Partitions of the Natural Numbers into Infinitely Oscillating Bases and Nonbases

Paul Erdôs and Melvyn B. Nathanson

Abstract

The set A of nonnegative integers is a basis if every sufficiently large integer x can be written in the form $x=a+a^{\prime}$ with $a, a^{\prime} \in A$. If A is not a basis, then it is a nonbasis. We construct a partition of the natural numbers into a basis A and a nonbasis B such that, as random elements are moved one at a time from A to B, from B to A, from A to B, \ldots, the set A oscillates from basis to nonbasis to basis ... and the set B oscillates simultancously from nonbasis to basis to nonbasis....

1. Introduction

Let A be an infinite subset of the natural numbers $\mathbb{N}=\{0,1,2, \ldots$,$\} .$ Then A is an asymptotic basis of order 2 , or, simply, a basis, if every sufficiently large number can be written in the form $a_{i}+a_{i}$, where $a_{i}, a_{i} \in A$. If the set A is not a basis, then it is called an asymptotic nonbasis of order 2 , or, simply, a nonbasis.

The set A is a minimal basis if A is a basis, but, for any $a \in A$, the set $A \backslash\{a\}$ is a nonbasis. Similarly, the set A is a maximal nonbasis if A is a nonbasis, but, for any natural number $b \notin A$, the set $A \cup\{b\}$ is a basis. Minimal bases and maximal nonbases were introduced by Stöhr [5] and Nathanson [4], and studied further by Härtter [3] and Erdös and Nathanson [1, 2].

Minimal bases and maximal nonbases are examples of sets which oscillate once from basis to nonbasis or from nonbasis to basis by the deletion from or addition to the set of a single element. There also exist sets which exhibit two oscillations. Erdös and Nathanson [2] have constructed a basis A such that, for any $a \in A$, the set $A \backslash\{a\}$ is a nonbasis, and, for any $b \mathbb{E} A \backslash\{a\}$, the set $(A \backslash\{a\}) \cup\{b\}$ is again a basis. They also constructed a nonbasis A such that, for any $b \notin A$, the set $A \cup\{b\}$ is a basis, and, for any $a \in A \cup\{b\}$, the set $(A \cup\{b\}) \backslash\{a\}$ is again a nonbasis. But no example had been constructed of a set which would oscillate infinitely often from basis to nonbasis to basis to nonbasis ... by successive deletions from and additions to the set of single elements. Such a set can be precisely described in the following way. Let A be an infinite set of natural numbers, and let S and
T be finite sets such that $S \subset A$ and $T \subset \mathbb{N} \backslash A$. Then A is an infinitely oscillating basis if $(A \backslash S) \cup T$ is a basis if and only if $|S| \leq|T|$. Similarly, let B be an infinite set of natural numbers, and let S and T be finite sets such that $T \subset B$ and $S \subset \mathbb{N} \backslash B$. Then B is an infinitely oscillating nonbasis if ($B \cup$ $S) \backslash T$ is a nonbasis if and only if $|S| \leq|T|$. Clearly, if A is an infinitely oscillating basis, then $A \backslash\{a\}$ is an infinitely oscillating nonbasis for any $a \in A$. Similarly, if B is an infinitely oscillating nonbasis, then $B \cup\{a\}$ is an infinitely oscillating basis for any $a \notin B$.

Nathanson [4] asked if there existed a partition of the natural numbers into a minimal basis A and a maximal nonbasis B. This partition would have the property that A is a basis and B is a nonbasis, but, if any element $a \in A$ is moved to B, then $A \backslash\{a\}$ becomes a nonbasis and $B \cup\{a\}$ becomes a basis. One can ask, further, for such a partition with the additional property that if any element $b \in B \cup\{a\}$ is moved to $A \backslash\{a\}$, then $(B \cup\{a\}) \backslash\{b\}$ becomes a nonbasis and $(A \backslash\{a\}) \cup\{b\}$ becomes a basis again. Indeed, one could wish for a partition of N into a basis A and a nonbasis B such that, as random elements are moved one at a time from one set of the partition to the other, the set which is a basis becomes a nonbasis and the set which is a nonbasis becomes a basis. This is equivalent to requiring a partition of the natural numbers into two sets, one of which is an infinitely oscillating basis and the other an infinitely oscillating nonbasis. The purpose of this paper is to construct such a partition. In particular, this proves the existence of infinitely oscillating bases.

THEOREM. There exists a partition of the natural numbers \mathbb{N} into two disjoint sets A and B such that A is an infinitely oscillating basis and B is an infinitely oscillating nonbasis.

2. A Critical Lemma

The following notation will be used consistently in this paper. If A is a set of numbers, then the sumset $2 A=\left\{a+a^{\prime} \mid a, a^{\prime} \in A\right\}$. By $[M, N]$ we denote the interval of integers $x=M, M+1, \ldots, N$. Let $N_{k}>2 N_{k-1}$, where $N_{k}=2 n_{k}+1$ and $n_{k}=2 m_{k}$ is even. The interval $\left[N_{k-1}+1, N_{k}\right]$ will be divided into the following three subintervals:

$$
I_{k}^{\prime}=\left[N_{k-1}+1, n_{k}\right], \quad I_{k}^{\prime}=\left[n_{k}+1, N_{k}-N_{k-1}-1\right], \quad I_{k}^{\prime \prime}=\left[N_{k}-N_{k-1}, N_{k}\right] .
$$

By A_{k}^{\prime} and B_{k}^{\prime} (resp. A_{k}^{2} and $B_{k,}^{\prime \prime}, A_{k}^{\prime \prime \prime}$ and $B_{k}^{\prime \prime}$) we denote subsets of I_{k}^{\prime}
(resp. $\left.I_{k}^{\prime \prime}, I_{k}^{\prime \prime}\right)$ which partition the interval $I_{k}^{(}$(resp. I_{k}^{k}, I_{k}^{m}). Let

$$
I_{k}=I_{k} \cup I_{k}^{\prime \prime}=\left[N_{k-1}+1, N_{k}-N_{k-1}-1\right]
$$

and let $A_{k}=A_{k}^{\prime} \cup A_{k}^{\prime}$ and $B_{k}=B_{k}^{\prime} \cup B_{k}^{\prime}$. Then the sets A_{k} and B_{k} partition the interval I_{k} and the sets $A_{k} \cup A_{k}^{\prime \prime}$ and $B_{k} \cup B_{k}^{\prime \prime \prime}$ partition the interval $\left[N_{k-1}+1, N_{k}\right]$.

