
PAUL ERDÓS

PROBLEMS AND RESULTS
IN COMBINATORIAL ANALYSIS

RIASSUNTO . - Xei primi quattro paragrafi si discutono problemí estrenialí sui grafi
e sugli ipergrafi . Qui si pone soltanto un problema : sia 1 S = n, é , ero che se 1 A,i

1
= 3 .

A i c S , i = i , 2 . • • •, t = en 2 é un arbitrario insieme di t = en2 terne di S . esiste sempre
un sottinsieme di k elementi di S che contiene k - 3 terne tra quelle fissate' Szemeredi
ha dimostrato questa congettura (formulata da W. G . Brown, V. T . Sos e l'autore) per
k = 6, ma per k > 6 il problema resta aperto .

U ii paragrafo é dedicato a problemi combinatori sui sottinsiemi e l'ultimo paragrafo
fornisce vari problemi e risultati (non collegati tra loro) considerati dall'autore e dai suoi
collaboratori .

During the last few years I have written several papers on this and
related topics . As much as possible I will try to avoid overlap with previous
papers . As is always the case the choice of my problems is purely subjective

I only discuss questions on which I worked and of course do not claim

that these problems are more important then others which I neglected . In

this paper I will mention several problems related to block designs, a topic

about which I do not know too much, but my collaborators and I often used
results obtained by others ; perhaps some of the experts in this field will be

able to settle some of the questions which baffled us so far .
In the first four sections I discuss some extremal problems on graphs

and hypergraphs .

At the end of each section I give references, here is a list of my papers

on combinatorial problems .

Problems and results in conebinatorial analysis, s Proc . Symp. Pure Math .** XIX, 14 Amer.
Mat. Soc. », 197r, 77-89-

Some unsolved problems, «Michigan Math . Journals, 4 (1957), 291-3oo and t+ Pub] . Alath .
Inst. Hung. Acad. Sci . », 6 (196x), 221 -254 .

Extremal problems among subsets of a set (with D. J. Kleitman), Proc. second Chapel hill
Colloquium 1970, 146-170 see also (4 Discrete Math . s, 8 (1974), 281-294 .

Problems and results in chromatic graph theory, proof techniques in graph theory 1969, Acad .
Press 27-35 .

Some unsolved problems in graph theory and combinatorial analysis, Combinatorial Math . and
its Applications Oxford conference 1969, Acad . Press 97-109-

I . G t '1 (n ; m) denotes an r-graph of n vertices and m edges (i .e .

r-tuples) . f (n ; G (r) (k , Z)) is the smallest integer for which every
G( ' ) (n ; f (n ; G( ' ) (k ; 1)) contains a Gt '1 (k ; Z) as a subgraph .

	

New and



(i)

(2)

Put

9(3n) = n3 +I

	

9(3n+I) = (n+í)r12 +I,

g(3n+2)=n (11+1)2=-i .

Katoiia conjectured and Bollobas proved that every G I3) (n ; g (n)) con-
tains three edges e I , e2 , e 3 so that e I contains the symmetric difference of e 2
and e 3 . It is easy to see that is best possible . This is one of the few exact
results on extremal problems on hypergraphs, the analogous questions for

r > 3 are unsolved .

P. TURÁN, Eine F_xtremalaufgabe ausder Graphentheorie (in Hungarian), ((Mat es Fiz Lapok))
48 (1941), 436-452 see also colloquium #Math .», 3 (1954) 19-3o •

KATONA, NENIETZ, SIMONOVITS, On a problem of Turan in ahe theory of graphs, HMát.
Lapok a, r5 (1969), 228-238 see also J . Spencer, Turan's theorem for k-graphs, a Di-
screte Math . », 2 (1972), 183-186 .

B. BOLLOBÁS, Three graphs without two triples whose symmetric difference is contained in
a third, e Discrete Math)) ., 8 (1974) 2 1-24 .
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interesting complications arise if we also prescribe the structure of our
G( ') (k ; l) . Recently several papers appeared on extremal graph problems .
Perhaps the most interesting unsolved problem is the original problem of
Turan which he formulated in í94o . Denote by K( ') (t) the complete ?-graph

of t vertices (and (r) edges . For the sake of convenience if we speak

of ordinary graphs we will omit the upper index . Turan's problem states :
Determine f (n ; K ( ') (t)) for every t > r and also determine the structure
of the extremal graphs i .e. the graphs G l') (n ; f (n ; K(') (t) - I) which do
not contain a K(') (t) .

This problem was solved by Turan for r = 2 and every t but for r > 2
nothing definite is known, though Turan has several plausible conjectures .
It is easy to see that for every r and t

lim f (n ; Kl'' (t))l ( n ) = a (t , r)
s-~

	

r

exists and that a (t , 2) = I - t I I , but for r > 2 none of the values

a (t , r) are known .
Let r > 2 , 2 < l < r + i . It would be very interesting to determine

f (n ; Gl'l (r + i , l)), (for fixed r and Z there is only one G l 'l (r + r , ~ ; .
It is again easy to see that

lim f (n ; Gl 'I (r -~- i , l))I ( n
)
= (3 (r , Z)

71=0

	

r

exists and is positive but none of the (3 (r , l) are known .
The case r = 2 is trivial here, r > 2 , l = 2 is not trivial, very likely

f(n ;G(')(r+I,2))= _ ( rnl~+o(I) .



