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I have published during my long life many papers on

this subject . In this paper I will restrict myself almost

entirely to finite problems and will concentrate on new

problems, older questions will be mentioned only if they

seem to me to be exceptionally attractive or if they have

been (in my opinion) undeservably neglected .

unnecessary to state that I do not claim that
It is perhaps

the problems

discussed here are the most important ones, my choice of

them is much more subjective - I include them because I am

interested in them and have given them some thought - as

stated in a previous paper this method of choice has the

advantage that I am likely to know more about them than the

reader .

First of all I give references to some of my previous

papers on solved and unsolved combinatorial problems .

1 . Problems and results on finite and infinite graphs,

Recent advances in graph theory, Proc . Symp . Prague 1974,

Academia Praha 1975, Editor M . Fiedler, 183-190 .

2 . Problems and results of combinatorial analysis,

Symposium held in Rome September 1973 will appear soon .

3 . Some unsolved problems in graph theory and

combinatorial analysis, Combinatorial Math, and its
Applications, Oxford Conference 1969, Acad . Press, London

1971, 97-109 .

4 . Problems and results in chromatic graph theory,

Proof techniques in graph theory, New York Acad . Press 1969,

27-35 .

?CC . 5TH BRITISH COMBINATORIAL
-NF, 1 975, :)o, 169-192 .



5 . Problems and results in combinatorial analysis,
Proc . Symp . Pure Math . Vol . XIX, Combinatorics Amer . Math .
Soc ., 77-89 .

6 . (with D . Kleitman) Extremal problems among subsets
of a set, Proc . second Chapel Hill Conference, Univ . of
North Carolina, August 1970, 146-170, see also Discrete
Math .

7 . Extremal problems in graph theory, Theory of graphs
and its applications, (M . Fiedler, editor) Proc . Symp .
Smolenice 1963, Acad . Press, New York. 1964, 29-36 .

B . On some new inequalities concerning extremal
properties of graphs, Theory of graphs, Proc . Coll . Tihany
1966, Acad . Press and Akadgmiai Kia.dá 1968, 77-81 .

9 . Some recent results on extremal problems in graph
theory, Theory of graphs, International Symposium Rome 1966,
117-130 .

10 . Topics in combinatorial analysis, Proc . second
Louisiana Conference on Combinatorics, Graph Theory and
Computing, (R .C . Mullin et al editor) Louisiana State Univ .,
Baton Rouge 1971, 2-20 .

11 . Extremal problems on graphs and hypergraphs,
Hypergraph Seminar held at Columbus, Ohio 1972, Lecture
Notes in Mathematics 411, Springer Verlag, 75-83 .

Finally, two papers in the Boca-raton Conference on
combinatorial analysis February 1974 and March 1975
published I believe by Utilitas Math.

I will refer to these papers by their number in this
list .

1 . Lovász and I investigated the following question :
Let f(n) be the smallest integer for which there is a family
of sets {Ak}, 1 s k s f(n), JAk I = n, JAk n Ak

1
x 1 and

1

	

2
the family can not be represented by n-1 elements . In other
words : If jd( = n-1 there always is a k so that/ n Ak = 0 .



We proved
(1)

	

s t(n) < n 3/2+e

The upper bound is (1) can probably be improved to
f(n) < c nlogn, but we have no idea if f(n) < cn is true . I
offer 50 pounds for a proof or disproof .

P . Erdős and L . Lovász, Problems and results on
3-chromatic hypergraphs and some related questions, Infinite
and finite sets, Coll . Math . Soc . J . Bólyai 10 (Bólyai-North
Holland, 1975) .

2 . Faber, Lovász and I conjectured that if JAkI .= n,

1 s k s n and JAk n Ak I s 1, 1 s k1 < k2 s n then one can
1

	

2

	

n
colour the elements of the union U A by n colours so that

k=1 k
every set has elements of all the colours . It is very
surprising that no progress has been made with this problem
and I offer 50 pounds for a proof or disproof .

