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1 . INTRODUCTION

In [1] two of us investigated the problem of determining those cardinals
a, /3, y, 8, A for which the following statement, abbreviated Iá(8, g, a, A, y),
holds : "Whenever V is an a-dimensional vector space over a field of A
elements, and the 8-dimensional subspaces of V are partitioned into y
classes, there is some /-dimensional subspace of V all of whose 8-dimen-
sional subspaces are in the same class ."

In this paper, we investigate the related question of which cardinals
a, /3, y, and 8 make the following statement valid : "Whenever V is an
a-dimensional vector space over GF(2) and V = Ua<v Ao , there are some
U E [V]d (the set of (3-element subsets of V) and some cc < y such that if
1 < t < 8 and W E [U]t, then Y, W E AQ ." This statement will be abbre-
viated <a> (We could of course ask the same question with a
field of A elements replacing GF(2) . However, we have no interesting
results when A :A 2.) Note that the statement <a> -> </3> only makes
sense if 8 < w.

The statement <a> has a simple set-theoretic formulation in
terms of the symmetric difference, d, of two sets . We will use the notation
d~_~A j = (J i=,A i) JAt . We also take a cardinal to be the least ordinal
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of a given equipotence class . In particular, we write co for the first infinite
cardinal. is equivalent to the statement "Whenever [a]~w =
(Ja<v A a there are some B E [[a] w]a and some 6 < y such that, if I t < 8
and {Ci} i_, c- [B]t, then d i ,C i c- A Q ." (The equivalence can be seen by
taking V - {x e {0, 1}a : {q c a : x(,q) = 1}I < w} and associating each
element x of V with x-r({1}) . In this case, x + y is associated with

,({1}) dy-T1}) .)
Under the assumption of the generalized continuum hypothesis and

the nonexistence of inaccessible cardinals greater than w, we have been
able to determine the validity of for given R, 8, and y for all
except at most finitely many values of a .

Section 2 consists of the development of the necessary results and
counterexamples . The main theorems and some questions are presented
in Section 3 .

2. DEVELOPMENT OF RESULTS

Throughout this paper, we assume that the results about <a> </3~s
are not vacuous . Thus, we assume that 2 8 < w, 8 C R + 1, 1 < y,

Q < a if a w and < 2' if a < w . We also note the following trivial
implications :

LEMMA 2 .1 . Let (Y < a', 0 < g', y < y', and 8 < 8' .
(a) If <a)

	

then <a'>

	

<~3w .
(b) If <a>

	

then <a>

(c) If <a> - <f3>, , , then <a> , «3)y .

(d) If <a/, «iv then <a>

The following lemma relates the statement 0(l,

	

2, y) and
<a> - «>v .

LEMMA 2.2 .

(a) If 1 < R < w and 0(l, (3, a, 2, y), then <a> «~a+i

(b) If g >- w and 0(1, g, a, 2, y), then <a>

(c) If 2

	

R < w and <a>

	

<0>"+i, then 0(l, /3, a, 2, y) .
(d) If R , w and <a>

	

then 0(l, /3, a, 2, y ) .
(e) If 2 < 0 < w and y > w, then <a>

	

and 0(l, g, a, 2, y)
are equivalent .

(f) If /3 , w and y , w, then <(x> «iv and 0(l, 0, a, 2, y) are
equivalent .

Proof. If S is a set of vectors from some vector space, we let <Sj
denote the subspace generated by S. We denote <{v}> by <v> .
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(a) Let V be an a-dimensional vector space over GF(2) and let
V = U,,,,A Q . For each a < y, let B Q = {<v> : v E A QA{0}} . Then there are
some / -dimensional subspace U of V and some a < y such that whenever
v e U\{O}, <v> e BQ . Let W be a basis for U, then W E [V]a and, if 1 < t <
(3 + 1 and H e [W]t, then I H E U\{0] so Y, H E A Q .

The proof of (b) is obtained from the proof of (a) by replacing /3 + I
with w.

(c) Let V be an a-dimensional vector space over GF(2) and let
{<v) : v c- V\{0}} = Ua<v B. . Let A o = {0} and for a < y let A, _
{v c V\{0} : <v) E Bal . (If a is a limit ordinal, let A Q - o .) Then there are
some W E [V]s and some a < y + 1 such that one has Y_ H E A Q whenever
H C W and H 0 . Let U = <W> . Note that a 0 0 since g >, 2 . Con-
sequently, if H C W and H 0 then Y H* 0 . Thus, W is a set of
linearly independent vectors, and hence the dimension of U is g . That the
1-dimensional subspaces of U are contained in Ba_ , is trivial .