P. ERDŐS, Extremal problems in graph theory, Proc. Symp. Theory of Graphs . Smolenice,

1963, 29-36. Some recent results on extremal problems in graph theory . Theory of

graphs. International Symposium Rome 1966, 117-130, On some 11-al inequalities
concerning extremal properties of graphs, " Theory of graphs Proc . Coll . held at Tihany

Hungary ", 1966, 77-81 .

NJ . SIMONOVITS, A method for solving extremal graph problems in graph theory, stability pro-

blems ibid, 219-319 . Extremal graph problems with conditions, Comb. theory and its
applications «Coil . Math . Sec . J . Bolyain, 1970, vol . III, 999-1012 (North Holland) .

P. ERDŐS, M . SIMONOVITS, A limit theorem in graph theory, « Studia Sci . Math. Hungar . n,
I (I969), 51-57 .

2 . In this section r = 2 . We will discuss bipartite graphs . C, denotes
a circuit of l edges . First we discuss f (n ; C4) . Brown, Renyi, VT Sos
and I proved that

f (n ; C4) _
1
+ 0 ( I ) 113,12

2

We in fact showed (using finite geometries) that if 11 = p 2
where p is a power of a prime then

f (p 2 -p + I ; C4) > ((Y + I) p2 +p (p + I))/2 = 2 (p 3 +p) +p2 •

It is not impossible that in fact

(I)

	

.f (p2 + b + I ; C4) -

	

(p3 + p) .+ p2 +_ . I

but we were unable to prove (i) . Our attempts to prove (i) were not entirely
wasted since they led us to discover the so called friendship theorem .

Our graph G lp2 +,p + I ; 1 (p3 + p) + p2) contains many triangles .

It is perhaps true that if G (n) contains no C4 and no C3 then it has at most
3/2

(I + o (I)) n _ edges . If true this is certainly best possible since Reiman
2 y2 2L 312

	

\

and E. Klein constructed a bipartite G (n ;	 2	
y2

(I +o (I)) I without a C4 .

A simple argument show

	

\

	

i
s

f (n ; C4) C 2 n3/2 + 4 (I + o ( I )) .( 2 )

(2) easily follows from the simple observation that if v, is the valency
(or degree) of the vertex x i and G (n) contains no C4 then

11

(3)

	

(2) < ( 2)
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easily implies (2) . It would be tempting to conjecture that

f (n ; C4) = 2 n 3J2 -+ 4 + o (n)

-i- p + I



but I could only prove

(5)

	

f (n ; C4) = 2 n3/2 + o (n3/2-c\

for certain c > o . (5) follows easily by considering

l
the smallest _p satisfying

$2 +p -j- i > n . The following question might be of some interest here .
Let I S I = n, determine subsets Ak C S , IAk, n Ak, I < i I Ak I = j,'n + o (1)
so that as many pairs (x, y) , x E S , y c S as possible should be contained
in tl_e A's . Is it in fact possible to find such a system Ak which contains
all the pairs with a possible exception of en of them? In view of the
recent surprisingly strong results of Wilson the following problem could be
asked: Let :

a 1 2 + a2
k 2 1 + 73

k
2 2 > --2

	

Ch

at > En2 , i = i , 2 , 3 . Let I S I = n . Is it possible to find a family of
subsets {A;} of S , A„ n Aj < i ~ A; ~ = k + i, o < i < 2 every pair is
contained in one and only one A and there are at most a; sets of size
k + i = o , 1,2) .

More generally one could ask : Let

What is the necessary and sufficient condition that one can find sets I AZ I = ui
so that every pair of S should be contained in one and only one Ai ? It is
no doubt hopeless to find a good necessary and sufficient condition but
perhaps useful necessary and useful sufficient conditions can be found . Also
it might be often useful to try to find sets Ai , IAi I < ui I Ai, n A i , I < i so
that all but o (n) (or all but o (n 2 )) of the pairs of S are contained in an A ; .

Kovari V. T . Sos Turan and I proved that ((K (k , l) denotes the com-
plete bipartite graph of k black and l white vertices)

(6) f(n ;K(l,l))<(2 +o(i»n2-1/1 .

It seems likely that (6) is in fact an asymptotic formula, this has been
proved (as stated) for l = 2 but is open for l > 2 . Brown proved

f (n ; K (3 , 3)) > cn5 ' 3

but nothing is known for L > 3 . The following finite geometry type construc-
tion would be needed : Let I S I - n, find el n subsets of S of size > c2 n1-111

so that the intersection of any Z of them is < l. Such a set system would
immediately give f (n ; K (1, l)) > cn2- ( 1 +r); in fact this is what Brown did
for l= 3 . A finer analysis might yield the asymptotic formula, but this
worked only for Z = 2 .