3 . A family of sets {Ak) is called a strong A system if

the intersection of any two of them is the same i .e. the

intersection of any two of them equals the intersection of
all of them. It is called a weak A system if the
intersection of any two of them has the same size . Rado and
I and Milner, Rado and I settled all the problems on the

existence of strong and weak A systems for infinite sets,

but very challenging finite problems remain . Denote by
F(n,r) the smallest integer so that if (A k), JAk I = n,
1 s k s F(n,r) is any family of sets then there always are r
of them Ak , . . .,Ak which form a strong A system . Rado and

1

	

r
I conjectured if C r is a constant which only depends on r then

(1)

	

F(n,r) < Cr .
I find (1) one of the most challenging unsolved

problems and offer 300 dollars for a proof or disproof . (1)
would have many applications in number theory and

combinatorial analysis . Instead of (1) Rado and I proved
(2)

	

F(n,r) < Crnn.



Our value of Cr has been improved by Abbott, Hanson and
others but it is not yet known whether for every A and

n > n0 (A,r) .

(3)

	

F(n,r) <
A-n

n .

(1) and (3) are unsolved even for r = 3 . Abbott and Hanson

also proved F(n,3) > 10 n/2n-c . Abbott and Gardner further

proved F(3,3) - 21 .

Denote by f(n,r) the smallest integer so that if {Ak "

JAk I = n, 1 5 k s f(n,r) then there are always r of them

which form a weak A system . In our paper with Milner and

Rado we conjectured

f(n,r) < cr
but cannot even prove f(n,r) < n : l E . Trivially f(2,3) = 6

and Hanson proved f(3,3) = 11, f(4,3) Z 26 . It is easy t

see that f(a+b,3)-1 t (f(a,3)-1)(f(ó,3)-1) thus

lim f(n,3) 1/n exists but we do not know whether it is
n = 7

finite or infinite .

Denote by g(n,r) (respectively (n,r)) the smallest

integer so that if IAYI = n and {Ak}, 1 s k s g(n,r)

(respectively 4 n,r)) is a family of subsets ofsf then our

family has a sUubfamily of r sets forming a weak

(respectively strong) A system . Abbott called attention to

the fact that it is not obvious that

(4)

	

lim g(r.,3)/n= ® .
n -

Szemerédi proved a much stronger result : for every t

lim g(n,3)/n t = - .
n =

It is easy to see that

lim g(n,3) 11n = c and lim (n,3) l/n = C
n = w

	

n = 04,

exists and the probability method easily gives C > 1 .

Abbott just informs me that he and Hanson gave a

constructive proof for C > 1 . We could not prove c < 2 .

C < 2 would follow from 1 .



P . Erdős and R . Rado, Intersection theorems fos systemsof sets I and II, J . London Math . Soc . 35 (1960), e5-s4 and
44 (1969), 467-479 .

P . Erdős, E . Milner and R . Rado, Intersection theorems
for systems of sets III, J . Australian Math . Soc . 18 (1974),

22-40 .

J .L . Abbott and B . Gardner, On a combinatorial theorem

of Erdös and Rado, in W .T . Tutte, ed ., Recent progress in

combinatorics, Acad . Press, New York (1969), 211-215 .

H .L . Abbott, D . Hanson and N . Sauer, Intersection
theorems for systems of sets, J . Combinatorial Theory (1972) .

4 . An old problem of Hajnal and myself states : Is

there a function f(k) so that every graph of chromatic

number f(k) contains a subgraph which has no triangle and

has chromatic number k . As far as I know no progress has

been made with this interesting conjecture . I offer 50

dollars for a proof or disproof . More generally we

conjectured that there is a f I(k) for which every graph of

chromatic number f L (k) contains a subgraph of girth £ and

chromatic number k .