The cardinality of the finite set A is denoted $|A|$.
LEMMA 1. Let $x \in[2 P+2, P+Q+1]$. Then the number of subsets A of $[P+1, Q]$ such that $x \notin 2 A$ is less than

$$
\left(\frac{\sqrt{3}}{2}\right)^{x-2 P} 2^{Q-P+1}
$$

Proof. Let $A \subset[P+1, Q]$ with $x \notin 2 A$. Suppose $x=2 x^{\prime}+1$ is odd. We divide $[P+1, Q]$ into the interval $[x-P, Q]$ and the $x^{\prime}-P$ pairs $\{r, x-r\}$ with $r=P+1, P+2, \ldots, x^{\prime}$. Then A can contain any of the $2^{O-(x-P)+1}$ subsets of $[x-P, Q]$. On the other hand, A can contain at most one element from each pair $\{r, x-r\}$, and so there are three choices for the distribution of each pair $\{r, x-r\}$ in A (either $r \in A, x-r \notin A$, or $r \notin A, x-r \in A$, or $r \notin A$, $x-r \notin A$). Therefore, the number of ways to choose A is exactly

$$
3^{x-P} 2^{O-(x-P)+1}=3^{(x-2 P-1) / 2} 2^{O-P+1-(x-2 P)}<\left(\frac{\sqrt{3}}{2}\right)^{x-2 P} 2^{O-P+1} .
$$

Similarly, if $x=2 x^{\prime}$ is even, we divide $[P+1, Q]$ into the interval $[x-P, Q]$, the singleton $\left\{x^{\prime}\right\}$, and the $x^{\prime}-P-1$ pairs $\{r, x-r\}$, where $r=$ $P+1, P+2, \ldots, x^{\prime}-1$. Clearly, $x^{\prime} \notin A$, and the number of ways to choose A is exactly

$$
3^{x-P-1} 2^{O-(x-P)+1}=3^{(x-2 P-2) / 2} 2^{O-P+1-(x-2 P)}<\left(\frac{\sqrt{3}}{2}\right)^{x-2 P} 2^{Q-P+1} .
$$

LEMMA 2. Let $x \in[P+Q+1,2 Q]$. Then the number of subsets A of $[P+1, Q]$ such that $x \notin 2 A$ is less than

$$
\left(\frac{\sqrt{3}}{2}\right)^{2 O-x} 2^{O-p}
$$

Proof. Let $A \subset[P+1, Q]$ with $x \notin 2 A$. Suppose $x=2 x^{\prime}+1$ is odd. We divide $[P+1, Q]$ into the interval $[P+1, x-Q-1]$ and the $Q-x^{\prime}$ pairs $\{x-r, r\}$ where $r=x^{\prime}+1, x^{\prime}+2, \ldots, Q$. Then the number of ways to choose A is exactly

$$
3^{O-x^{*}} 2^{x-O-1-P}=3^{(2 O-x+1) / 2} 2^{O-P-1-(2 O-x)}<\left(\frac{\sqrt{3}}{2}\right)^{2 O-x} 2^{O-P} .
$$

Similarly, if $x=2 x^{\prime}$ is even, we divide $[P+1, Q]$ into the interval $[P+$ $1, x-O-1]$, the singleton $\left\{x^{\prime}\right\}$, and the $Q-x^{\prime}$ pairs $\{x-r, r\}$, where $r=$ $x^{\prime}+1, x^{\prime}+2, \ldots, Q$. Then the number of ways to choose A is exactly

$$
3^{O-x} 2^{x-O-1-P}=3^{(2 O-x) / 2} 2^{O-P-1-(2 O-x)}<\left(\frac{\sqrt{3}}{2}\right)^{2 O-x} 2^{O-P}
$$

LEMMA 3. Let $d \geq 1$. Then the number of subsets A of $[P+1, Q]$ such that

$$
\begin{equation*}
a \in A \text { and } a \leq Q-d \text { implies } a+d \in A \tag{*}
\end{equation*}
$$

does not exceed

$$
\left(\frac{Q-P}{d}+2\right)^{d}
$$

Similarly, the number of subsets A of $[P+1, Q]$ such that

$$
\begin{equation*}
a \in A \text { and } a \geq P+1+d \text { implies } a-d \in A \tag{**}
\end{equation*}
$$

does not exceed

$$
\left(\frac{Q-P}{d}+2\right)^{d} .
$$

Proof. The interval $[P+1, Q]$ can be partitioned into d disjoint arithmetic progressions with difference d, each of length at most $(Q-P) / d+1$. Suppose that $A \subset[P+1, Q]$ satisfies (*) (resp. (**)). Then A is the disjoint union of terminal (resp. initial) segments of the d arithmetic progressions, and each of these segments is determined by its initial (resp. terminal) element, which can be chosen in at most $(Q-P) / d+2$ ways. Since there are d progressions,
the number of $A \subset[P+1, Q]$ which satisfy ${ }^{(*)}$ (resp. ($\left.{ }^{* *}\right)$) is at most $((Q-P) / d+2)^{d}$.

