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Dedicated to the memory of A . Rényi .

Introduction . Let (G,+) be a finite Abelian group of order n, and suppose we

choose k arbitrary elements 91,92, . . .,gk of G. Let us consider the 2 k sums elgl +

e2g2 + . . . + ekgk where each ei = 0 or 1 . Two interesting questions present themselves :

can every g E G be represented in the form g = e 1 gl + . . . + ekgk, and if so, does each g

have about the same number of representations?

Clearly for a particular set of elements g1,92, . . .,gk, to answer these questions we

should have to know about the structure of G : for example the elements gl,92,---,gk

may all belong to a subgroup of G . So we ask instead, what can we expect to happen if

we choose g1,92, . . .,gk at random, or, put another way, what can be said about these

questions for almost all (that is, all but o(n k)) of the possible choices of gl,92,---,gk?
These probabilistic questions were raised by Erdős and Rényi [2] . Surprisingly,

their answers depend very little on the structure of G ; the fine detail does depend on

the group structure as was pointed out by R . J . Miech [S ] . If every element of G is of

order 2, e I g1 + e2g2 + , ., + ekgk always generates a subgroup of G, and each element

receives the same number of representations . This can be seen by viewing G as an

appropriate vector space .

The only obviously necessary condition for an affirmative answer to the first

question, whether every g can be represented, is 2 k > n. Erdős and Rényi proved that

provided

klog2 > logn + 2log
ö
+ log( l ) + 5log2,

then for all but at most 6n k choices of g1,92, . . .,gk every g E G may be represented in

the required form . This is nearly best possible, indeed it may be that without any

conditions on the structure of G, it cannot be substantially improved . We hope to

study this question in a later paper .

In this paper we consider the second question, concerning the number of
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representations . Our result is as follows .

THEOREM . Let R(g) denote the number of representations of g in the form g =

6191 + 6292 +,,, + ej-gk, where each eí = 0 or 1. Let rl be a fixed positive number .

Then for almost all choices of the elements g1,g2 gk we have

(1 - n)2 k/n < R(g) < (1 + n)2k/n

for every g E G, provided

k >
logn

(1 +0(	 looogn)) .
l0g2

	

oglogn

The constant implied by the 0-notation depends only on rl . Moreover, the result holds

if rl - 0 as n - -, provided log 1/17 = 0(logn/loglogn).

This result is sharp except for the 0-terms, and these could be improved if the

estimate for max R(g) in Lemma 3 were reduced . We hope to return to this question

in the future .

Erdős and Rényi [21, Miech [51, [-fall [31 and Hall and Sudbery [41 have proved

partial results in this direction, also Bognár [ 11 and Wild [61 obtained results when e i

may be chosen from some fixed set of integers other than (0,I). Erdős and Rényi

proved that it is sufficient that klog2 > 2logn + 2log 1/77 + 0(n) where 0(n) - -

arbitrarily slowly as n -> -, and the subsequent work aimed at reducing the factor 2

mulitplying logn on the right . These improvements all depended on conditions on the

group stricture, and Erdős and Rényi conjectured that without such conditions, the

factor 2 cool d not be reduced .

We should like to acknowledge the kind help of Professor G . L. Watson, who

provided the important Lemma 1 below .

NOTATION. The language of probability is appropriate in our arguments. We

write prob( . . .) for the probability of the event in brackets ; as usual prob(AIB) means

the probability of the event A, given that the event B occurs . E( . . .) denotes the

expectation of the random variable in brackets . EGE I E2 . . . means the joint occurrence

of the events EG,EI,E	

LEMMA 1 . Let G be a finite Abelian group of order n, and suppose we are giver :

N distinct equations

e t, Ig l + et,2 g2 + . . .+Et mgm =0

	

(1<t-N)

where every et . , = 0 or 1 . N < 2"" . t Then the number of choices of the elements

g1.g,, .,.,gn, to satisfy, all the equations simultaneously does not exceed n" -s , where
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s = (IogN)l(log2) .