Before closing this chapter I mention a few other extremal problems
on bipartite graphs which we considered . Simonovits and I proved that
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every G (sa ; [cn 8j']) contains a cube ; it would be very interesting to decide
if the exponent 8/5 is best possible ; by the way our proof is surprisingly
difficult .

At first we thought that for every bipartite graph G f (n ; G) is of the
form cn1+(1?k) or cn2-(','k) but Simonovits and I showed that this is not so ;
we then modified our conjecture and guessed that for every G there is a
rational a , i < x < 2 so that

(7)

	

.f (n ; G)/n" -* c (G)

and conversely for every a there is a corresponding graph for which (7)
holds, we are very far from being able to decide this question . In the next
chapter we will see that for hypergraphs (r > 2) f (n ; G (r) ) can have a much
more complicated form .

It is known that f (n , C 2k) < el nl+(11k) (for a very much more general
and thorough investigation see the forthcoming paper of Bondy and Simo-
novits, probably f (n ; CV-) > c2 n 1 . (vk) but this is known only for k < 3 .
and k = 5 (R . Singleton a Journal Comb . Theory)), r (1966), 306-332; C .
Benson, ((Canad . J . Math)), 18 (1966), 1091-1095) . The general case
could be settled if the following block design like structure would exist :
I S I = n, A, C S, 1 < r < c3 n , j A, I > c 4 n1 k We now define a graph as
follows : The vertices are the A„ two vertices are joined if the corre-
sponding sets have a non empty intersection . This graph should have
girth > k (i .e . it should contain no Cl for Z < k) .

It seems certain that for every k > 1

f (n ; C2k)I nl+(Ilk)

	

-k .

Define G - e as the graph from which the edge e has been omitted .
I proved f (n ; K (r, r) - e) < cn2-1,1(1-1) and very likely

f (n ; K (r, r) - e)jn l-(11r-1) _* cy >

but this is not even known for r = 3 .

Simonovits and I investigated a few other special graphs . Define Gk , r

as follows :

	

It has i + k -i-
l
k

I
vertices x ; yl , • • •, yk ; z 1 , • • •, z (k ) . x isr

joined to all the y's and each z is joined to r y'a (distinct z's to distinct
r-tuples) . Gk,,. = Gk,, - .,r (i .e. the vertex x and all edges (x , yi) i < i < k
are omitted from Gk,r ) . Estimate f (n ; Gk , r) and f (n ; Gk,h) as accurately
as possible. I proved, that f (n ; G3,2) < cn 312 G 3 , 2 is a cube with one
vertex omitted and G(312 is Cs) •

	

Is it true that f (n ; G k , 2) < ck n31? ? and
more generally f (n ; Gk,,) < ck rig -Wr) ? The first inequality may very well
fail for k > 3 and the second for k = 4,r=3- I f k = r + i the inequality
holds and is essentially a consequence of the result of Kovari and the

Turans. Perhaps f (n ; Gk,,) is of the order of magnitude n2-(11r)-ek with
6h -> o as k --> oo, but we could not settle this even for r = 2 .
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Simonovits and I in fact proved that every G (n ; cn3/ 2 ) contains a cube
with one edge omitted (this graph of course contains G 3 ,2) . An edge e
of G is called inessential if

f(n ;G-e) > ef(n ;G)

in other words the omission of e does not decrease the order of magnitude
of f (n ; G) . (The same definition can of course be made for vertices) .
Clearly every graph which is not a tree has a subgraph without an inessential
edge . It would be worth while to try to characterise these graphs e .g. is it
true that every symmetric (bipartite) graph has this property? (symmetric
heve means that the automorphism group is transitive) .

It seems certain that every edge of K !r, r), or the r-dimensional cube
is essential but this is known only for r= z • On the other hand it is easy
to see that every vertex of valency one is inessential .

Let now G have chromatic number greater than two . Then perhaps
it is more reasonable to define an edge (or vertex) whose omission does not
change the chromatic number K (G) to be inessential if

(8)

	

f(n ;G-e)- ZZ II - K(G)-1) > c~f(n ;G)-t' (I - K(G)-111

or in fact an edge is said to be strongly inessential if

(9)

	

f (n ; G - e) = ./ (n ; G) .

A theorem of Dirac and myself states that

(10)

	

f (n ; K (r) - e) = f (n , K (r - I)) .

K (r) - e perhaps has as many inessential edges as possible . Simonovits
remarks that this is false. If r = 2 s and we omit from K,, s independent edges,
in the remaining graph every edge is inessential . The following conjecture
very likely- holds : Assume G has r vertices and e I , • • • , c .- I are edges
of G then J (n ; G - e I -- , - e _ 1 ) G f (n ; G) and perhaps even
f (n ; G - e l - , • • , - er_I) G (I- e) f (n ; G) . (Simonovits disproved these
conjectures) .