For infinite graphs we conjectured that every graph of

chromatic number m (m is an infinite cardinal) contains a

subgraph of chromatic number m which contains no triangle,

or more generally whose smallest odd circuit has size z 2k+1 .

(By one of our theorems if m > H

	

must contain all even

circuits and in fact a K(n,h 1 ) for every integer n .)

P . Erdős and A . Hajnal, On the chromatic number of

graphs and set systems, Acta Math . Acad. Sci . Hungar. 16

(1966), 61-99 .

5 . Let be a graph of Sn vertices which contains no

triangle . Is it true that can be made bipartite by the

omission of (at most) n 2 edges? Is it true that

	

can

contain at most n s pentagons? It is easy to see that if
true then these are best possible . Both of these

conjectures of mine are old and as far as I know no progress



has been made with them. Clearly many related more general
problems can be raised .

6 . Edwards and I proved that every graph of m edges

contains a bipartite subgraph of m + cm' edges and Edwards2
determined the best _possible value of c . Lovász and I

proved that if .6 has m edges and contains no triangle then

it contains a bipartite graph of at least - + Cm2t3 edges

for every C if m > m 0 (C) . The above result no longer holds

if 3 is replaced by 1 - t . Our results are not yet

published .

C .S . Edwards, An improved lower bound for the number of

edges in a largest bipartite subgraph, Recent advances in

graph theory, Froc . Symp . Prague 1974, Academia Praha 1975,

Editor M . Fiedler, 167-181, see also Some extremal

properties of bipartite subgraphs, Can . J . Math . 25 (1973),

475-485 .

7 . Dirac calls the k-chromatic graph critical if the

omission of any of its edges decreases its chromatic number .

Denote by f k (n) the larJect integer for which there is a

(n ;fk (n)) which is

	

and critical (J(n ;R) denotes

graph of n vertices and ¢. edges) . Nearly thirty years ago

I asked whether fo1^ k ',a 4, fk (n) > ckn 2

c f6 (4n+2)

	

'in 2

	

Sn + 3 and Toft proved

Simonovits and Toft prova_!d f,, (n) < 4 +

(1)

	

li f,,,(r ; r, 2 =

	

lily: f3k+l (n)/n2

Toft dA.sprovcci (1)n

	

In fa,-.t

lim f31"+1 (n) /11 2
11 = -

I't ?•'ould [?C VC"

1111 r . (1'i) fn` = ck .

D

	

pro >ex ,ty of 4--chromatic graphs and some

-ueresting to determine

k

	

4 it is not even known whether

Dirac provedz
f 4 (n) > r7̀7 *
en . I conjectured

r 3k+2 (n)/n 2

he showed

(].- ) for k z 2 .

London Math . Soc . 27 (1952),



B . Toft, On the maximal number of edges of
k-chromatic graphs, Studía Sci . Math . Hungar . 5 (1970),
461-470 .

8 . Is it true that every graph of girth greater than
four can be directed in such a way that it contains no

directed circuit and if ore reverses the direction of any of
its edges the resulting new digraph should also not contain
a directed circuit? I asked this question several years ago

(p .99 of 3) but as far as I know there are no results .

9 . M . Rosenfeld told me a few weeks ago the following
very pretty conjecture . The weak Rosenfeld conjecture
states as follows : Every finite graph

á
which contains

triangle can be imbedded in the following
vertices of J H are the points of the unit
these points are joined if their distance
Y1 3 . The strong Rosenfeld conjecture
imbedding can be made to be
has n vertices x l , . . .,xn we

the unit sphere so that the
greater than T if and only if x i
if these conjectures hold Hilbert

critical

no

graph OH .
The

sphere, two of

is greater than
states that this

In other words if
i

points yl , . . .,yn on
is

Clearly

faithful .
can find n

distance from y i to yj
is joined to x 3 .
space can be replaced by

the unit sphere of n dimensional space and it might be
interesting to determine which graph . (n) needs the unit
sphere of highest dimension - perhaps Kn2

10 . Let J (r) (n ;k) be an r-graph of n vertices, & edges
and chromatic number k . Is it true that for k > k0 (r)

((k-1)(r-l)+1 ) . Equality only for the complete r-graph
K~r)((k-1)(r-1)+l) . For r = 2 it is easy to see that the
conjecture always holds i .e . k > k0 (r) can be omitted . For
r = 3 we already run into difficulties since the conjecture
certainly fails for r = 3, k = 3 . The smallest three
chromatic 3-graph is given by the seven triples of the Fano

plane and not by the 10 triplets of K (3) (5) .