LEMMA 4. There exists a constant c such that, given a nonnegative integer N_{k-1}, then for all sufficiently large $N_{k}=2 n_{k}+1$ there is a partition of the interval $L_{k}=\left[N_{k-1}+1, N_{k}-N_{k-1}-1\right]$ into two sets A_{k} and B_{k} such that
(i) $N_{k} \notin 2 A_{k} \cup 2 B_{k}$
(ii) $\left[N_{k}+1,2 N_{k}-2 N_{k-1}-2-c\right] \subset 2 A_{k} \cap 2 B_{k}$.

Furthermore, if N_{k-1} is sufficiently greater than N_{k-2}, and if there is a partition of the interval $I_{k-1}=\left[N_{k-2}+1, \quad N_{k-1}-N_{k-2}-1\right]$ into two sets A_{k-1} and B_{k-1} such that
(iii) $N_{k-1} \& 2 A_{k-1} \cup 2 B_{k-1}$
(iv) $\left[N_{k-1}+1,2 N_{k-1}-2 N_{k-2}-2-c\right] \subset 2 A_{k-1} \cap 2 B_{k-1}$
then there is a partition of I_{k} into sets A_{k} and B_{k} which satisfy (i), (ii), and also
(v) $\left[N_{k-1}+1, N_{k-1}\right] \subset 2\left(A_{k} \cup A_{k-1}\right) \cap 2\left(B_{k} \cup B_{k-1}\right)$.

Proof. Let us call a partition $I_{k}=A_{k} \cup B_{k}$ permissible if $N_{k} \in 2 A_{k} \cup 2 B_{k}$. Since I_{k} is symmetric with respect to $N_{k} / 2$, then $x \in A_{k}$ if and only if $N_{k}-x \in B_{k}$. Let $T_{k}=\left[N_{k-1}+1, n_{k}\right]$ and $I_{k}^{\prime \prime}=\left[n_{k}+1, N_{k}-N_{k-1}-1\right]$. Let $A_{k}^{\prime}=A_{k} \cap I_{k}^{\prime}, A_{k}^{\prime \prime}=A_{k} \cap I_{k}^{\prime \prime}$, $B_{k}^{\prime}=B_{k} \cap I_{k}$, and $B_{k}^{\prime \prime}=B_{k} \cap I_{k}^{\prime k}$. Then $x \in A_{k}^{\prime}$ if and only if $N_{k}-x \in B_{k}^{\prime k}$, and $x \in B_{k}^{\prime}$ if and only if $N_{k}-x \in A_{k}^{k}$. Clearly, if $I_{k}=A_{k} \cup B_{k}$ is a permissible partition, then each one of the four sets $A_{k}^{k}, A_{k}^{k}, B_{k}^{k}, B_{k}^{k}$ uniquely determines the other three. Since A_{k}^{\prime} can be any subset of $I_{k}^{\prime}=\left[N_{k-1}+1, n_{k}\right]$, it follows that there are exactly $2^{n_{k}-N_{k}-1}$ permissible partitions of I_{k}. We shall prove that for any $\varepsilon>0$ there exists a constant c such that, for all sufficiently large N_{k}, the number of permissible partitions of I_{k} which also satisfy condition (ii) is greater than $(1-\varepsilon) 2^{n_{k}-N_{k-1}}$. Moreover, for this constant c, if N_{k-1} is sufficiently greater than N_{k-2} and if there exists a partition $I_{k-1}=A_{k-1} \cup B_{k-1}$ which satisfies conditions (iii) and (iv), then the number of permissible partitions of I_{k} which satisfy both conditions (ii) and (v) is greater than $(1-\varepsilon) 2^{n_{k}-N_{k-1}}$.

Let $\varepsilon>0$, let $\varepsilon^{\prime}=\varepsilon / 18$, and choose the constant $c \gtrless 2$ so that

$$
\sum_{t=c}^{\infty}\left(\frac{\sqrt{3}}{2}\right)^{c}<\varepsilon^{\prime}
$$

Let $N_{k}=2 n_{k}+1$, where $n_{k}=2 m_{k}$ and $m_{k} \geq 2 N_{k-1}+c+1$ and also

$$
\sum_{d=1}^{c}\left(n_{k}+2\right)^{d}<\varepsilon^{\prime} 2^{n-m k-1}
$$

The proof is in seven steps.
L. Let $x \in\left[N_{k}+c-1, n_{k}+N_{k}-N_{k-1}\right]$. By Lemma 1 , the number of subsets $A{ }_{k}$ of $I k=\left[n_{k}+1, N_{k}-N_{k-1}-1\right]$ such that $x \in 2 A \approx$ is less than

$$
\left(\frac{\sqrt{3}}{2}\right)^{x-2 n_{3}} 2^{n_{2}-N_{k-1}+1}
$$

Therefore, the number of $A{ }_{k}^{\prime} \subset I_{k}^{\prime \prime}$ such that $x \in 2 A$ for some $x \in$ $\left[N_{k}+c-1, n_{k}+N_{k}-N_{k-1}\right]$ is less than

$$
\sum_{s-N_{k}+c-1}^{N_{k}+N_{k}-N_{k-1}}\left(\frac{\sqrt{3}}{2}\right)^{x-2 n_{3}} 2^{n_{s}-N_{k-1}+1}=2^{n_{k}-N_{2-1}+1} \sum_{t=c}^{N_{k}-N_{4-1}-n}\left(\frac{\sqrt{3}}{2}\right)^{\prime}<2 \varepsilon^{\prime} 2^{n_{3}-N_{k-1}} .
$$