PROOF . Let r be the unique integer such that 2m-r < N < 2m-r+1 . Select any r

integers kj , 1 < k < k2 < . . . < kr S m. Since there are only 2m r choices of the

coefficients {e t i, 1 - i < m, i not equal to any kj }, and N equations, we can find two

equations, say the t-th and a-th such that e t,i - cu i for every i other than the kj 's .

Subtracting, we obtain an equation

(1) v l gkl +v,gk-, + . . .+vrgkr =0,

where each vi = 0 or ±1, not all zero . Now let p be the largest number for which there

exist distinct numbers kl,k), . . .,k p for which no relation like (1) can be found . We

have p 5 r - 1, moreover, given any other number k0, 1 < k0 < m we can deduce,

from the original N equations, an equation

v0gk0 + v i gk l + . . . + vpgk
p

= . 0 ' v0 = ±1 .

Therefore once the group elements gkl ,gk2 , . . .,g kp have been chosen, the other gi 's

may be determined . Hence the equations have at most np solutions, where p < r - 1 =

[ m - (logN)/(log2)] 5 m - s .

LEMMA 2 . Let Q = l (logn)l(log2)/, and suppose elements g1,g2, . . .,gQ are chosen

randomly, and independently, from G. For each g C G, let R(g) denote the number of

representations of g in the form g = £lgl + e2g2 + ., . +'Qgk, where each e i = 0 or 1 .

Let m be a positive integer . Then

E (n Z Rm(g)) S 22hu1
g

PROOF. Let X denote a group character on G, so that X(a + b) = X(a)X(b) for

every a,b C G . Then

R(g) = n Y- X(g) 11 ( I + X(gj))
X

	

I
where the product runs over 1 < j < Q . Hence

1 E RM(g) = 1 2;' . . . Y' 11 110 + XA)),n g

	

nm X, Xm , ~

	

h

where i runs over I < i < m, and E' denotes summation restricted by the relation

XIX2 . . . Xm = X0, the principal character . Therefore

E(I .`.. Rm(g)) = I ,t . . . F' {- nE H (1 + X (h))}Q,
n g

	

nm X1 Xm h i

the inner sum being over every group element h . But

n E il(I +!Xi(h)) = N(x, ,X2, . . .,X,),

where N(X,,X2, . . .,Xm) denotes the number of distinct relations
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(2) X1 e 1 X2e2 . . . Xmem = XO (ei = 0 or 1)

existing between these characters . The characters form a group (G,X) isomorphic (if

. we change the gro'6p operation) to (G,+) . Let us denote by MM(G,N) the number of

choices of m characters Xi from G to satisfy any set of exactly N relations (2). Then

(3) E(1 E Rm(g)) -<-L E M (G,N)N Q ,n g

	

nm N m

summation being over the range 1 < N < 2m, since any set of X's satisfy at least one

relation, the empty one. We have dropped the condition XIX2 . . . Xm = XO which

actually implies N > 2, N even . For each N, there are at most (N ) sets of N relations,

and, given such a set of relations, the number of choices of XI,X2, . . .,Xm to satisfy

them does not exceed n m-s, by Lemma 1, where s = (logN)/(log2) . Hence

(4) Mm(G ,N) < (N)nm-s = nm(N )N-(loge)/(Iog2) .

Since N > 1 and Q < (logn)/(log2), we obtain the result stated from (3) and (4) .

LEMMA 3 . Suppose elements g1,g2, . . .,gQ are chosen randomly and

independently from G: Q and R(g) are as defined in the previous lemma. Then for any

fixed A > 2,

Prob(max R(g) > Alogn/loglogn) < c(A)n-6(A)
g

where S(A) and c(A) are positive numbers depending on A only.

PROOF. By Lemma 2, and Markoff's inequality, the probability in question

does not exceed

ii . 22m,A-mlogn / l og logn

Since A > 2, we can find a constant a such that 2 a < e < Aa , and we set m =

[aloglognI . The above expression tends to zero as fast as n -6 , where S = S(A) _

'hlog(Aa /e) .