11 . The following interesting conjecture is due to Jean-
Claude Meyer : Let {A i }, 1 s i s n, JAil = h be a family of
sets satisfying Ai n Aj

	

0, 1 s i < j s n . Further the

family is maximal with respect to these properties i .e . if A
is any set of h elements there always is an i, 1 s i s n for
which A n A i = 0 . Conjecture : Let h = pa + 1, p prime .
Then n a h z - h + 1 . We clearly have equality for the lines

of a finite projective plane .

12 . The following surprising conjecture is due to
Chvatal : Let F be a family of subsets of a finite set s~
such that X E F, Y c X implies Y e F . Then there is a t e 8
such that every intersecting subfamily G of F satisfies

IGI

	

I{x e F : t e X}I .

A family is called intersecting if any two of its

members have a non empty intersection .

Problems 10,11 and 12 are not new they appeared in the

Hypergraph Seminar Lecture Notes of Math . 411 Springer
Verlag . I restated them here because i find them

particularly attractive .

13 . In a recent pap<,r of Chvatal the following question

is posed : Let IJI = n . A family {At} of distinct subsets
of d is called m intersecting if any m of the A t have a non
empty intersection . Assume no~> that all the At have size k

and denote by f(n,k,m) the largest m intersecting family of
subsets of .J of size k . Chvatal conjectured
(1)

	

f(n,k,m) _ (k o 1) , for 1 s m < kk and n a mm lk .

For m = 1 this is the well known theorem of Ko,Rado and
myself . For m = 2 1 conjectured (1) in 9 of the

introduction, f(n,2,2) is simply Turán's theorem that every

graph of n vertices which has no triangle has at most
n 2 ~
4~ edges . Chvatal proved my conjecture for k = 3 .

V . Chvatal, An extremal set-intersection theorem, J .
London Math . Soc . (second series) 9 (1974), 355-359 .



C . KOs P . Erdős and R . Rado, Sr~tersection theorems for
systems of finite sets, Quart . J . Math . Oxford 12 (1961),
313-320 .

Now I discuss a few extremal problems in graph theory .

i
(r) (n ;m) denotes an r-graph of n vertices and m edges (i .e .

r-tuples) . f(n ; (r) (k,t)) is the smallest integer for which
every h(r)(n ;f(n ; r) (k ;t))) contains a (r) (k ;t) as a

subgraph . New
also prescribe
the complete r
identical with

and interesting complications arise if we
the structure of ~(r) (k ;t) . K (O ft) denotes
graph of t vertices (K (r) (t) is of course
(r) (t ;(r))) . Turán's well known old problem

states : Determine f(n ;K(r) (t) for every t > r and also
determine the structure of the extremal graphs . TurÁn
completely solved this problem for r = 2 end every t > r 1)u -E:
for r > 2 nothing is known, though Turán has some plausible
conjectures . Put
(1)

	

lim f(n ;K(r)(t))(n)-1 - a(t,r)
Turán proved a(t,2) - 1

	

but for t > r > 2 none of
the a(t,r) are known .

I wí11 now state some new problems and will try to
restrict myself to recent and unpublished ones, but first I
give some literature which is heavily biased in favour of
papers of my collaborators and myself .

1 . M . Simonovits, A method for solving extremal
problems in graph theory, stability problems, Theory of
graphs, Proc . Coll, held at Tihany, Hungary 1966, _Icade
Press, 279-319 .