Finally it is possible that (8) and (9) is possible for a bipartite graph
only if it has vertices of valency one . Let G be bipartite and f (n ; G) > cn3"+`
then perhaps every vertex of valency 2 is inessential .

W. G • BRowN, On Graphs that do not contain a Thomsen grafih, a Canad, Nlath Bull . *, 9,
(1966), 281-285 .

P • ERDŐS, A . RENYI, V • T • SOS, On a Problem of graph theory, ((Studio Sci . Math, Hungar»,
r (1966), 21 5-235 •

I • REIMAN, Ober ein Problem von K• Zarankiezvicz, e Acta Math., Acad . Sci • Hungarica. »,
9 (1958), 269-278, the proof of E . Klein is given in P • Erdös, On sequences of integers
no one of which divides the Aroducl of two others and on some related Problems, a Tomsk
Gos Univ. Ocen . Zap. » , 2 (1938), 74-82, see also On some gAplications of graph
theory to number theoretic problems, (4 Publ_ Ramanujan Inst . Number)), i ( 1969),
131-136 .



and perhaps

f (n ; G(3)
(k , k - 3)) > Ch llrk-3 (Il),

but Ruzsa proof does not seem to work in general . Ruzsa and Szemeredt
will write a joint paper about their results .

A related problem is the following one: Is it possible to find a Steiner
system for every n > no (k) so that for every 3 < r < k the system should
not contain a G (3) (r ; r - 2) . Doyen informs me that he can do this for

- 9 -

P . ERDŐS, M . SIMONOVITs . Some extremal problems in graph theory, ~ Combinatorial Theory
and Applications Coll . Math. Sec . J . Bolyai», r (1969) 377-390 (Academic Press) .

J. A . BONDY and M . SIMONOVITS, Cycles of even length in graphs, <, journal Comb .
Theory », Ser . B, 16 (1974), 97-105 •

T . KoVARI, V. T. SOS, P . TURÁN, On a firoblem of K. Zarankievicz ((Coll. Math.)), 3
(1954), 50-57 •

P. ERDŐS, On an extremal problem in graph theory, v Coll . Math.)), 13 (1965), 251 -254-
P. ERDŐS, On some extremal firoblems in graph theory, N Israel I . Math.)), 3 (1965), 113-116 .
R. M . WILSON, An existence theory for fiair-wise balanced designs . I . Composition theorems for

mofihisms . II The Structure of PBD-closed sets and the existence conjectures, (J . Comb .
Theory Ser . », A 13 (19L2), 220-245, 216-273 • An existence theory for fiairzi ,ise
balanced designs . III . Proof of the existence conjectures, a ibid », r8, ( 1975) 71 - 79-

3 . Now we discuss some extremal problems on hypergraphs . Brown,
V. T. Sos and I conjectured that

(I)

	

f(n ; G (3)
(6, 3) _ 0 (n2 )

in fact we thought it likely that it is less than rig-c for a certain c > o .
Szemeredt recently proved (i) but I . Ruzsa proved (rk (n) denotes the
cardinality of the largest set of integers not exceeding n which does not
contain an arithmetic progression of k terms) .

(2)

	

f (n ; G(3) (6 , 3)) > cm r3 (n) > c1 n2feXp (logn)1/2

where the second inequality of (2) follows from a well known result of
Behrend .

This is the first example of an extremal problem on hypergraphs where
the asymptotic formula is certainly not of the form cl na . It is not known
if this Ruzsa-Szemeredt phenomenon can also occur for r = 2 .

About a year ago Szemeredt proved rk (n) = o (n), his paper will
appear in «Acta Arithmetica», one of his decisive lemmas used in his proof
also is needed for the proof of (i) . This connection was certainly quite
unexpected for all of us . More generally one can conjecture that for
every k > 6

(3)

	

} (n ; G(3) (k , k - 3)) - o (n 2 ) .

At the moment of my writing these lines this is still open for k > 6
but Ruzsa proved

f (n ; G(3)
(7 , 4)) > cn r,} (n)



k = 6 and infinitely many n . Instead of a Steiner system one could ask :
For which k and c can one find a G (3) (n ; cnz ) which does not contain a

G (3) (r ; 7'-2) for 3 < r < k?
It is quite possible that man y other new types of problems could be

found with equally unexpected answers .

Denote by K(k) (L) the r-graph of kl vertices and (k) 1 edges . The

vertices are divided into k disjoint classes of size Z and every r-tuple whose

vertices are in different classes in an edge of our graph I proved that
for every r and k there is an ek ,,, > o so that for n > n o (k , r, e 1) every
G( ' ) (n ; n'- `k '; contains a K, (l) . This is an extension of the result of
Kovari and the Turans stated in Chapter 2 . For 1Z > 2 nothing seems to
be known about the best possible values of the exponents ek ,, . Every

G(3) (n , cn 11Jk ) contains a K33>
(2) but it is not known whether the exponent

II/4 could not be decreased .