Since each set $A_{k}^{n} \subset I_{k}^{n}$ completely determines a permissible partition $I_{k}=$ $A_{k} \cup B_{k}$, we conclude that the number of permissible partitions with $x \notin 2 A_{k}$ for some $x \in\left[N_{k}+c-1, n_{k}+N_{k}-N_{k-1}\right]$ is less than $2 \varepsilon^{\prime} 2^{n_{k}-N_{k-1}}$.
II. Let $x \in\left[n_{k}+N_{k}-N_{k-1}, 2 N_{k}-2 N_{k-1}-2-c\right]$. By Lemma 2, the number of $A_{k}^{\prime \prime} \subset I_{k}^{n}$ such that $x \notin 2 A_{k}^{\prime \prime}$ is less than

$$
\left(\frac{\sqrt{ } 3}{2}\right)^{2 N_{4}-2 N_{4-2}-2-x} 2^{n}-N_{2-1}
$$

Therefore, the number of $A \vec{k} \subset I_{k}$ such that $x \in 2 A_{k}^{k}$ for some $x \in$ $\left[n_{k}+N_{k}-N_{k-1}, 2 N_{k}-2 N_{k-1}-2-c\right]$ is less than

$$
\sum_{x=n_{k}+N_{k}-N_{k-1}}^{2 N_{k}-2 N_{k-1}-2-c}\left(\frac{\sqrt{ } 3}{2}\right)^{2 N_{k}-2 N_{k-1}-2-x} 2^{n_{k}-N_{k-1}}=2^{n_{k}-N_{k-1}} \sum_{k=6}^{N_{k}-N_{k}-n_{k}-2}\left(\frac{\sqrt{3}}{2}\right)^{\prime}<\varepsilon^{\prime} 2^{n_{k}-N_{k-1}} .
$$

It follows that the number of permissible partitions $I_{k}=A_{k} \cup B_{k}$ such that $x \in 2 A_{k}$ for some $x \in\left[n_{k}+N_{k}-N_{k-1}, 2 N_{k}-2 N_{k-1}-2-c\right]$ is less than $\boldsymbol{E}^{\prime} 2^{\mathrm{N}_{4}-\mathrm{N}_{t-z}}$.
III. Let $x \in\left[N_{k}+1, N_{k}+c-2\right]$. Then $x=N_{k}+d$ for some $d \in[1, c-2]$. Let $I_{k}=A_{k} \cup B_{k}$ be a permissible partition such that $x \notin 2 A_{k}$. Let $A_{k}=A_{k} \cup A_{k}$, and let $a \in A_{k}^{\prime}$ with $a \geq n_{k}+1+d$. Then $x-a \in I_{k}=A \cup B_{k}$. But $a \in A_{k}^{k}$ and
$x \notin 2 A_{k}$ imply $x-a \notin A_{k}^{\prime}$. Therefore, $x-a \in B_{k}^{\prime}$. Since $I_{k}=A_{k} \cup B_{k}$ is a permissible partition, $N_{k}-(x-a)=a-d \in A_{k}^{\prime \prime}$. That is, $A_{k}^{\prime \prime} \subset\left[n_{k}+1, N_{k}-N_{k-1}-1\right]$, and if $a \in A_{k}^{k}$ and $a \geq n_{k}+1+d$, then $a-d \in A_{k}^{\prime \prime}$. By Lemma 3, the number of such sets A^{\prime} does not exceed

$$
\left(\frac{n_{k}-N_{k-1}}{d}+2\right)^{d}<\left(n_{k}+2\right)^{d}
$$

Therefore, the number of permissible partitions $I_{k}=A_{k} \cup B_{k}$ such that $x \notin 2 A_{k}$ for some $x \in\left[N_{k}+1, N_{k}+c-2\right]$ is less than

$$
\sum_{d=1}^{c-2}\left(n_{k}+2\right)^{d}<\varepsilon^{\prime} 2^{n_{k}-N_{k-1}}
$$

Combining the results of I-III, we conclude that the number of permissible partitions $I_{k}=A_{k} \cup B_{k}$ such that $x \notin 2 A_{k}$ for some $x \in$ $\left[N_{k}+1,2 N_{k}-2 N_{k-1}-2-c\right]$ is less than $4 \varepsilon^{\prime} 2^{n_{k}-N_{k-1}}$. Similarly, the number of permissible partitions $I_{k}=A_{k} \cup B_{k}$ such that $x \notin 2 B_{k}$ for some $x \in$ $\left[N_{k}+1,2 N_{k}-2 N_{k-1}-2-c\right]$ is less than $4 \varepsilon^{\prime} 2^{n_{k}-N_{k-1}}$. Therefore, condition (ii) fails to hold for less than $8 \varepsilon^{\prime} 2^{n_{k}-N_{k-1}}<\varepsilon 2^{n_{k}-N_{k-1}}$ permissible partitions of I_{k}. This proves the first part of Lemma 4 .
IV. Let $x \in\left[2 N_{k-1}+c_{,} n_{k}+N_{k-1}+1\right]$. By Lemma 1, the number of subsets A_{k} of $I_{k}^{\prime}=\left[N_{k-1}+1, n_{k}\right]$ such that $x \notin 2 A_{k}^{\prime}$ is less than

$$
\left(\frac{\sqrt{3}}{2}\right)^{x-2 N_{k-1}} 2^{n_{2}-N_{k-1}+1}
$$

Therefore, the number of $A_{k}^{\prime} \subset I_{k}^{\prime}$ such that $x \notin 2 A_{k}^{\prime}$ for some $x \in$ $\left[2 N_{k-1}+c, n_{k}+N_{k-1}+1\right]$ is less than

$$
\sum_{x=2 N_{k-1}+c}^{n_{k}+N_{k-1}+1}\left(\frac{\sqrt{ } 3}{2}\right)^{x-2 N_{k-i}} 2^{n_{k}-N_{k-1}+1}=2^{n_{k}-N_{k-1}+1} \sum_{t=c}^{n_{k}-N_{k}-1+1}\left(\frac{\sqrt{ } 3}{2}\right)^{\prime}<2 \varepsilon^{\prime} 2^{n_{k}-N_{k-1}} .
$$