2 . M . Simonovits, Extremal graph problems with

conditions, Combinatorial Theory and its Applications, Coll .

Math . Soc . J . Bolyai 1970, Vol, III, 999-1012 (North

Holland) .
3 . P . Erdős and M . Simonivits, A limit theorem in graph

theory, Studia Sci . Math . Hungar . 1 (1966), 51-57 .
4 . P . Erdős and M . Simonovits, Some extremal problems

in graph theory, Coll . Math, Soc . J . Bolyai 1970, Vol, I
378-392 .



5 . P . Erdős, On extremal problems of graphs and
generalised graphs, Israel J . Math . 2 (1955), 183-190 .

6 . W .G . Brown, P . Erdős and V . T . Sös, Some extremal

problems on r-graphs, New directions in the theory of graphs,

Proc . Third Ann Arbor Conference on Graph Theory, (Ed . F .

Harary), Acad . Press 1973, 53-63, also On the existence of

triangulated spheres in 3-graphs .

B . Bollobás, Three graphs without two triples whose

symmetric difference is contained in a third, J . London

Math . Soc .

I will refer to these papers by their number and to

avoid confusion if I refer to a paper of the introduction by

number I will state that I refer to the list in the

introduction .

14 . Sauer and I investigated the following problem :

Denote by f(k ;n) the smallest integer so that every

(n ;f(k ;n)) contains a regular subgraph of valency (or

degree) k . Trivially f(2 ;n) = n . It seems likely that

f(k ;n) < n
1+E

for every k and every s > 0 if .n > n0 (k,c),

but we cannot even prove this for k = 3 . The best upper

bound we have is f(3,n) < cn8/5 . Chvatal observed

f(3 ;n) > 3 - c . As far as we know f(k ;n) < ckn has never

been disproved . It is not known whetherlim n f(k ;n) = Ck
nexists .

Sauer and Berge conjectured that every regular graph of

valency four contains a regular subgraph of valency three .

Chvatal conjectured that to every k there is an a k so that

if n > n 0 (k) then every

	

) each vertex of which has

valency z ak contains a regularr subgraph of valency k .

beautiful conjecture if true would of course imply

f(k ;n) < ckn .

This



Szemerédi asked : Denote by F(k ;n) the smallest
integer so that every (n ;F(k ;n)) contains a spanned
regular
F(k ;n) . I proved F(3,r,) < cn 5/3

•
In fact I showed that

every (n ;Ccn 5/3 7) contains K (4) or a spanned K(3,3) .
Unfotunately we could not prove

lim nF(3 ;n) _ ~ .
n =

15 . Let

	

be a bipartite graph . Simonovits and I
conjectured that there always is a rational a, 1 s a < 2 fo7,
which

(1)

	

lim f(n ;i)/na = ca (')'n = m

Conversely we conjectured that for every rational

1 s a < 2 there is a graphh which satisfies (1) . We are
very far from being able to prove any of these conjectures .

We have at present no guess about the possible values of the
constants c a ( ) . We proved (see 4) that a does not have to

be of the form 1 + k or 2 - k .
The situation is certainly much more complicated for

hypergraphs . Szemerédi recently proved that
(2)

	

í(n,1(3)(6 ;3)) = o(n 2 )

and Ruzsa proved that fo
u
r every e > 0 and n > n0 (e)

(3)

	

f(n ; (3) (6 ;3)) > n2-E .

The joint paper of Ruzsa and Szemerédi will be published

soon . (2) and (3) implies that (1) certainly does not hold

subgraph of valency k . Determine or estimate

for hypergraphs . I hope and believe that for

hypergraph ~ (r)

lim log f(n ;~(r))/log n
n = W

exists and is rational .

16 . Let

	

be a graph of chromatic number K( ) .