W. G . BROwN, P . ERDŐS, V. T. SOS, Some extremal problems on r-grafihs, New directions in
the theory of graphs, Proc . third conference on graph theory at ((Ann Arbor Acad .
Press a, 1973, 53-63, On the existence of triangulated spheres in 3-gra ..hs and related
problems, a Studia Sci. Math . Hungar. n .

P . ERDŐS, On extremal problems of graphs andgeneralized graphs, ((Israel 1 . Matb#, z (1965) .
183-190 .

F. BEHREND, On sets of integers which contain no three terms in an arithmetic progression,
# Proc . Nat. Acad. Sci . IISA)>, 32 (1964), 331 -332 .

4 . Some remarks on a theorem of Stone and myself. Stone and I

proved that for n > no (s, k, Z) every G (n ; ' 2 i - k 1 1 + e)) contains a

Kk2' (1) (for k = 2 this is again a weaker form of the Kovari-Sos, Turan

theorem) . Our original proof did not give a very good dependence of n
on Z and s .

A very much sharper result in this direction was just published by
Bollobas and myself, a further improvement which is nearly best possible
has recently been obtained by Bollobas, Simonovits and myself : Chvatal
and Szemeredt obtained a further very significant improvement .

Recently I succeeded to extend this theorem to r-graphs as follows :
To every r , e , t and Z there is an no = no (e , r , t , Z) so that every

G(') (n ; (a (t, r) -+- e) ( n )) contains a K(,') (l) where a (t, r) is defined by (i)r
of chapter i . Here we do not yet have a good estimate of n in terms of z , k
and Z (unlike for r = 2) .

The following problem is open and seems very challenging to me : Let

G( ') (n i) i = I , 2 , • • • , ni oo be a sequence of r-graphs of n; vertices .
We say that the family has subgraphs of edge density > a if there is a
sequence of subgraphs G (mi) of G (ni ), mi --~ oo, so that G (mi) has at least

(a+6(r)) ('ni) edges . The theorem of Stone and myself implies that every
r



G (n ; 22 I I - l

	

}) contains a subgraph of density i -
t f

	 1 and it is

easy to see that this is best possible . Thus the possible maximal densities of

subgraphs are of the form I - Z I < l < oo . Now it may be true that

for r > 2 there are also only a denumerable number of possible values of
the maximal densities of subgraphs. As stated at the end of the previous
chapter I proved that every r-graph of density s contains a subgraph of

density > , The simplest unsolved problem states : Is there a constant

a,. > o so that every r-graph of n vertices (n large) and l r' } e I n' edges
!r

contains a subgraph of density > rr { a.,. . This is unsolved even for r = 3 ,

Perhaps every Gt31 (3 n ; n3 + I) contains either a G(3) (4 ; 3) or a G(3) (5 ; 4)
(1,2,3),(1,2,4),(1,2,5),(3,4,5) or aG f31 (5,5),(I, 2 ,3),( 1 , 2

( 1 ,3,5),( 2 ,4,5),(3,4,5) •
The same unsolved problems on the possible maximal densities arise

on multigraphs and digraphs as stated in a recent paper of Brown, Simo-
novits and myself .

By the methods of probabilistic graph theory it is easy to prove that
to every e and o < a < I there is a C = C (e , a) so that for n > no (C , e , a)

there is a G (") (n , a l Y )) so that for every m > C (logn)"("-'l every spanned

subgraph of it m vertices has more than (a. - e) (-r ) and less than (a - s) 1
mr 1,

edges and it follows from the results of my paper on graphs and generalized
graphs that this result is best possible (« el journal Math . », 2 (1965),

183-190)\ -

P . ERDŐS, A . STONE, On the structure of linear graphs, « Bull . Amer. Math . SOC . ,> . 52
(1946), 1o87-IO91 .

B . BOLLOBÁS, P . ERDŐS, On the structure of e4egraphs . «Bull . London Math .,>, Z5 (1937) . 3 1 7 -
321 .

B . BOLLOBÁS, P . ERDŐS and M . SIMONOVITS, On the structure of the edge graphs 11,
(4 J. London Math . SOC . ~), 12 0976), 219---224 .

P . ERDŐS, On some extremal problems on r graphs, ( Discrete Math . », S (197 1), 1-6 .
W. G. BROwN, P . ERDŐS, M . SIMONovITS, Ertremal problems for directed graphs, ((J . Comb .

Theory a, ser . B . 15 ( 1 973), 77-93 •

S . In this chapter I discuss various combinatorial problems on subsets .
First of all I call attention to my paper with Kleitman quoted in the introduc-
tion . Here I mainly discuss problems not considered in our survey paper .

