus for k > 4939,nk > k 2 . Further,

for k > k 0(E) we obtain by a simple computation

k
log log t > 2k + (1-s) k log log k. Thus from (1) and (2) we

t=2

easily obtain that for k > k 0 (E),nk > (1-E)-k 2 log k, which

completes the proof of Theorem 1 .

lim Nl lk = 1
k=m

k
R log t < e2k ,

t=2
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Proof of Theorem 2 . First we prove that for every a > 1 and k-*

ka
(3)

	

V(n,k) _ (l+o(1))kl+a log a .
n-k

To prove (3) observe that if p is any prime greater than k

then pl(nk) if and only if pÍ(n-j) for some j, 0 < j < k . Thus we

evidently have

a
(4)

	

V(n,k)

	

k
k

+ 0(kan(k)) + O(kn(k a )) .
n-

	

kspsk

	

p

The first error term in (4) is contributed by the primes not e : :ceeding

k and the second by the primes k < p <- k a . From (4) we obtain (3)

from n(k) = o(k) and the well known theorem of Mertens

k<Eka p = log a + 0(1) .

From (3) we obtain that for k > k0 (e) ,

ke+e

(5)	 1	 E V(n,k) > 1
ke",E-k n=k

One is tempted to conjecture

log n k

	

log Nk
(7)

	

lim	 = li", l

	

= e ,
k=s log k

	

k=-
k
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and

ke-E

(6)

	

1 V(n,k) < 1-n, n = n(e)
ke-c -k n=

(5) implies that, for some n 5 ka+E , V(n,k) > k or nk < ke+E , and

(6) implies that, for some n > ke+E, V(n,k) < k or Nk > ke-2E which

proves theorem 2 .



but if (7) is true it must be very deep . As a modest step towards the

proof of (7) we conjecture

ka
(8)

	

V(n,k) 2 = (1 + o(1)) k 2 (log a) 2 .
n=

(8) would imply that for all but o(k a ) integers n < k a

V(n,k) - (1 + 0(1)) k log a .

?roof of Theorem 3 . We say the prime n_ belongs to

(n-i), 0 <_ i < k, if pa 11(n-1), pa > k holds. It is easy to

see that if p belongs to (n-i), then pl(n) . Observe further that

a prime p can belong to at most one integer (n-i), 0 <_ i < k .

Clearly if for every i, 0 <- i < k, at least one prime belongs to n-i,

we obtain V(n,k) 2 k . The theorem now follows from the

LEMMA . To every E > 0, there is a k0 (c)

	

tro

	

r eve s

k > k0 (e) ard n > (e+£) k at Zeast one p2--me be'cnas ic, n-i for

every i, 0 s i < k .

Assume that no prime belongs to some

	

, 0 s i

Let n- i= R p be the canonical decomposition of (^-i) a s

product of primes . Then since each of the factors in the expression

is less than or equal to k, we must have

n - i < kn(k) - ea(k) log k = e (1 + o(1))k

an evident contradiction . Thus our lemma and the theorem are proved .

On the basis of our tables, we can now state that

N2

	

4,

	

N3 = 9,

	

N4 = 15,

	

N5 z 33,

N7 ? 88, N8 ? 170, N 9 z 133 ;

and with a little more computation we could easily determine Nk

for small values of k .

By the way, it seems certain that for 2 <- k <- n/2, (k) is the
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product of consecutive primes only for a finite number of values

of n and k, but we can not even prove that

k

has only a finite number of solutions ;

	

21 is probably the

largest such n .

it seems certain that for every k there are infinitely many

integers n fcr w:lích (
n
.,), 1 5 ~ _< k is the product of

	

distinct

n' : •: nesV

in the tab cs

	

follow, we list some interesting facts of
r.•

this tune besides ¢ív : .ng the com^lete factorizations of (k K ) for

4, .

	

W1 1-711P. the _1e1Ií=. c+ our table ( ? 28) is the only one

' EaGr cf th :.= first !-'Primes .

Erdbs,

3 . Ecss=r and L . Schoenfeld, Approximate forrmaZas for some

,c _r s Illinois .i . Math E ;1962), 69-94 .

n
1er ~rim," torert v~n ( k ), Archiv der
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167'L817'6L17'17Z'
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Table 2

Factorization of (2 5 ) where the factors are distinct primes .

n

26 2.13

43 2.3 .7 .13 .19 .29 .31 .37 .41 .43

61 3 .7 .13.19 .29 .37 .41 .43.47 .53 .59 .61

62 2 .3.7.13 .19 .29 .31 .41 .43 .47 .53 .59 .61

125 3 .5 .11 .13.17 .29 .31 .37 .41 .53.59 .61 .101 .103.107 .109 .11 3

223 3 .13 .17 .29 .31 .37 .41.43 .53.67 .71.73 .101 .103 .107 .109.199 .211 .22 3

233 2 .3 .7.11 .19 .29 .31 .37 .43 .53 .71 .73 .107.109 .113 .211 .223 .227 .229 .23 3

286 2 .3.11 .13 .19 .31.47 .53.67 .71 .89 .131 .137 .139 .263 .269 .271.277 .281 .28 3

287

	

3 .7 .11 .13 .19 .31.41 .47 .53.67 .71 .89 .137 .139.263 .269 .271 .277 .281 .28 3