(d) The proof of (d) is similar to the proof of (c) .
(e) follows from (a) and (c), and (f) follows from (b) and (d) .

As a consequence of Lemma 2.2 we have from [1] the following results .

LEMMA 2.3 .

(a) If ~ < to, 8 < to, and y < m, then there is some least integer
N(g, y, 8) such that <N(R, y, 8)>

(b) If y < u), then <cu> - <w~y .

(c) If ~ < w and the generalized continuum hypothesis is assumed,
then for each ordinal a, <Ká+2i -> «~Nu

(d) If 2 < R < co and the generalized continuum hypothesis is
assumed, then for each ordinal a, <x,3_,i

Proof. In addition to Lemma 2 .2 we need only note :

(a) That 0(1, P, N, 2, y) holds for some N follows from [2,

Corollary 2] . Thus <N> «~a+~ holds hence <N> holds, so there
is a smallest N for which it holds .

(b) That 0(1, co, w, 2, y) holds follows from [4, Corollary 3 .5] .
(c) That (1, g, Hó+2 , 2, HQ) holds is Lemma 2.16 of [I] .
(d) That -0(1, g, HQ+a i , 2, NJ holds is 2.14 of [1] . Since g > 2,

Lemma 2.2(c) applies .

The following lemma establishes part of the relationship between
<a>

	

<(3~y and the arrow relation of [2] . Recall that a (/3)s if and only
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if whenever [a]' = Ua<v A_ there are some B E [a]" and some a < y such
that [B]s C AQ . In the following we use the convention that, if P > w, then

LEMMA 2.4. Let A - 2, if a < w and let A - a fa w. If 1
then < a> -> <g - 1>,Y' .

Proof. Assume íA

	

Let V be an a-dimensional vector over
GF(2) and note that I V - A. Let V = Ua<v AQ . For each a < y, let
BQ = {{ x, y} E [V] 2 : x + y c- A,} . Then [V] 2 = U,,,, B Q . Since A -> ((3)v ,
there are some W E [ Vy and some a < y such that [ W]2 C BQ . Pick a E W
and let U = {a + b : b e W\{a}} . Then U E [Vy-1 and U C AQ . Also if
{a + b, a + c} E [U] 2 , then since b -+- cc-A,, (a + b) + (a+ c) E A, .
Thus <a<

	

« 3 - 1>,3, holds .
Lemma 2.6 is preliminary to a partial converse to Lemma 2 .4 . We will

make use of the following notation .

DEFINITION 2 .5 . Let a _>- w, let F e [w]«, and let G E [a]" where
maxF<p . Then B(G,F)={vEG :Í{-qEG :q<v}IEFf .

Thus, for example, if F = {0, 2}, G - {vo , vi , v 2 , v 3 } and
v o < vi < v2 < v,,, then B(G, F) _ {v, ) , v2i

The following lemma allows us to assume that we have vectors which
all have the same overlapping pattern .

LEMMA 2.6 . Let ~ be a regular infinite cardinal and let R

	

A . Let
p < w and let tv e [[a]v]°such that, for all U and V in tv, I Ud V = p. Then
there are some j E [a]'/ 2, F E [ p]7)/ 2 and to* E [tv]a such that, whenever U
and V are distinct members of tv*, U n V = J and either B(Ud V, F) = U\J
or B(UJ V, F) - V \J.

Proof. Since V e [[a]'n]a and for every U and V in V, Ud V E [A]v, we
have immediately the existence of J in [a]"i2 such that, for every U and V
in tv,UnV=J.

For U E [a]" and j < p, let S(U, j) be that element of U with j prede-
cessors. By transfinite induction iterated p/2 times, we may choose
tv' E [tV]a and order tv' _ {W I,< ,3 so that whenever p < Q < R and j <p,
one has S(W, , j) < S(W, , j) . We can further assume that there is some
H E [ p]v12 such that, for each o < ~, B(WQ , H) = J.