	

(~) is

the smallest non negative number for which there is as

every



For ordinary graphs (r = 2) this concept does not seem
to be fruitful . A well known theorem of Stone, Simonovits
and myself (see 3) asserts that

f(n ; ~)

	

1
(1)

	

n = lim
m (

n )

	

= 1 - K-f.

2
Clearly for every , ~( ) is not less than the limit in (1)

and it is easy to see that in fact B( ) = 1 - k 1 1 . In

other words R(. ) is assumed if ,(fit is the complete graph .

On the other hand it is not impossible that for

hypergraphs new and intersecting situations will arise .

Define ~(3)(2n ;(n-1)n2) as the hypergraph of vertices

xl , . . .,xn ; Y1 , . . .,yn and edges (x i ,xjsyd ; ( yi ,y j ,xd,
1 s i< j s n, 1 s k s n . Perhaps the following result

holds : For every e > 0 and n > n 0 (e) every subgraph of our

1(3)(2n ;(n-1)n2) having more than (2+e)n' edges contains a

K á (4) . If true then B(K (3) (4)) z 1 . On the other hand

Turán observed in 1940 that a(4,3) z 9 in other words if my

conjecture is true the value of B is not given by the

complete graph .

I expect that interesting new phenomena will occur for

ordinary bipartite graphs

	

if the definition of S ) is

modified . Let B( ) be the smallest number for which for

every e > 0 there is a graph 1 with e( 1 ) arbitrarily large

every subgraph of which having

(2)

	

(

	

)) ~( )+e

edges contains 4 as a subgraph . For C 4 (Ck is a circuit of

k edges) it follows from results of Folkman and Szemerédi

that W4 ) = 3 (see 3 of the introduction p .97) . The

complete graph would give the exponent .

By the way perhaps (2) can be replaced by the simpler

expression (c(,)+ o(1))(e(.~1))a and it could very well be

true that a must be rational . Some of these conjectures are

formulated while I am writing the paper - I hope not too

many of them turn out to be nonsensical .



F .R .K . Chung and R .L . Graham, On multicolor Ramsay
numbers for complete bipartite graphs, J . Combinatorial
Theory, Ser . B 18 (1975), 164-169 .

17 . V .T . Sós and I last week investigated the following

question : Denote by S (1) (n) the smallest integer so that

every (3) (n ;S (1) (n)) contains at least one Steiner triple

system. S (1) (n) is defined as the smallest integer so that

every (3) (n ;S (1) (n)) contains at least one Steiner system

belonging to a set of size R . It will no doubt be extremely

difficult to determine

(1)

	

lim S(1)(n)/(n) and lim SM (n)/(3) .
n =

	

n =
It is easy to see that the limits in (1) exist . We expect

that it will not be difficult to prove that for n > n0

S (1) (n) = S (1) (n) though we did not carry out all the

details . In fact equality probably holds for all n .

In view of the difficulty in handling these questions

we introduced two new functions . S (2) (n) is the smallest

integer for which for every C3) (n ;S(2)(n)) there is a

subset A, JAI > 3 so that to every x a A, y e A there is a

z e A so that (x,y,z) is one of the edges of our

(3) (n ;S(2)(n)) . S (3) (n) is defined similarly except that

condition z c A is dropped . SM(n), i= 2,3 can

clearly be defined similarly and all these problems can bee

asked for r-tuples instead of triples . There is no shortage

of definitions and problems but a regrettable shortage of

theorems . S (1) (n) z S (2) (n) 2 S (3) (n) is of course obvious .

It seems that S (2) (n) is nearly as hard to handle as

S(1) (n), perhaps S (2) (n) = S (42) (n)

	

f(n; (3)~

	

(4,3)) but we

had no time to look into this . S (3) (3n) = n 3 + 1 is easy to

prove and it will not be difficult to determine S (3) (n) .