Then the number of permissible partitions $I_{k}=A_{k} \cup B_{k}$ such that $x \in 2 A_{k}$ for some $x \in\left[2 N_{k-1}+c, n_{k}+N_{k-1}+1\right]$ is less than $2 \varepsilon^{\prime} 2^{n_{k}-N_{k-1}}$.
V. Let $x \in\left[n_{k}+N_{k-1}+1, N_{k}-c-1\right]$. By Lemma 2, the number of $A_{k} \subset I_{k}^{\prime}$ such that $x \notin 2 A_{k}^{\prime}$ is less than

$$
\left(\frac{\sqrt{3}}{2}\right)^{2 n_{k}-x} 2^{n_{k}-N_{k-1}}=\left(\frac{\sqrt{3}}{2}\right)^{N_{n}-1-x} 2^{n_{k}-N_{n-1}} .
$$

Therefore, the number of $A_{k} \subset I_{k}$ such that $x \notin 2 A_{k}$ for some $x \in$ $\left[n_{k}+N_{k-1}+1, N_{k}-c-1\right]$ is less than

$$
\sum_{x-n_{k}+N_{k-1}+1}^{N_{k}-c^{-1}}\left(\frac{\sqrt{3}}{2}\right)^{N_{k}-1-x} 2^{n_{k}-N_{k-1}}=2^{n_{k}-N_{k-1}} \sum_{i=c}^{n_{k}-N_{k}-1-1}\left(\frac{\sqrt{3}}{2}\right)^{c}<\varepsilon^{\prime} 2^{n_{k}-N_{k-1}} .
$$

Therefore, the number of permissible partitions $I_{k}=A_{k} \cup B_{k}$ such that $x \notin 2 A_{k}$ for some $x \in\left[n_{k}+N_{k-1}+1, N_{k}-c-1\right]$ is less than $\varepsilon^{\prime} 2^{n_{k}-N_{k-1}}$.

V1. Let $x \in\left[N_{k}-c, N_{k}-1\right]$. Then $x=N_{k}-d$ for some $d \in[1, c]$. Let $I_{k}=A_{k} \cup B_{k}$ be a permissible partition such that $x \notin 2 A_{k}$. Let $A_{k}=A_{k}^{\prime} \cup A_{k}^{n}$, and let $a \in A_{k}^{k}$ with $a \leq n_{k}-d$. Then $x-a \in I_{k}^{\prime}=A_{k}^{\prime} \cup B_{k}^{\prime}$. But $a \in A_{k}^{k}$ and $x \notin 2 A_{k}$ imply $x-a \notin A_{k}^{k}$. Therefore, $x-a \in B_{k}^{\prime}$. Since $I_{k}=A_{k} \cup B_{k}$ is a permissible partition, $N_{k}-(x-a)=a+d \in A_{k}^{\prime}$. That is, $A_{k} \subset\left[N_{k-1}+1, n_{k}\right]$, and if $a \in$ A_{k}^{\prime} and $a \leq n_{k}-d$, then $a+d \in A_{k}^{k}$. By Lemma 3, the number of such sets A_{i} does not exceed

$$
\left(\frac{n_{k}-N_{k-1}}{d}+2\right)^{d}<\left(n_{k}+2\right)^{d}
$$

Therefore, the number of permissible partitions $I_{k}=A_{k} \cup B_{k}$ such that $x \notin 2 A_{k}$ for some $x \in\left[N_{k}-c, N_{k}-1\right]$ is less than

$$
\sum_{d=1}^{c}\left(n_{k}+2\right)^{d}<E^{\prime} 2^{n_{k}-N_{k-1}}
$$

VII. Let $x \in\left[2 N_{k-1}-2 N_{k-2}-1-c, 2 N_{k-1}+c-1\right]$. Now we suppose that there is a partition of the interval $I_{k-1}=\left[N_{k-2}+1, N_{k-1}-N_{k-2}-1\right]$ into two sets A_{k-1} and B_{k-1} that satisfy conditions (iii) and (iv), and that $N_{k-1}=$ $2 n_{k-1}+1$, where $n_{k-1}=2 m_{k-1}$ is even, and $m_{k-1} \geq 2 N_{k-2}+c+1$, and

$$
\frac{2 N_{k-2}+2 c+1}{2^{m_{k-1}}}<\varepsilon^{\prime}
$$

Then $J=\left[n_{k-1}-m_{k-1}+1, n_{k-1}+m_{k-1}\right]=\left[m_{k-1}+1,3 m_{k-1}\right] \subset I_{k-1}$, and J is symmetric with respect to $N_{k-1} / 2$. By condition (iii) we have $N_{k-1} \notin 2 A_{k-1} \cup 2 B_{k-1}$, and so J contains exactly m_{k-1} elements of A_{k-1} and m_{k-1} elements of B_{k-1}. Moreover, if $a \in J$, then $x-a \in I k$, since $x-a \leq x \leq n_{k}$ and

$$
x-a \geq\left(2 N_{k-1}-2 N_{k-2}-1-c\right)-3 m_{k-1}=N_{k-1}-2 N_{k-2}-c+m_{k-1} \geq N_{k-1}+1 .
$$

Let $I_{k}=A_{k} \cup B_{k}$ be a permissible partition such that $x \in 2\left(A_{k} \cup A_{k-1}\right)$. If a is one of the m_{k-1} elements of $J \cap A_{k-1}$, then $x-a \in I_{k}^{\prime}$. But $x-a \notin A_{k}^{k}$ since $x \notin 2\left(A_{k} \cup A_{k-1}\right)$. Therefore, A_{k}^{\prime} is a subset of a set with $n_{k}-N_{k-1}-$ m_{k-1} elements, and so A_{k}^{k} can be chosen in at most $2^{n_{k}-N_{k-1}-m_{k-1}}$ ways. Therefore, the number of permissible partitions $I_{k}=A_{k} \cup B_{k}$ with $x \notin 2\left(A_{k} \cup A_{k-1}\right)$ is at most $2^{n_{k}-N_{k-1}-m_{k-1}}$, and the number of permissible partitions $\quad I_{k}=A_{k} \cup B_{k} \quad$ with $\quad x \notin 2\left(A_{k} \cup A_{k-1}\right)$ for some $x \in$ [$\left.2 N_{k-1}-2 N_{k-2}-1-c, 2 N_{k-1}+c-1\right]$ is at most

$$
\left(2 N_{k-2}+2 c+1\right) 2^{n_{k}-N_{k-1}-m_{k-1}}=\frac{2 N_{k-2}+2 c+1}{2^{m_{k-1}}} 2^{n_{k}-N_{k-1}}<\varepsilon^{\prime} 2^{n_{2}-N_{k-1}} .
$$