We now claim that we can choose tv* _ {Vo}Q~ a so that, if u < -r < p < R

and i < j < p and {i, j} n H = 0, then S(VQ , i) < S(V , j) if and only
if S(V , i) < S(VP J). Since [p\H] 2 is finite, it suffices to produce for any
given {i, j ; E [ p\H]2, a monotonic function f : (3 R so that whenever
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a < T < p < R one has S(Wf (,) , i) < S(Wf (,) , j) if and only if
S(Wf(,) , i) < S(Wfw )J) •

To this end, let {i, j} E [ p\H] 2 with i < j . There are two cases to consider .
In Case 1, for each a < 0 there is some T > 6 such that S(W, , j) <
S(W, , i) . In this case, let f (0) = 0 and assume that f ((7) has been defined,
for each a < T, so that whenever a < p < T one has S(W( ,) , j) <
S(Wf (,) , i) . Let 7) = sup { f (a) : 6 < T} . By the regularity of (3, 7) < /3 . Let
v > 7) such that S(W„ , j) < S(W, , i) . Let f(T) = v . Now if 6 < T, then
S(Wf (,) , j) S(W, ,j) < S(W, , i) = S(Wf (,) , i) . In Case 2, there is some
v < ~ such that, for every T > Q, S(W, , i) < S(W, , j) (since for T a,

W, n W, = J = B(W, , H) and since i ~ H andj 0 H, we have S(W, i)
S(Wa , j)) . In this case, for each v < /3, let f(v) = 6 + v . Thus, if
v < T < P one has S(Wf (,) , i) = S(W,,, , i) < S(W, , j) < S(W,+, , j) _
S(Wf (,) J). Consequently, the claim is established .

In particular, we have if 6 < T < ~ and {i, j} E [p\H] 2 , then S(V, , i) <
S(V , j) if and only if S(V, , i) < S(V, ,j) . Let F = {i < p : S(Va V, , i)
E Vo} . Now, if or < T < g, one has B(VQd V,, F) = V,\J, as desired .

LEMMA 2.7 . Let ~ be a regular infinite cardinal and let y > w, then
<a> -~- «>y if and only ij' a -)- ((3)y .

Proof. The necessity is Lemma 2 .4. Assume <(x>

	

and let
[a]2 = U, R, . For each even p < m, order [a] 1'/2 = {E(p, v)},<, and
write [ p]á'1 2 = {F(p, t)}t<j ( 2,) , where, of course, j(p) _ ( P;2) . For each even
p and for each set {Qj }g< ;(,) C y, let A(p, ao, g,- . 1

	

-1) - {U C- 1-1" :
for each t < j(p), {v, q} E R, where B(U, F(p, t)) - E(p, v) and
UI B(U, F(p, t)) = E(p,,q)}.
Now we may order {A(p, 60 , . . ., (y,(,)-,):p is even and {Q i} i< ;(,) C

y} u {[a] 1' : p is odd} _ {B,j,< ,, . Now [a]<~- - U,< ,,B, . So, by assumption,
there are some tv e [[a]-]" and some p < y such that tv C B, and, if
{E, F} E [tv]2, then EJF E B, . B,

	

[a]'9 for any odd p since, if I E I _
I F I _ I EJF I= p, then I E n F I= p/2 . Thus there are some even p and
some {Q,},~,~ p ) such that P, = A(p, ao, Q~

	

or>(p)-r) •
Hence, given U and V in iv, we have I Ud V I = p. By Lemma 2 .6 there

are j E [A]p/2 , FE [p]V/ 2 , and tv* E [tv]a such that, whenever {U, V} E

[tv*] 2, one has U n V = J and either B(UJ V, F) = U\J or B(UJ V, F) _
V\J. Now F = F(p, t) for some t < j(p) .

Let X - {v < a: There is some UE w* such that U\J= E(p, v)} . Then
X E [a]a . We Maim that [X]2 C R,, . To this end, let {v, ~} E [X]2 and pick
U and V in m* such that U\J= E(p, v) and V\J= E(p,,q) . Without loss
of generality, B(UJ V, F) - U\J. Consequently, (Ud V)\B(UJ V, F) = V \J.
But Ud V E A(p, u	Q;( 2,)-,) and B(Ud V, F) = E(p, v) and (Ud V)\
B(Ud V, F) = E(p, q), so {v, -q} E R,,, as desired .
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As a consequence of Lemma 2.7, we have from [2] the following results .

LEMMA 2.8 . Assume the generalized continuum hypothesis. Let a > co
and let g < a .