314 2 .3 .7.13.29 .31 .37 .43 .59 .61 .73 .97 .101 .103 .149 .151 .157 .293 .307 .311 .31 3

377 5 .11 .13 .17 .19 .29 .31 .37 .41 .47 .53 .59 .61 .71.73 .89 .179 .181 .353 .359 .36 7

.373

431 2 .11 .13.17 .37.41 .43 .47 .53 .59 .61 .71 .83 .103.107.137 .139 .211 .409 .41 9

.421 .431

475 3 .11.13.19 .29 .31 .41 .43 .47 .59 .67 .79 .113 .151 .157 .227 .229 .233 .457

.461 .463 .46 7

538 2 .13 .23 .29 .31 .37 .41 .43.47 .53 .59 .67 .89 .103 .107 .131. 173 .179 . 2 :7

.263 .269 .521.523



k

	

, = 23

1

	

23

2

	

11 .23

3

	

L11 .23

4

	

5 .7 .11 .23

5

	

7.11 .19 .23

6

	

3.7 .11 .19 .23

7

	

3.11 .17 .19 .23

8

	

2 .3 .11 .17 .19 .23

9

	

2 .5 .11 .17 .19.23

10

	

2 .7 .11 .17 .19.23

11

	

2 .7 .13 .17 .19 .23

Table 3

Factorization of (k3), 1 5 k 5 11 and (k
47

1 5 k <_ 20 which are all products of distinct primes .

k

	

n=47

1

	

47

2 =47

3

	

3.5 .23.47

4

	

3.5 .11 .22 3 .47

5

	

3 .11 .23.43 .47

6

	

3 .7 .11 .23 .43.47

7

	

3.11 .23 .41 .43 .47

8

	

3 .5 .11«23 .41 .43 .~7

9

	

5 .11 .1 .3 .23 .41 . 3 .c7

10

	

11 .13 .19 .23.41 .43.4 7

1i

	

13 .19 .23.37,41 .43 .47

12

	

3 .13 .19 .23 .37 .41 .4-3-4 7

13

	

9 . 1 V 2& 3 V 41 .~3 - `

lH

	

5, .19 .2_. 3-;. 1 h 4

i ~

	

3.11 .

	

'9 .33 .37	a,,

i 7

	

2 . 3 . 11 1

	

~ . 23

	

3~ -41 42

--

2 "j

	

2 . 7



Table 4

Solutions of (k) = product of consecutive primes .

(2)

(?)

{3)

(40 )

=

=

2 .3

3.5

5 .7

2 .3 .5 .7

V(nwhere

(44 !

(2 5 ) =

(6 5 ) =

( 21 ) =

7.11 .13

3 .5 .7

5 .7 .11.13

2 .3 .5 .7

Values of

Table 5

they are consecutive integers .

k n 4 9 11

	

27

	

99

	

420

	

468

	

503

I 1 1 1

	

1

	

2

	

4

	

3

	

1

2 2 2

	

2

	

3

	

5

	

4

	

2

3 3 3

	

3

	

4

	

6

	

5

	

3

4 4

	

4

	

5

	

7

	

6

	

4

5 5

	

6

	

8

	

7

	

5

6 6

	

7

	

9

	

8

	

6

7 8

	

10

	

9

	

7

8 9

	

i0

9 11

10 12



VaZues o., k for which nk 5 k 2 ,

APPENDIX

While we were searching for k's for which n k <_ k 2 , by

sheer brute force, Ernst 5 . Selmer, working on the UNIVAC 1110 at the

University of Bergen, completed his Droject of computing nk for

k <_ 200 . His table shows that (within its limits)

nk <_ k` only for k = 2,3, . . .,30,32,36,37 .

It is almost certain that this list is complete . Our thanks are due to

Selmer for his making a copy of his work available to us . His table also

brought to light a small slip we had made in computing m 30 .

The only note-worthy facts that our calculations have brought

out are :

(i)

	

m51 = 3446 > n51 = 3445 ;

(ii) ( 100730 ) is square-free .

The relevant factorizations are :

( 3 546 ) = 1723.53 .313 .1721 .181 .191 .491 .859 .229 .101 .343 3 .

7 3 .7 .127.857 .149 .571 .137 .107 .163.59 .311 .263 .1709 .

67 .61 .683 .569 .3413 .ö53 .379 .487 .71 .3407 .131 .227 .

83 .33 . 179 .103 .1699 .79 .283 .2 2 . 11 .13 .19 .31 .3 7 .

41 .43 ;

3445

	

2
( 51 ) = 53 .313 .1721 .181 .191 .491 .859 .229 .-01 .3433 .73 . 7 .

127 .857 .149 .571 .137 .107 .163 .59 .3'_1 .263 .1709 .

67 .61 .683.569 .3413 .853.379 .487 .71 .3407.131. 227 .

83 .3 3 .179, 103 .1699 .79 .283 .97 .2 .5 .11.13 .19 .31 .

37.41 .4 3 ;

(13007) =
53.503.67 .251 .59 .167 .5 .37 .499 .997.83.199 .7 1 .
3 31 .2 .31.991.43 .47.197 .41 .983 .491.109 .7 .89 .

163.11 .17 .1 9 .

Reee,;ved August 25, 1915 .

-60-


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