Combining the results of IV-VII, we conclude that the number of permissible partitions $I_{k}=A_{k} \cup B_{k}$ such that $x \notin 2\left(A_{k} \cup A_{k-1}\right)$ for some $x \in$ [$\left.2 N_{k-1}-2 N_{k-2}-1-c, N_{k}-1\right]$ is less than $5 \varepsilon^{\prime} 2^{n_{k}-N_{k-1}}$. Similarly, the number of permissible partitions $I_{k}=A_{k} \cup B_{k}$ such that $x \notin 2\left(B_{k} \cup B_{k-1}\right)$ for some $x \in$ [$2 N_{k-1}-2 N_{k-2}-1-c, N_{k}-1$] is less than $5 \varepsilon^{\prime} 2^{n_{k}-N_{k-1}}$. Combining this with condition (iv), we conclude that

$$
\left[N_{k-1}+1, N_{k}-1\right] \subset 2\left(A_{k} \cup A_{k-1}\right) \cap 2\left(B_{k} \cup B_{k-1}\right)
$$

for all but at most $10 \varepsilon^{\prime} 2^{n_{k}-N_{k-1}}$ permissible partitions of I_{k}. Putting together the results of I-VII, we see that conditions (ii) and (v) fail to hold for less than $18 \varepsilon^{\prime} 2^{n_{k}-N_{k-1}}=\varepsilon 2^{n_{h}-N_{k-1}}$ permissible partitions $I_{k}=A_{k} \cup B_{k}$. This finishes the proof of Lemma 4.

CRITICAL LEMMA. There exists an increasing sequence $0=N_{0}<N_{1}<$ $N_{2}<\cdots$ and disjoint sets A_{k} and B_{k} with $A_{k} \cup B_{k}=$ $\left[N_{k-1}+1, N_{k}-N_{k-1}-1\right]=I_{k}$ for all $k \geq 1$ such that, if $A^{*}=\cup_{k-1}^{\infty} A_{k}$ and $B^{*}=\cup_{k=1}^{*} B_{k}$, then
(i) $N_{k} \not \subset 2 A^{*} \cup 2 B^{*}$ for all k, and
(ii) If F is any finite set of integers, then

$$
x \in 2\left(A^{*} \backslash F\right) \cap 2\left(B^{*} \backslash F\right)
$$

for all sufficiently large $x \neq N_{k}$.

Proof. By Lemma 4, there exists an integer $N_{1}>0$ and disjoint sets A_{1} and B_{1} with $\left[1, N_{1}-1\right]=A_{1} \cup B_{1}$ such that $N_{1} \notin 2 A_{1} \cup 2 B_{1}$ and
$\left[N_{1}+1,2 N_{1}-2-c\right] \subset 2 A_{1} \cap 2 B_{1}$. Again by Lemma 4 there exists $N_{2}>N_{1}$ and disjoint sets A_{2} and B_{2} with $\left[N_{1}+1, N_{2}-N_{1}-1\right]=A_{2} \cup B_{2}$ such that conditions (i), (ii), and (v) of Lemma 4 are satisfied for $k=2$. We proceed by induction to construct an infinite sequence of integers $0=N_{0}<N_{1}<N_{2}<\cdots$ and disjoint sets A_{k} and B_{k} such that $I_{k}=A_{k} \cup B_{k}$ and conditions (i), (ii), and (v) of Lemma 4 are satisfied. Now set $A^{*}=\cup_{k-1}^{\infty} A_{k}$ and $B^{*}=$ $\bigcup_{k=1}^{x} B_{k}$. It follows from condition (i) of Lemma 4 and the shape of the intervals I_{k} that $N_{k} \& 2 A^{*} \cap 2 B^{*}$ for all k.

Let F be any finite set of integers. Then $F \subset\left[0, N_{p}\right]$ for sufficiently large p. Let $x>N_{p+1}$ and $x \neq N_{k}$ for all k. Then $x \in\left[N_{k-1}+1, N_{k}-1\right]$ for some $k \geq p+2$, and so $x \in 2\left(A_{k} \cup A_{k-1}\right) \cap 2\left(B_{k} \cup B_{k-1}\right)$. But $A_{k} \cup A_{k-1} \subset A^{*} \backslash F$ and $B_{k} \cup B_{k-1} \subset B^{*} \backslash F$ since $k-1 \geq p+1$, and so $x \in 2\left(A^{*} \backslash F\right) \cap 2\left(B^{*} \backslash F\right)$. This proves the Critical Lemma.

3. Proof of the Theorem

Let $0=N_{0}<N_{1}<N_{2}<\cdots$ be an increasing sequence of integers, and let A_{k} and B_{k} be a partition of the interval $I_{k}=\left[N_{k-1}+1, N_{k}-N_{k-1}-1\right]$ such that $A^{*}=\bigcup_{k=1}^{*} A_{k}$ and $B^{*}=\bigcup_{k-1}^{*} B_{k}$ satisfy the conclusions of the Critical Lemma. We shall construct a partition of the natural numbers into an infinitely oscillating basis A and an infinitely oscillating nonbasis B with $A^{*} \subset$ A and $B^{*} \subset B$.