(a) If y+ < a, then <a>

(b) If g > w and y+ > a then <a> «~y

Proof. (a) Assume y~ - < a. By [2, theorem 1], a ((3)y . Thus by
Lemma 2.4, we have <a> « - l> . If P y

	

, w this is <a)

	

If
/3 < w, then in fact <a) --* <o))' so <a>

(b) Assume g > w and y+ > a. By [2, Theorem 1] (X (w)/ . Thus,
by Lemma 2.7 we have that <a> <w)' . Since

	

w, we have

<ai «iv
The following result is needed to obtain the fact that <P> -* «)y fails if
is an infinite successor and y < w .

LEMMA 2.9. Let be a regular cardinal, P > w. If <R> , «yy , then

R - (R)v

Proof. Let [R]<w =- {E(p%,j, . Assume <(3> -- <P>' and let fp] 2 =
UQ< ,, Aa . For each U E [R]C-, let B(U) _ {v e U : I{,q c U : q < v}I <
I q e U : -q > v)j} . (Thus B(U) is the first half of U if I U I is even .) For
each 6 < y, let BQ = {U : {v, q} EAQ where B(U) =-E(v) and U\B(U) _
E(-)} .

By assumption, there are V E [[R]<w ]a and a < y such that tv C BQ and,
if { U V} E [v]2, then UJ V E Bo . Since ( > w and g is regular, we may
assume that there is some p < w such that tv C [R]" .
We may choose a subfamily to* E [v]3 and a set J such that if

{U VI C [tv*] 2 , then U n V = J. Ordering tv* by the first member of
U\J we in fact obtain tv' E [tv*]a so that if {U, V} E [v'12, then either
max(U\J) < min(V\J) or max(V\J) < min(U\J) . Let X - {v : There is
some U E tv' such that E(v) = U\J} . Now, if {v, 7J E [X]2 , then we have U
and V in tv' such that U\J = E(v) and V\J = E(-q) . Without loss of gene-
rality, max U\J < min V\J. Since I U\J I = V\J I , we have B(UJV) _
U\J = E(v) and (UJ V)\B(UAV) = V\J = E(,q) . Since UAV E BQ ,
{v, 7)} E Av . Thus [X] 2 C A, .

LEMMA 2.10 . Assume the generalized continuum hypothesis and let /3
be an infinite nonlimit cardinal, then <R> -/_>_ «i2 ,

Proof. By [2, Theorem 1], we have that /3 (/3)2 . Since P is a nonlimit
is regular so by Lemma 2.9, <(3> <9>2 .
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The following lemma is needed to prove that <R> -/~- <0>' for nonregular
limit cardinals . Its proof uses methods of [2] .

LEMMA 2.11 . Let A and µ be cardinals such that A = µ -1- = 29 . Then
there exists a collection of pairwise disjoint sets {Ol o }Q<u such that [A]<w =
Ua<µ 67, and, for every A E [[A]<w]" and every B E [[A]<w]' and every or < /-L,

there are some y e A and x c- B such that y v x c O7Q .

Proof. Let [[A]<w ] " = {moo }U< ~ (with Mo = [µ]<w ) . For each 6 < µ, let
Q,, = 0 . Let p < A and assume that, for each q < p, we have chosen
{O7o,,,}Q<u such that :

(1) For each a < p, 0íQ ,,, D U,<n QI , v .

(2) For each 7 < -q, if UM, C q and if x c [A] <w such that max x
then there exists { y,),< ,,, C M, such that, for a < µ, yv v x c- OIQ ,,, .

(3) Ua<u u 67, C q -}- 1 .
(4) If u < T < µ, then 67, , _

(5) 1f a < p and x E 67, \U,,, 67,,, , then -q c x .

All conditions are easily verified when q = 0. If p < µ, then there is no
T < p such that U-4, C p. Consequently, we may let Q,,, = o for each
a < p and p < µ . In this case (1), (3), and (4) are clearly satisfied and (2)
and (5) are satisfied vacuously .
We now assume p > µ . Let {x e [A]<w : max x = p} = {x,},,, and let

1,4, : 7 < p and U.~, C p} _ { Q,, µ (with repetition as necessary to fill
out the list). Since -,go = [[L]<w, the latter set is nonempty . Order
µ x µ x µ = {(Q, , e, , t,)}, <u . For each r < µ we choose inductively
ya e C,_ so that yQ v x,, 0 { yQ f v x, < -r}. This can be
done since I{ yQ ~, ~, v x n :

	

< 7}1 "

	

< µ while I{ y v x,, :
y e C,,) ~ = µ . (Note that x, 7 I < cu and if y U x, , = y' v x, , then
YJY' C x" •)

	

/yJ
For each a < [L, let a,,, = U,<P Q, l, V { y o V x. < tL and t < p} .