LEMMA 4 . Suppose k elements, gl,g2, . . .,gk are chosen from G randomly and

indepemlently, and R(g) denotes the number of representations of g in the form g=

elgl + E2g2 + . . . + ekgk , each e i = 0 or 1 . Then

E(E(R(g) - 2k/n)2) = 2k(1 - 1/n) .
g

This is equation 1 .3 of Erdüs and Rényi 121 .

LEMMA 5 . Let 11 be an arbitrary but fixed sub-set of G of cardinality 1111 .

Suppose that the elements gl,g-), . . .,fs are chosen randomly and independently from G,

and that N(g) denotes the number of choices of el,e2, . . .,es such that g - e1g1 - e2g2 -



inequalities

n E I 1+ X(g)12 = 2 if X 0- X0 , 4 if x = X0,
g

where XO is the principal character. Moreover

I E IP(X,H)1 2 = IHI •
X

Therefore,

E(EN2(g)) = 2 s JH1 + nI IH1 2(4s - 2 s) .
g

Subtracting the expectation of EN(g), we obtain our result .

PROOF OF THE THEOREM. Let 11(17 > 0) be given, and fixed. We also fix an

arbitrary A > 2 .

We begin by choosing just Q= ((logn)/(log2)J elements of G . Here . and in what

follows we mean that the elements are chosen independently, so that repetitions can

occur, and randomly : every element has an equal probability of being chosen. Let

ROW denote the number of representations of any group element g in terms of these

elements, and denote by EO the event
max RO(g) < Alogn/loglogn
g

We now choose a further 6t + 1 elements from G, where t is the smallest integer such

that
2t >, Alogn/loglogn

We have kI = A + 6t + l . elements so far, and we denote by RI(g) the number of

representations of g in terms of all of these . We call g I-exceptional if one of the

(1-r1 ,)~ <RI(g)<(T+17 , ) 2n 1
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- ergs E H, where each ei = 0 or 1 . Then

E(EN2(g) - N(g)) = n -I IH1 2 (4 s - 2s) .
g

PROOF. Pjainly EN(g) = 2sJH1 . Next,
g
N(g) = n X X(g)P(X,H)

i
I11 (1 + X(gi))

where

Therefore

and

But

P(X,H) = E{X(h) : h E H} .

EN2(g) =nE IP(X>H)1 2 H 11 + X(gi)1 2 ,
g

	

X

	

i=l

E(:N2(g)) = nZIP(X,H)1 2 {n gi1+X(g)12} s .
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fails to hold, where

(5) n' = n/2logloglogn .

Let N, denote the number of I-exceptional elements . Plainly

E(R I (g) - 2 k I / 17 )2 > 71 24k l NI / 17 2
g

and we deduce from Lemma 4, and Markoff's inequality, that

prob(N I > n/25t) < I/n' 22í .

Let E 1 denote the event NI < n/25t . From the above, and Lemma 3,

prob(EOE1) > 1 - c(A)n-6 (A) - 1/17 ' 2 2 t .

Assume that EO and E1 occur . Let H1 denote the set of 1-exception a l elements, so

that JH 1 I = N 1 . Moreover, if g E H 1, we have
(6) 0 < R, (g) < 26t+l Alogn/Ioglogn

We now choose a further s elements from G at random, giving a total of Q + 6t + I + s,

and we denote by R 2(g) the number of representations of g in terms of all of these .

Here s is the smallest integer such that

(7) 2s-1 > nl Alogn/loglogn

We call g 2-exceptional if one of the inequalities

(1 -71,)2 2172 < R2(g) < (1 +,a')2 217
2

fails to hold, where k2 = Q + 6t + 1 + s . N2 denotes the number of 2-exceptional

elements .

Suppose that the s elements just chosen are gl,g2, . . .,gs, and that g has the

property that for at most one choice of the numbers e l ,e2, . . .,es (each ei = 0 or 1) we

have g - eI g, - 1292 - . . . - e s gs E H1 . Then

R2(g) > (2s - 1)(1 - n')2k I /n > (1 - n')22 k2/n

by (7) . Also

R2(g) < 2 s (1 + 71')2 k, /n + 26t+1 Alogn/loglogn

by (6) . We have 2k, /n > 2 6t by definition of k 1 and Q. Now using the definition of s

given by (7), we deduce that

RI(g) <(I + 17') 22 k2 /n .