Set $I_{k}^{\prime \prime}=\left[N_{k}-N_{k-1}, N_{k}\right]$ for $k \geq 1$. In particular, $I_{1}^{\prime \prime \prime}=\left[N_{1}, N_{1}\right]=\left\{N_{1}\right\}$. We shall construct partitions of the intervals $I_{k}^{\prime \prime \prime}$ into disjoint sets $A_{k}^{\prime \prime \prime}$ and $B_{k}^{\prime \prime \prime}$. Let $A_{1}^{\prime \prime \prime}=\left\{N_{1}\right\}$ and $B_{1}^{\prime \prime \prime}=\phi$. Suppose that partitions $I_{j}^{\prime \prime}=A_{j}^{\prime \prime \prime} \cup B_{j}^{\prime \prime \prime}$ have been determined for all $j \leq k-1$. We construct $A_{k}^{\prime \prime \prime}$ and $B_{k}^{\prime \prime \prime}$.

Let p be an integer such that

$$
1 \leq p \leq 1+\sum_{j=1}^{k-2}\left|A_{j}\right|=1+\sum_{j=1}^{k-2}\left|B_{j}\right| .
$$

Suppose that k is even. Choose $S \subset \cup_{i=1}^{k-1}\left(A_{j} \cup A_{j}^{\prime \prime}\right) \cup\{0\}$ with $|S|=p$, and choose $T \subset \cup_{j=1}^{k-2}\left(B_{j} \cup B_{j}^{\prime \prime}\right)$ with $|T|=p-1$. Let $a \in \cup_{j=1}^{k-1}\left(A_{i} \cup A^{\prime \prime}\right) \cup\{0\}$. If $a \in S$, put $N_{k}-a \in A_{k}^{\prime \prime}$. If $a \notin S$, put $N_{k}-a \in B_{k}^{\prime \prime}$. Let $b \in \cup_{j=1}^{k-1}\left(B_{j} \cup B_{j}^{\prime \prime}\right)$. If $b \in T \cup B_{k-1}$, put $N_{k}-b \in B_{k}^{\prime \prime \prime}$. If $b \notin T \cup B_{k-1}$, put $N_{k}-b \in A_{k}^{\prime \prime \prime}$. Since the sets $\{0\}, A_{i}, A_{j}^{\prime \prime}, B_{i}, B_{j}^{\prime \prime \prime}$ for $j=1,2, \ldots, k-1$ are disjoint and partition $\left[0, N_{k-1}\right]$, and since the numbers in $I_{k}^{\prime \prime}$ are preciscly those of the form $N_{k}-x$ for $x \in$ $\left[0, N_{k-1}\right]$, it follows that the sets $A_{k}^{\prime \prime \prime}$ and $B_{k}^{\prime \prime \prime}$ partition the interval $I_{k}^{\prime \prime}$.

We can count the number of representations of N_{k}. Clearly, N_{k} has exactly $|S|=p$ representations of the form $N_{k}=a+a^{\prime}$ with $a, a^{\prime} \in$ $\cup_{i-1}^{k}\left(A_{j} \cup A^{\prime \prime \prime}\right) \cup\{0\}$, namely, those with $a \in S$ and $a^{\prime}=N_{k}-a$. Also, N_{k} has exactly $\left|T \cup B_{k-1}\right|=p-1+n_{k-1}-N_{k-2}$ representations in the form $N_{k}=b+b^{\prime}$ with $b, b^{\prime} \in \cup_{j-1}^{k}\left(B_{j} \cup B_{j}^{m}\right)$, namely, those with $b \in T \cup B_{k-1}$ and $b^{\prime}=N_{k}-b$.

Now suppose that k is odd. Choose $T^{*} \subset \cup_{j=1}^{k-1}\left(B_{j} \cup B_{j}^{* \prime}\right) \cup\{0\}$ with $\left|T^{*}\right|=$ p, and choose $S^{\#} \subset \cup_{j=1}^{k-2}\left(A_{j} \cup A_{j}^{\prime \prime}\right)$ with $\left|S^{\#}\right|=p-1$. Let $b \in$ $\cup_{k=1}^{k-1}\left(B_{j} \cup B^{\prime \prime}\right) \cup\{0\}$. If $b \in T^{\#}$, put $N_{k}-b \in B_{k}^{\prime \prime \prime}$. If $b \notin T^{*}$, put $N_{k}-b \in A_{k}^{\prime \prime}$, Let $a \in \cup_{j=1}^{k-1}\left(A_{j} \cup A^{\prime \prime}\right)$. If $a \in S^{\#} \cup A_{k-1}$, put $N_{k}-a \in A_{k}^{\prime \prime \prime}$. If $a \notin S^{\prime \prime} \cup A_{k-1}$, put $N_{k}-a \in B_{k}^{\prime \prime \prime}$. This determines a partition $I_{k}^{\prime \prime \prime}=A_{k}^{\prime \prime \prime} \cup B_{k}^{\prime \prime \prime}$ such that N_{k} has exactly $\left|T^{\prime \prime}\right|=p$ representations as a sum of two elements of $\cup_{j=1}^{k}\left(B, \cup B_{j}^{m}\right) \cup\{0\}$ and N_{k} has exactly $\left|S^{\#} \cup A_{k-1}\right|=p-1+n_{k-1}-N_{k-2}$ representations as a sum of two elements of $\cup_{i-1}^{k}\left(A_{j} \cup A_{j}^{\prime \prime}\right)$.