Condition (1) is trivially satisfied . Since, for each < µ and c < µ,
UCe C p and max x, = p we have conditions (3) and (5) satisfied. To verify
condition (2) note that if U-1, C p and x E [A]<w such that max x - p,
then J, = C £ and x = x, for some e and t. Then { y,, e, : Q < µ} is as
required by condition (2) . Finally, condition (4) is satisfied by the con-
struction of { yo ,,,, : a < µ, 6 < [L, c < µ} and the fact that condition (4)
held at previous levels .

Now, for each a such that 0 < or < µ let a, - Ua« OlQ , p . Let Q, =
[A]<w\Uo<a<µ 67, and note that Q0 D Up« 67o ., . Then fa,},<µ is a collection
of pairwise disjoint sets and [A]<w = Ua<µ 67a . Now let A E [[A]<w ] ,, ; let
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B E [[a]«]~, and 6 < tc . Now A = 97 for some T . Pick p' < µ such that
-r < p' and sup U2, < p' . Since I B I = A, there is some x cB such that
max x > p'. Let p = max x. Then U,1,r C p and max x = p so, by condi-
tion 2, there is some yo E M,T = A such that ya U x c- a, .

LEMMA 2.12 . Let A and µ be cardinals such that A = µ-1 = 2µ . Then
there are disjoint sets -4o and -4, , such that [A]« _ , n 4, , and whenever
B E [[1]<w]~ there is {x o , x, , yo , y,} C B such that xo U y o E Mo and
x,Uy,EA .

Proof. Let {Ol}Q<µ be as guaranteed by Lemma 2.11 and let -4o = a,
and sV, = Uo<a<w 67 . Let A E [B]u and pick {xo , x,} C B and { yo , y,} C A
as guaranteed by Lemma 2.11 .

LEMMA 2.13 . Let A and g be cardinals such that of < A = cf(g) < g
and let { y}~« be cofinal in g . Let A E [[R]<w]a . Then there are some B C R
and some {VQ}Q« C A such that I{v < A : There is some a < A such that
(VQ\B) n [0 v , 0,+,) o o}I = A and whenever u < T < A one has
VQ nV? = B.

Proof. Since cf(~) > co, we may assume that there is some t < co such
that A C [g]t . We may choose inductively { W},<2, such that ~{v < A : There
is some g < A such that WQ n [~ , 0,+,) o o}I = A . (We use the fact
that, for v < A, I [0J 1 I = 10, I .) Then, since A is regular, we may find B
and {VQ}Q< , C {WQ}Q<, such that VQ n V7 = B when Q < T < B.

LEMMA 2.14 . Let g be a cardinal such that cf(p) < R and cf(p) = µ =
2ufor some cardinal lc, then <0> --/* OA -

Proof. Let A = cf(O) and let {0,1, < , be cofinal in Let -4, and -4, be
as guaranteed by Lemma 2 .12. For i < 2, let Az - {V E [g] <- : {v < A :
V n [0v , 0v+,) 0} E Ri}, then [g]<w = Ao U A, . Suppose there are
some i < 2 and tv e [[g]<w]" such that w C Ai and, whenever {V, W} E [tn]2,
VJWEAi .
Choose {VJ} <A C tv and B as guaranteed by Lemma 2.13. Let, for each

a < A, KQ = {v < A : [0„ , 0v+,) n (VQ\B) b} . By Lemma 2.13 .
l{v < A : v c KQ for some a}~ _ A . Since each KQ is finite, we have
I{KQ : a < A}I = A . Thus, by Lemma 2 .12, there are 6 and T less than A
such that KQ U K7 0 Mi . But KQ U K7 = {v < A

	

n (Vod Vz) 0,
0 }, thus V J Vz 0 Ai , which is a contradiction .
In the presence of the generalized continuum hypothesis and the absence

of inaccessible cardinals bigger than w, Lemmas 2 .10 and 2.14 show that
«> --> <0>' fails except possibly when cf(g) = co . If R = co, then by
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Lemma 2.3 we have <g> -> <R>y for y < w . The following lemma esta-
blishes that «> «> holds if y < w = cf(g) <y

	

(3 .

LEMMA 2.15. Let y < co and let R > cf(/3) - w, then «> <g>,' .