First we consider some problems related to a result of Ko, Rado and
myself . Let I S I = n , A; C S I A; = k . Denote by t (n ; k , r, a.) the size
of the largest family Aj , i < j < t (n ; k , r, a) satisfying j A,, n Aj , I < r
and every element is contained in at most at 0,t ; k , r, a) of the A's .
t (n ; k , r, < of.) is the size of the largest subfamily with the same properties



but now every element is contained in fewer than of (n ; k , r, < a) of the
A's . Ko, Rado and I proved that for sa > 2 k

(I

	

t(n ;k, I , )= n-I)

	

k-I

For 12 > 2 k equality holds only if all the A's have a common element .
For n > no (k , r) we further proved

k-r )

Our estimation for no (k , r) is probably very poor, but Min observed
that (2) does not hold for all n > 2 k . We conjectured that

4 Z -
(
alt ) 2 1(3)

	

t(4Z ;2Z,z,I a i(2)

(3) if true is best possible . We state in our paper several other problems
most of which has been settled since then, but as far as I know (3) has not
been settled as yet .

Hilton and Milner proved that for n > 2 k .

n- i

	

7i-k- r
(4)

	

t n ; k, I,<i)= i -(k-r~-~ k-I

Equality in (4) occurs if (and no doubt only if n > no (k, r)) , Ai is an
arbitrary k-tuple x i is not in A, . All the other A's contain x i and have a
non-empty intersection with A, .

Observe that for fixed k

but from (4)

t (n ; k , i , i' _ (I - o (I )) n-1 \ nk)'

t (n ; k , i , < I) _ (I + o (I)) n-2
l k /

Now Rothschild, Szemeredt and I took up this investigation . We first
of all showed that for a = 2/3

(5)

	

t(n, ;k,I,2/3)=3(k-2}-2~k-3} .3

Equality if and only if (until further notice n is supposed to be large), there
are three elements and the A's contain at least two of them .

We further proved

t (n ; k , t < 2/3) = (I o ))

	

3 GI ) ,+(I cn-

The extremal family is obtained as follows: give three elements xi , x2 , x 3
and a set A i not containing any of them . All the other A's meet Al and
contain at least two of the x's .



Let now z > o be sufficiently small . V4'e are fairly sure that a family
of size t (n ; k , I , 213 - s) is obtained as follows : Let xl , • • •, .x5 be five
elements, the A's contain three or more of them and t (n ; k , I , a) is constant
betw=een I/2 and 3/5 . There seem to be only a finite number of values of
t (n ; k, i , a) for 317 < a. G 213 . t (n ; k, I , 317) is probably obtained as follows :
Consider a set B C S , I B 1 = 7 and the 7 Steiner triples of B. The A's are
all the sets which meet B in a set which contains at least one of these triples .
We also are fairly sure that

(

	

c

	

nt n ;k, I,G3/7)G n 1- k

More generally we conjecture that

t(n ;k, I,<
Zz-Z-~I/ < ne+1

If there is a finite geometry on 1 2 -1 + I elements then it is easy to see
that

(6)

Z

	

c

	

n\
12_1+ I )

	

nr k

but if there is no such finite geometry we conjecture that

12

	

<
-l=, I

c
(k~~

-Needless to say these last two conjectures are very- speculative . Sec a
forthcoming paper of A. J. W. Hilton on this subject .

Kneser made the following pretty conjecture : Let JS J = 2 n - k
define a graph G,,, k as follows : Its vertices are the 2 n+ k

n-tuples of S .

Two vertices are joined if the corresponding n-sets are disjoint . Denote by
K (G) the chromatic number of G. Kneser conjectured K (Gk) = k + 2 .
K (G,,, k) G k + 2 is immediate but the opposite inequality seems to present
great and unexpected difficulties . Szemeredt proved (unpublished) that
K (G,,, k) tends to infinity uniformly in k . Hajnal and I and no doubt many
others tried to attack this problem by the following extension of our theorem
with Ko and Rado . Let S 1 = n > 2 k + I , Ai C S , B j C S i < i < tl ,
I G j < 12 , the sets Al , • • • , B I , • • • are all distinct, A i, n A i, i < i I < i2 < t1,
and B;, (1 B;, I < jl < J2 < t2 are all non empty. Is it true that

n-I

	

n-2
ti- + t2 C k- i + k-i

Equality in (6) if all the A's contain i and all the B's contain 2 but
not . I . A. J.W. Hilton proved that (6) does not hold in general . For the

applications ti ; t2< (k - I) + (k - I) + (k - I) would suffice .



Knesers conjecture can be extended to r-graphs. Let 5 I = rn +k .
The vertices of our r-graph are the k-tuples of S . The edges are the sets

Ail . . . A z

- 14

IAi .I=k , i<j<r

and any two of the r k-sets are disjoint . The chromatic number or this r
r-graph should be k + 2 .

B . Grunbaum asked the following geometric question :
Let there be given n points in the plane, join any two of them by a line .

What are the possible number of lines one gets. The number of lines is
clearly at most 2 } and it can never be 2 ) - i and 2 - 3 . I showed

that there is an absolute constant c so that every en-3/2 < t < (") - 3 can
occur as the number of lines determined by an n-set . It follows from a
result of Kelly and Moser that the order of magnitude cn3,'2 is best possible
but the exact value of c is not known .