Bollobás and I discussed the following question : Let í~

be a graph, 14 = n, denote by A ;n) the smallest number of

triples of pó so that the graph spanned by the edges of these

triples should contain

	

as a subgraph . We observed that it

the



easily follows from known results that
l+e

A(C0 n) _ (1+0(1))n 3/2/6. A(CO n) > n

	

k is easy to prove
but we have no asymptotic formula say for A(C S ,n) and in
fact do not even know the best possible value for e 5 . It
might be of some interest to investigate A(K(r,r,r) ;n) .

18 . Denote by CL (~) the number of KR 's contained in ~.
Determine or estimate

min(CI(J(n ;f(n ;K,)+u)) = B(n ;t,u)
as a function of n and u where the minimum is to be taken

over all graphs of n vertices and f(n ;KI ) + u edges .
Important work on this problem has recently been done on
this subject by Bollobás and Lovász-Simonovits which in fact
was reported at this conference by the authors . Many
unsolved problems remain . In particular let u = cn 2
determine

lira B(n ;t,cn 2 )n
-R

= g R (c) .
n = w

As far as I know this is unsolved even for £ = 3 .

Denote by J(n) the complementary graph of 4(n) (i.e .
the edges of ~(n) are the non-edges of .(n)) . A. Goodman
determined min(C3(~(n))+ C 3(J(n))) . I proved

-(~)
min(C

	

n))+ CR (3(n))) s 2( t)2 2
and conjectured

1-( R )
lim minC

	

(n))+

	

(n)))(n)-l . 2

	

2
n = m

P . Erd®s, On a theorem of Rademacher-Turán, Illinois J .
Math . 9 (1962), 59-60 .

P . Erdős, On the number of complete subgraphs and
circuits contained in graphs, Casopis Pest . Mat . 94 (1969),
290-296 .

P. Erdős, On the number of complete subgraphs contained
in certain graphs, Publ . Math . Inst . Hung . Acad . Sci . 7
(1962), 469-464 - see also "The Art of Counting" 145-150 .



The paper of Bollobás will appear very soon in p, .
Cambridge Phil . Soc . A part of the paper of Lovász and
Siminovits will appear in the Proceedings of our
conference .

19 . Simonovits and I a few days ago considered the
following problems . Two bipartite graphs (kl ;k l ) and

S2(k2 ;k2) are said to be equivalent if for every n > n0
(1)

	

f(n ;~l (k1 ;ki ) = f(n ; (k 2 ;Y ) *

Several problems can be posed which seem interesting
but are perhaps very difficult . Is it true that (1) implies

(k ;t) which is a subgraph of both il (kl ;kl )

and

	

(k22) and for which

(2)

	

f(n • (k ;k) = f(n ;jl (kl ;kl )) = f(n ;

	

;k2))?

Assume next that (1) holds and that .~l (k1 ;L1 ) is a,

subgraph of

	

(k2 ;t 2 ) and that kl = k2 . In other words

~2(k2
;k2) is obtained from 11(kí ;k 1 ) by adding some

edges . Estimate 12 - R 1 from above and below . Perhaps

12 - tl < c 1 k always holds and R2 - kl > c2k is possible for

suitable graphs

	

(kl;tl ) and

	

(k 2 ;12 ) *
It is not possible that if we assume that (1) holds for

a sequence nk tending to infinity then it will hold for all

sufficiently large n .

Two graphs are called weakly equivalent if for n y
(3)

	

f(n ; l (k l ;kl)) _ (1+o(1))f(n ;X2 (k2 ;k2 ))
and very weakly equivalent if

	

6

(4) c1f(n ;~l(kl ;tl)) r f(n ; 2 (k 2 ;k 2 ) < c2f(n ;~l (kl ;kl)) .

It seems certain that (3) and (4) will hold if it is
assumed to hold for a sequence n k tending to infinity . The

analogous questions for weakly or very weakly equivalent
graphs are probably easier than for the equivalent ones .