Proof. Let {µt}t<w be a set of cardinals cofinal in /3, and assume that

µt < µ s when t < s . Let [(3]<W - UQ<vAQ . Using [2, Lemma 3], in a
fashion similar to the proof of [2, Lemma 3B], we obtain disjoint sets
{St}t<w with the following properties :

(1) For each t < w, I St I = µt .

(2) Ut<w St C g .

(3) {A,},<,, is supercanonical in {S t}t<u , , for sets of size 27 +1 or less .
That is if r - 27+1 and A E [Ut<w S t ]r and B E [Ut<w St ] r and {t : A n
St 0 } _ {to , t1 , . . ., t,}, with to < t, < . . . < t p , and {t : B n St o } _
so, s1 , . . ., s p }, with so < s, < . . . < s,, and for each i, with 0 < i < p,
A n S t . I _ I B n Ss . I , then A and B are in the same cell of {A Q} Q<y .

In particular, we have that if r < 2""-1 , A E [Ut<w St] r , B e [Ut<w S Jr,
for each t< w, A n St J c-10,21 and B n St J c-{0,21, and l{t < w
A n S t o } l _ l {t < w : B n S t 011, then A and B are in the same
cell of {A,1,< , . By the pigeon hole principle, there exist j < r < y and
6 < y such that, whenever A E [Ut<w St]< 2"+1+1 and, for each t < w,

I A n St I E {0, 2} and ~{t < w : A n St

	

o}l c {2j, 2r}, then A E A, .
Write, for each t < w, St = {d(t, p)}p<~t . For each t < w, and each p

such that 1 < p < µt , let

B(t, p) _ {d(p, 0) p < 2r -1 or t + 2r-1 < p < t + 2r}

V {d(p, 1) : p < 2r-1 or t + 2r-1 < p < t + 2r - 2~}

V{d(p,p) :t+2r-2i<p<t+2r} .

Let V = {B(h • 2r, p) : h < w and 1 < p < µh . 21} . Then and,
for h < w and p such that 1 < p < µ h . 21, we have I{t < w : B(h • 2r, p) n
St

	

o}l = 2r . Thus, since for each h < w and 1 < p < µ h . 2, and each
t < w, I B(h • 2r, p) n S t I E {0, 2}, we have tv C A, . Now let {B(h • 2r, p),
B(q • 2r, v)} E [tv]2. If h = q then v p and {t < w : (B(h •
2r, p) AB(q • 2r, v)) n S t 0 }I = 2j . If h q then I{t < w : (B(h 2r, p)
JB(q • 2r, v)) n S t T 0}1 = 2r . In either case, for every t < w, J(B(h
2r, p) .JB(q • 2r, v)) n St I E {0, 2} . Thus B(h • 2r, p) QB(q • 2r, v) EAQ , as
desired .

This result completes our available information about <a>

	

</3~3
The following result of Schur [6] (see also [7]) will be useful for
Lemma 2.17 . Note that [r!e] _ Y_z-o r!/i! .
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LEMMA 2.16 . (Schur) Let 0 < r < co. If {1, 2, . . ., [r!e]} = Uo<,A,,
then there are some x and y such that {x, y, x + y} C A, .

LEMMA 2.17. Let 2 < y < w, let (3 = Xt , let t(y) = 2[y!e] - 1 . Then .
Ox ~+t(v)> - <ai4 .

Proof. Let a = K f+t (y ) . Let V be an a-dimensional vector space over
GF(2), and let V = Ua<v Aa . For each v < y, let BQ = {D C [V]<W

Y D E A,j . Write V - {v„{„<, .
t(v)+1Let P = Hi-1 y . For each s e P, let C, - {{v,, , v1 2 , • • • , vn e(v)+ij E

[V]t ( v )+ 1 : ~h < q, < . . . < ~7t(v)+1 and, for every q C t(y) + 1, {v, , ,
v„ Z , . . ., v„ ,} E B, ,I . Then [V]t(v)+1 = USEY C, . By [2, Theorem 1], we have
a- ((3) w + 1 , where n = yt(v)+1 . (This portion of [2, Theorem 1] is due
independently to Kurepa [5] .) Consequently, noting that I P I - n, there
are some UC [V]a and some s c P such that [U]t(Y)+ 1 C C, . Note that, if
q < t(y) + 1, then [U]t C B,, . (To see this, let {v, , , vn	v„4} E [UP
with q, < 7)2 • • < q4 • Pick X74+1 < . . . < fi t ( )_1_1 , with q, < q,+, . Then
{v,l , V" , . . ., V t(v)+i

E C, so {v„ 1 , . . ., v,,l E B,, .) Let for 6 < y, Do =
{q : I < q <- [y!e] and s2 . = a} . Then {1, 2, . . ., [y!e]} = Ua<v DQ , so by
Schur's theorem (Lemma 2.16), we may find x, y, and 6 < y, such that
{x, y,x+y}CDQ andx -:-~ 2y . Let z=2y-x.