In this connection the following combinatorial problem is of interest .
Let I S I = n, define 1,, as a set of integers, with the following property :
t E I, if there is a family of subsets Ak C S 1 < k < t so that every r-tuple
of S is contained in one and only one of the A's . Let us first investigate
the r = 2 . Clearly all integers in 1 2 are < ( n ) , i E 1 2 and (2n } - i andz ;

	

,
"~ - 3 is not in 12 . A Theorem of de Bruijn and myself states that noz

integer i < t < n is in 12 . Trivially sa E 12 and ( 2 ) - 2 E 1 2 . I showed
without much difficulty that there are absolute constants c l and e,2 so that
every- integer n + c l nc- < t < l 2 ! -

3 is in 12 . It seems likely that c2 = 1/2 .

If n = p2 + i ( i .e. if there is a finite geometry) it is easy to see that
every p2 + 2 p + c yp = n = 2 In + cnl1 4 < t < (• 2) - 3 belongs to 12 .

On the other hand A . Bruen recently proved that if n = k 2 then t e 12
if k2 <t<k 2 +k.

It seems that the results of A . Bruen and Bridges will give that there
is an absolute constant c > o so that for every n there is a t not in h which
is >n+C~'n .

It was observed by Hanani that the smallest nontrivial value of 1 3 is
cn3 ;2 and it follows from the existence of Mobius (or inversive) planes
that 13 contains all integers t

	

1

	

3/2

	

rn+ o (1) n < t < 13 except the integers
n
) -

i, where i is not of the form I a •

	

-- 1) , a • > o .
3

	

1>1

	

3

	

-

For r > 3 it is much more difficult to get sharp results for 1, . It is easy
to see that if t > i , t c I, then t > cn'l2 . This follows from the fact that not
many of the sets Ak can be larger than (1 + _) rv2 n1/2 (for otherwise
l A1 n A, I > r), !see e.g. Hylten-Cavallius, on a combinatorial problems,
"Colloq. Math . " 6 (1958), 59-65) . But it seems hard to prove that I, contains



an integer I < t < Cn'/'2 . The problem is to find c l yt ,/2 sets A k of size of
the order of magnitude nl'2 so that every r-tuple of our set I S = n should
be contained in one and only one of the Ak 's. Such a construction in known
for r = 2 and r = 3, but it is open for r > 3 .

Before closing this section I state one of the many unsoved problems
Let S 1 = n , A, C S , I < i_<1, assume

or Aj u Aj = Ak . We con-

Clements observed that this

in our survey paper with Kleitman :

distinct A's A= (-)A ~ = Ak
maxi=

(I'])

+ r .

conjecture if true is best possible .

that for no three

jectured that for even n

P . ERDÖS, A. GOODti1AS, L. POSH, The refireserztatiorz of graphs by set intersections, ((Canal.
J . -Math . », r8 (1gG6), 1o6-r 12 .

L. LOv-asz, On covering of graphs, # Theory of graphs, Proc . Coll. Tihany Hungary » , 1866,
z3I-a3G .

P . ERDÖS, CHAO KO, R . RADO, Intersection theorems for systems of finite sets, aQuaterly
J. Math . Oxford », (2), 12 (1g6I), 3I3-32O •

A . J. W . HILTON, E . C. M ILVER, Some intersection theorems for systems of finite sets, «Quaterly
J. Math .*, 18 (1g67), 369-384 see also simultaneously disjoint paris of subsets of a
mite set ibid, 24 (rg73) . 8i-93 •

P . ERDÖS, On a firoálern of Grunáaurrz, « Bull. Canal. Math. Soc . », zg (19-,2), 23-2 5-
L . KELLY, W. MOSER, On the number of ordinary lines determined by ra points, ((Canal.

J. Math . », ro (rgy8), 21o-2rq .
N . G. DE BRUIjN, P . ERDÖS, On a combinatorial _problem, « Indig. Math .)), zo ít9481,

42r-423 .
A . BRUES, The number of lines determined áy rat points, <(J . Comb. Theory », Ser A ., rs ( 1 973) .

zz5-24I .
On Nlobius planes see P . DEa-tBOwSKt, Tinite Geonzetries ; Springer-Verlag, New York Incc .

1968 and H . HANANI, On some tactical configurations, «Canal . J . Math .)), I5, 702-722 .
W. G . BRIDGES, Near I-IJesig-ns, ((J . Combinatorial Theory », Ser A., 13 (rg7z), 11íí-125 .

6 . In this last chapter I state a few miscellaneous problems which my
colleagues and I considered recently .

Let G (n ; Z) be a graph of n vertices and Z edges . Goodman, Posa and

I proved that the edges of our graph can be covered by at most [ ~ ] edge

disjoint cliques where the cliques are in fact all edges or triangles . The com-

plete bipartite graph shows that
1 42J

is best possible .

It is not quite clear what is the best possible result if we want to

cover G `n ; [ ~ ] + l) by edge disjoint cliques, though Lovasz has some

results here .
Gallai and I conjectured that every G (n ; k) can be covered by at most

cn edge disjoint circuits and edges . We could only prove this with cn logn
instead of cn .