We can now partition the natural numbers into two disjoint sets A and B, where

$$
\begin{aligned}
& A=\sum_{k=1}^{\infty}\left(A_{k} \cup A^{\prime \prime}\right) \cup\{0\}=A^{*} \cup\left(\bigcup_{k=1}^{\infty} A_{k}^{\prime \prime}\right) \cup\{0\} \\
& B=\bigcup_{k=1}^{\infty}\left(B_{k} \cup B_{k}^{\prime \prime}\right)=B^{*} \cup\left(\bigcup_{k=1} B_{k}^{\prime \prime \prime}\right) .
\end{aligned}
$$

The sets $A_{k}^{\prime \prime \prime}$ and $B_{k}^{\prime \prime \prime}$ are constructed inductively in such a way that, for every $p \geq 1$, every pair of sets S, T (where $S \subset A$ and $|S|=p$, and $T \subset B$ and $|T|=p-1$) is used to construct partitions $I_{k}^{\prime \prime \prime}=A K_{k}^{\prime \prime} \cup B_{k}^{\mathbb{K}_{k}^{\prime \prime}}$ for infinitely many even integers k, and every pair of sets $T^{* *}, S^{\#}$ (where $T^{\#} \subset B \cup\{0\}$ and $\left|T^{\# \#}\right|=p$, and $S^{\#} \subset A \backslash\{0\}$ and $\left.\left|S^{\#}\right|=p-1\right)$ is used to construct partitions $I_{k}^{\prime \prime \prime}=A_{k}^{\prime \prime \prime} \cup B_{k}^{\prime \prime \prime}$ for infinitely many odd integers k.

We shall prove that A is an infinitely oscillating basis. Let S be a finite subset of A, say, $|S|=p$. Since $A^{*} \subset A$, it follows from the Critical Lemma that all sufficiently large $x \neq N_{k}$ can be written in the form $x=a+a^{\prime}$ with $a, a^{\prime} \in A \backslash S$. If k is odd, then N_{k} has at least $\left|A_{k-1}\right|=n_{k-1}-N_{k-2}$ representations in the form $N_{k}=a+a^{\prime}$ with $a, a^{\prime} \in A$. Since $n_{k-1}-N_{k-2}>p$ for large k, it follows that $N_{k} \in 2(A \backslash S)$ for all sufficiently large odd integers k.

Let $T \subset B=N \backslash A$ with $|T|=p-1$. Let k be an even integer such that $S \cup T \subset\left[0, N_{k-2}\right]$. Let S^{\prime} be the set of those $a \in \cup_{j-1}^{k-1}\left(A_{i} \cup A^{* \prime \prime}\right) \cup\{0\}$ such that $N_{k}-a \in A_{k}^{\prime \prime}$. Then $N_{k} \notin 2(A \backslash S)$ if and only if $S^{\prime} \subset S$. If $S^{\prime} \subset S$ and $S^{\prime} \neq S$, then $\left|S^{\prime}\right| \leq p-1$. From the construction of $A_{k}^{\prime \prime \prime}$ it follows that $A_{k}^{\prime \prime}$ contains all but at most $p-2$ of the integers of the form $N_{k}-b$ with $b \in$ $\cup_{j-1}^{k-2}\left(B_{j} \cup B_{j}^{\prime \prime \prime}\right)$. Therefore, if $T \subset \cup_{j=1}^{k-2}\left(B_{j} \cup B_{j}^{\prime \prime \prime}\right)$ and if $|T|=p-1$, then $N_{k} \in$ $2((A \backslash S) \cup T)$.

Suppose that $S^{\prime}=S$. Let T^{\prime} be the set of those $b \in \cup \cup=1 k=\left(B_{j} \cup B_{j}^{\prime \prime}\right)$ such that $N_{k}-b \in A_{k}^{\prime \prime}$. Then $|T|=p-1$ by the construction of A_{k}^{k}, and $N_{k} \in$ $2((A \backslash S) \cup T)$ if and only if $T^{\prime} \neq T$. However, since the pair of sets S, T was used to construct the partition $I_{k}^{\prime \prime}=A_{k}^{\prime \prime \prime} \cup B_{k}^{\prime \prime}$ for infinitely many even integers k, it will happen for infinitely many even k that $S=S^{\prime}$ and $T=T^{\prime}$, and so $N_{k} \notin 2((A \backslash S) \cup T)$. Therefore, $(A \backslash S) \cup T$ is a nonbasis if $|T|<|S|$.

On the other hand, if $|T| \geq p=|S|$, then $T^{\prime} \neq T$ and $N_{k} \in 2\left(\left(\begin{array}{ll}A & S\end{array}\right) \cup T\right)$. Therefore, $(A \backslash S) \cup T$ is a basis if $|S| \leq|T|$. This proves that A is an infinitely oscillating basis.

Since the sets A and $B \cup\{0\}$ were constructed by the same method, it follows that $B \cup\{0\}$ is also an infinitely oscillating basis. But $0 \in B$, and so B is an infinitely oscillating nonbasis. This proves the Theorem.

Acknowledgements. We wish to thank the Rockefeller University for its hospitality while the second author was a visitor in the Fall of 1975.

REFERENCES

[1] P. Erdös and M. B. Nathanson, Maximal asymptotic nonbases, Proc: Amer, Math. Soc. 48 (1975), 57-60.
[2] P. Erdös and M. B. Nathanson, Oscillations of bases for the natural numbers, Proc. Amer, Math. Soc., 53 (1975), 253-258.
[3] E. Härtter, Ein Beitrag zur Theorie der Minimalbasen, J. Reine Angew. Math 196 (1956), 170-204.
[4] M. B. Nathanson. Minimal bases and maximal nonbases in additive number theory, J. Number Theory 6 (1974), 324-333.
[5] A. Stöhr, Gelöste und ungelöste Fragen üher Basen der natürichen Zahlenveihe, 1, J. Reine Angew. Math. 194 (1955), 40-65.

Received October 7, 1975

Paul Erdös

Mathematical Institute
Hungarian Academy of Sciences
Budapest, Hungary

Meloyn B. Nathanson
School of Mathematics
The Institute for Advanced Srudy
Princeton, New Jersey 08540

Department of Mathematics
Brooklyn College (CUNY)
Brooklyn, New York 11210

Deparment of Mathematicy
Southern Illinois Untversity
Carbondate, Illinois 62901