Let FC [U]z and let UHF= Up<a Sp where, for each p < Q, Sa = x
and {S,},,3 is a pairwise disjoint collection . Let T =- {Y_ F + Y- Sp
p < gj . Now I T J =g. If u E T, then for some p, u = Y (F u SJ and
FuS,I=x+z=2y while s 2y =6.That is,FUS,EB.soueA_
Next let {u, v} E [T] 2 . Then u + v = Y_ Sp + Y_ S,, - Y_ (S p U Sµ) for

some p < µ < R . Now I S p U S u, I = 2x, while sex = 6 . Thus, Sp U S,, E BQ
so u+vcA_

Finally, let {u, v, w} E [T]3 . Then a + v + w = Y_ (F u Sp u Su u SJ
for some p <[L < v <R. Now F u S„ u Su u S, J = 2y + 2x while
52 .,E_2 x =Q • Thus, FUS,US,,,US,EB, so u+v+wcA, .

LEMMA 2.18. For any cardinal a (with a , co), <a>

	

<0-)> .

Proof. [a]<w = U,<w [a]° . Suppose we have some to c [[(x]< , ] , and
some g < w such that, whenever {U, V, W} C [w]3 we have {U, UJV,
Ud Vd W{ C [a]° . Since for any {U, V{ C [to]2, we have I Ud V = a and
I U I = u, we have some J such that I J I = 6/2 and, for any {U, V{ C [+v]2
U n V = J. But then letting U, V and W be any three members of w we
have I UAVAW I = 26, a contradiction .

Our final lemma stands in contrast to Lemma 2.17, establishing that if
<a> -> «>2 holds, then /3 < co .
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LEMMA 2.19 . For any cardinal a (with a > X,), <a>

	

<N,>2

Proof. Let A o = Ut<~ U'<w [a] 22 '( 21 + 1 ~ and let A, = Ut<w U,,~
[a]22'+1(21',_lá (Thus, for B c [a]<-, B E A o if and only if I B I has an even
number of factors of 2 .) Suppose we have a < 2 and to e [[a]<~]Hl, such
that, whenever {T, U, V, W} E [tv]4 we have {T, Td U, TJ Ud V,
Td Ud Vd W} C A Q . Without loss of generality there is some t < c) such
that to S [a] t . There are V c [m]Il1, and J c [a]<w such that, whenever
{U, V} E [tv']2, we have U n V = J. Now let {T, U, V, W} E [v']4 and let
j = I J I . Then I Td U I = 2(t - j) and I Td Ud Vd W I = 4(t-j) . Thus,
Td U E A o if and only if Td Ud Vd W E A, , a contradiction .

3. THE MAIN THEOREM

As previously remarked, we have, under the assumption of the
generalized continuum hypothesis and the nonexistence of inaccessible
cardinals (that is regular limit cardinals) bigger than co, been able to
determine the validity of <a> -- <Pis for all but possibly finitely many
values of a, given any /3, y, and 8. The exclusions of the hypothesis of
Theorem 3 .1 describe these unknown values, except for the case /3, y, and
8 are all finite . In this case, the value of N(/3, y, 8) is not known, although
crude bounds can be determined from [3] . Recall that we have assumed
y>1,8>2,8<g-;-lif(3<cu,8Ccoifg>,co,g<2"ifa<co,and
9<aifa>co .

THEOREM 3 .1 . Assume the generalized continuum hypothesis and
assume that there do not exist inaccessible cardinals greater than W. Exclude
the possibility that any of the conditions (a), (b) or (c) holds :

(a) 8 < co, (3 < co, y = p , and P+s-i < a < Há_ 1
a+2

(b) 8 = 4, y < co, (3 = X, > cf(~) = co, and a < X,+ t(,,) ;

(c) 8 = 4, y < co, cf(R) > w, / - p , and Kp < a < ~Tp+t(v)
(N(R, y, 8) and t(y) are as in Lemmas 2.3(a) and 2.17 respectively) .

Then 0) - «> y holds if and only if one of the following 10 statements
holds .