Let N1(g) denote the number of choices of the numbers e l ,e2, . . .,e s above such that g -

6 1 9 1 - e2g2 e sgs E H I . We have 1hown that if g is 2-exceptional, we must have

N I (g) > 2 . Hence
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2N2 < E(N2(g)-NI(g)) .
g

Applying Lemma 5, and Markoff's inequality, we have that

prob(N2 > n/27t-41EOEI) < n •2-10t-0-2 <	
I t+I2n •2

	

11 22
using the definitions of s and t . If E2 denotes the event N 2 < n/27t-4 , we have

prob(EOE I E2) > 1 - c(A)n-6(A) - (l +'h)/11'22í .

Let H2 denote the set of 2-exceptional elements . We have IH2I = N2, moreover, if g E

H2 then

0 < R2(g) < 26t+I+sAlogn/loglogn

We now choose the same number, s, random elements of G, so that we have k3 = Q+6t

+ 1 + 2s. R3 (g) denotes the number of representations of g in terms of all these, and

we call g 3-exceptional if one of the inequalities

(1 -11') 32k3 /n < R3(g) < (1 +1!') 32k3/n

fails to hold . Name the new elements gl,g2, . . .,gs as before, and let N 2 (g) denote the

number of choices of e 1,e2, . . .,es for which g - e l gl - 6292 esgs E H2 . Assume that

EO ,E I ,E2 occur . Then we may check that g is 3-exceptional implies N2(g) > 2 . Let N3

denote the number of 3-exceptional elements . Applying Lemma 5 and Markoff's

inequality as before, we have that

prob(N3 > n/21 It-13JEOEIE2) < 1/11' 2 2t+2 .

We continue in this way, adding s elements at a time, and assuming that the events

EO,EI,E2, . . . have all occurred . We call g r-exceptional if one of the inequalities

(I - 71 , ) r -, kr/n < Rr(g) < (1 + r1'pkr/n

fails to hold, where k r = f + 6t + 1 + (r - I )s . N r denotes the number of r-exceptional

elements, and we prove successively that

prob(Nr > n/2art-brjEOEI . . . Er_I) < /r1 ,2 2t+r-11

	

,

where a r and b r are determined from the recurrence formulae :-

a r+ l =tar -3, a, =5 ;br+ I =2b r +r +3,bl =0 .

Plainly

We denote by E r the event

ar =2r +3,br =5. 2r-1 -r-4 .

a t-b
Nr< n/2 r r



rO = [2logloglogn]

and calculation shows that if n > 1000, the event E r0 implies Nr0 < 1, that is,
Nr0

0. Hence we have
k

	

k(8) (1 _,,,)r
02 r0/n < Rr0(g) < (1 + , , ) r02 r0/n

for every g E G, where kr0 = Q + 6t + 1 + (t o - 1)s. Let k > k r0 . We may certainly

choose k elements from G randomly and independently by choosing the first k r0 of

them in the manner described, and then choosing the rest, and we deduce from (8),

inserting the values of rO and 77' (given by (5)), that for every g, we have

(I - 77)2k/n < R(g) < (1 + 77)2 k/n

with probability at least

1 - c(A)n b(A) - 2/r7' 22í .

This tends to 1 as n -~ for any fixed 77 > 0, indeed if
< Blogn/loglogn

77
for any fixed B : for we may suppose A > B2 , and this makes 2í tend to infinity

sufficiently rapidly . We require that
-loge

	

loelocloenk kr0 - log2(l +0 ( loglogn )) •

where the constant implied by the 0-notation depends on A and B only . This

completes the proof .
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and we have that

We set

p(EOE1 . . . Ed > 1 - c(A)n -s (A) - 2(1 - -r)/77' 22 í .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