Perhaps every G (n ; l) can be covered by at most f (n ; K (r)) - t) edge
disjoint edges and K (r)'s, if correct this is perhaps not hard to prove



(f (n ; K (r)) is Turan's function introduced in chapter one) . This conjecture
was in fact proved by B . Bollobás .

Let now G( ' ) (n ; l) be an r-graph of n vertices and I edges . Sauer and
I conjectured that its edges can be covered by at most f (n ; K(') (r+ i)) -- i
edge disjoint K(r) (r + 1)'s and edges (i .e . K( ') (r)'s) . For r = 3 already
this conjecture seems difficult (if true) .

Another problem of Sauer and myself states . Determine or estimate
the smallest g (t , n) so that every G (n ; g (t , n)) contains a regular subgraph
of valency t . Clearly g (2 , n) = n but we have no idea of the value of or
even the order of magnitude of g (3 , n) .

At the meeting in Rome R . Guy told me that I conjectured that the
vertices of every tree of n vertices can be numbered by the integers 1 , • • •, n
so that the integers corresponding to two vertices which are joined are
relatively prime . This seems a nice conjecture which is perhaps not very
difficult . I certainly do not remember having ever stated it . The conjecture
in fact is due to Entringer .

Is it true that to every e > o there is a c £ so that every G (n ; [n1+E])
contains a subgraph which is not planar and has at most cE vertices?

An old conjecture of Hajnal and myself states that there is a function
f (k , L) so that every graph of chromatic number >_f (k , l, contains a sub-
graph of chromatic number k and girth > Z (the girth of G is the length
of its shortest circuit . This is unsolved even for l = 4 .

Another conjecture of Hajnal and myself states that if G i ; k-chromatic

EI>clogk
ni

where nl < nz < . . . are the C„ i contained in G . We can not even prove

that E I tends to infinity together with k .ni
N T. Sos and I observed that if j S I = n and Ai C S , JA i I = 3,

1 < i < n + i then there always are two A's which have exactly one
common element . The proof is easy . We then made the following more
difficult conjecture . Let n > no (k) .

	

Is it true that if A i C S IAi l =k,
i < i < k-2 } + i then there are two A's which have exactly one common

element? This conjecture was proved by Katona for k = 4 but is open
for k > 4 . It is clearly related to the Theorem of Ko, Rado and myself
discussed in the previous chapter .

The following problem can be stated here whose solution would be
useful in n-dimensional geometry (see D . G. Larman and A. Rogers, The
realisation of distances within sets in Euclidean space, " Mathematika " 19
(1972), 1-24) .

Let -1 > o be given . Prove that there is an e = e (-q) > o so that if
I S I = n , n > no (e , r,) and A=CS, 1 < i < t , t > (2-e)' are subsets of S
then for every r, r;n < r < (1 f2 - -J) n these are two A's whose intersection
has exactly r elements .



Let I S I = 2 n , Az C S , i < i < t. Is it true that if the number of
indices iI , i 2 with Ai, n Az, empty is at least 2 2 " then t > (I - E) 2 Yd +i? More
generally for given n and t determine or estimate the maximum number

of pairs iI , i2 , I < i I < i2 < t for which Az, n Az_ _ o .

A well known theorem of Van der Waerden states that if one splits the
integers into two classes at least one of them contains an arbitrarily long

arithmetic progression . As stated in section 3 Szemeredt proved rk (n) = a (n)
which is a very significant strengthening of Van der Waerden's theorem .

Graham and Rothschild conjectured that if one splits the integers into
two classes there always is an infinite sequence of integers nI < n2 <
so that all the sums

(I) Y1 Ei "i,

	

Ei = o

	

or i ,

	

Y E i < oO
i

	

i

are in the same class. This conjecture was recently proved by Hindman .

A simpler proof was very recently found by Baumgartner. Both paper
appeared in the ((Journal of combinatorial theory». I then conjectured that

if al < a2 < . . . is an infinite sequence of integers of positive density
there always is another infinite sequence nI . . . and a t so that all the

integers (i) translated by t are a's. Straus found an easy counterexample .
But perhaps it is true that there is an infinite sequence nI . . . and a t so
that all the integers t + lei n i , Ez zi = i or 2 aree a's .

Finally I state a conjecture of Faber, Lovast and myself which seems

very fascinating to me :

Let Ak ! = n , i < k < n ; Í Ak, n Ak , l < i , i < kI <k2 < rt . Is ít true that
n

one can color the elements of U Ak by n colors so that each Ak contains
k=l

an element of each color?

E . SZEMERÉDI, On sets of integers containing k elements in arithmetic progression, eActa

Arithmetica*, 27 (1975), 199 -245-
NEIL HINDMAN, Finite sums from sequences within sells of a partition of n, <i Journal

Comb. Theory* rq (1994), 1 - 1I ; JAMES E. BAUMGARTNER, A short goof of Hin-
dman's theorem, tt ibid *, 384-386.

B. BALLOBAS, On complete subgrahhs of different orders, ((Math. Proc. Cambridge Phil .
Soc. *, 79 (1976), 19-24 .
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