(2) 8 = 2 and g3 1 ;
(3) 8=2,a>co,y<a,andP<a;
(4) 8 = 2, a > co, y < cf(a), and / = a ;
(5) 8=3, P <a,a>co,andy+ <a;
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(6) 8 = 3, ~3 = a > w, cf(a) - w, and y < w ;
(7) 8 - 4, y < w, g = Kp , and a > No, t(v) ;

(8) 0 < w, Y < a > N(R, y, 8 ) ;
(9) (3 < w, y = Kp , and a > Kp+2a-, ;
(10) ~3=wandy<w .

Proof. That each of statements (1) through (4) is sufficient for
<a< > «<s is trivial . That each of the statements (5), (6), (7), (8), (9), and
(10) imply <a< > «~ s follows from Lemmas 2.8(a), 2 .15, 2 .17, 2.3(a),
2.3(c), and 2.3(b), respectively .
Now assume that each of the statements (1) through (10) fails and

<a< , «<s holds. Since statement (1) fails we have y > 2 .
We claim next that 8 > 3 . Suppose instead that 8 - 2, and note that,

since (2) fails, R > 2. If a < w we must have, by the pigeon hole principle,
y < 21 and hence, since (8) fails, that a < N((3, y, 8) . But this contradicts
the choice of N((3, y, 8) as the least value for which <N((3, y, 8)> --)- «<a
held. Thus a > w . But then, since > 2 and <a< «<s holds, we must
have trivially either (3) or (4) holding . This contradiction establishes that
8 > 3 .
We claim next that g > w. Indeed, suppose (3 < w . Then we have,

since (9) fails, either y < w or both y = Kp and a < Kp+2a-1 . Suppose
y = Kp and a < Ka+2 . Then by exclusion (a), we have a << Kp+s-2 . Since
8 > 3, we have, by Lemma 2 .3(d), that <Kp+s-2< "*<8 1< p . And, since
R > 8 - 1, we have <a< «<v , a contradiction. Thus we have y < w .
Since (8) fails, and since R < w, we have a < N(R, y, 8) again contra-
dicting the choice of N(/3, y , 8) . Thus, R > w as claimed .

Next we claim that 8 4 . Suppose instead 8 > 5 . Then by Lemma 2 .19,
J3 < w and hence g = w. Since (10) fails, y > w . But then, by Lemma 2 .18,
<a>

	

«<s , a contradiction .
We thus have that y > 2, /3 > w, and 3 < 8 < 4. Suppose now that

8 = 4. By Lemma 2.18, we have y < w . Since (10) fails, (3 > w . Since (7)
fails, we must have a < Kp+ ,(y ) , where (3 = Kp . Since we assume that no
inaccessible cardinals bigger than w exist, there are three cases to consider :

(i) /~ is a limit cardinal and /3 > cf(J) - w ;
(ü) R is a limit cardinal and R > cf((3) > w ;
(iii) (3 is a successor .

Case (i) is impossible by exclusion (b) . In either of the cases (ü) or (iii) we
have, by exclusion (c), that a = R . But then, case (ü) is impossible by
Lemma 2.14 (note that cf(g) is regular and hence, under our assumptions,
a successor) . Case (iii) is impossible by Lemma 2 .10 .
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Thus 8 - 3. Since (5) fails, we have either a = /3 or both g < a and
y- > a . But by Lemma 2.8(b), this latter alternative is impossible . Thus
we have a = g .

We claim g > w . Indeed, if (3 - cu, then y ->- w since (10) fails . But, we
have of (co)w so, by Lemma 2 .7 we have «3< </3iv a contradiction .
Since (6) fails, we have either cf(g) > co or both cf(R) = cu and y > w . In
the former case we have, by Lemma 2 .10 or 2 .14 depending on whether /
is a successor or a limit, <a> «iv which is a contradiction . Thus,
cf(g) - w and y w . But then «< 4)- «)y , so <(3< n «<Y . This is a
contradiction, and the proof is complete .

There are several obvious questions arising from the exclusions of
Theorem 3 .1 as well as its assumption of the generalized continuum
hypothesis and of the nonexistence of inaccessible cardinals greater than
co . Of particular interest, in view of the fact that, under the above assump-
tions, «< n «iz when cf(g) > w, is the following question.

3.2 . QUESTION . Does «< <(3i4 when y < co and g > ef(g) = w?
The statement <a> -> «~s can, in its set theoretic version, be restated

with "A" replaced by We have not attempted to deal with this
question, since our interest arose from the algebraic statement .
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