For non-bipartite graphs this concept of equivalence is
less illuminating since all the odd cycles are equivalent .

that there is a



20- Mow I d-1	a r-- probl~ma on Rama-y --k--
For the "older" literature I refer to the excellent survey
paper of S. Burr . Several papers on these problems are
published in the Proc, of the Colloquium on Finite ansi

Infinite Sets at Kenthely 1973 held in the memory of the

poor old author of this paper, and Harary has a paper onj

Ramsey theory in the Proceedings of our Colloquium .

rk(~l'* ` k) $W is the smallest integer with the groperty

that if we colour the edges of KU5 by k colours then four some

i, l s i s k the i-th colour contains i as a subgraph.

Usually it is very difficult to obtain exact results for

rk Ilt . . .,Sk)
. In a paper of Burr, Spencer and myself which

will appear very soon in Trans . Amer . Math . Soc . we obtain

very accurate (and in fact often exact) estimates for

1' .. . ~ k) if k tends to infinity and all the ~'s are

identical

	

0
.

The graph is said to have edge density c if c is the

smallest real number so that for every subgraph I' of we

have eq ') s cv ql) where el~) and v ) denotes the number

of edges and vertices of respective y . Burr and I

conjectured that for graphs of bounded edge density the

Ramsey function has linear growth . More precisely : There

is a function f(c)so that if
i
has edge density s c then

(1)

	

r$, ) s f(c)VC ) .

We proved (1) for many special cases but are very far

from being able to prove (1) in full generality . (1) may

hold for a sequence of graphs of unbounded edge density too .

One of our most challenging problems with Burr states : Let

f n) be the skeleton of the n-dimensional cube . Is it true

that

(2)

	

r(3(n) ( )) < c12n .

(2) if true is in some sense best possible . The

probability method easily gives that if is an infinite

sequence of graphs satisfying r(inn)
< cv(Jn ) then

e$' ) < c' VJn ) log v(jn ) for some c4 = c' (c) and we have

k



v(5(n) ) = 2 n a a(~ (-) ) _ (n-1)2n-1

For further unsolved problems see also my papers with
S . Burr and R .L . Graham, Colloquium on Finite and Infinite
sets, Kesthely 1973, North Holland 1974 . A paper of Harary

in our conference stateseight challenging unsolved problems
in this subject . (S .A . Burr, Graphs and Combinatorics, Springer,
Berlin (1974) 52-75 .

21 . V .T . Sós and I considered a few weeks ago the

following problem. Denote by g (3) (n) the largest integer so
that if we colour the triples of 1,91 = n by two colours
there always is a monochromatic Steiner system of size

g1 (n) . It is probably very difficult to estimate g,

	

n) .

Thus as in problem 17 we introduced 9 2
(3) (n) and g (3) (n) .

g (3) (n) is the largest integer for which there is a set

1 c A VI = g (3) (n) so that there is a monochromatic
triple system on /1 so that to every x c /l , y e )ó, there is

a z s,r) 1 for which (x,y,z) belongs to our monochromatic

system, g (3) (n) is defined analogously only the condition

z e 1 is replaced by z c / . It is easy to see that

g3 3) (n) = 3 + 0(1) . We did not try seriously to estimate

g(3) (n) .

For r > 3 even the determination of g 3
(r) (n) leads to

non-trivial problems . In fact Lovász and I proved

(1)

	

g(4) (n)

	

clog n .

First I repeat the definition of g (4)
(n) . It is the

largest integer so that if we colour the quadruplets of

n by two colours, there always is a subset

LXll

	

g
(
3
4) (n) so that there is a monochromatic

quadruple subsystem for which for every triple (x,y,z) ofd l
there is a w c / so that (x,y,z,w) is a quadruple of our

monochromatic quadruple subsystem . It easily follows from
the probability method that if one colours the edges of a

K(n) by two colours then every KM, L z clogn contains a
monochromatic triangle . This colouring of the edges induces

a colouring of the quadruples as follows : If a quadruple of



con -tai- onc of t11- monochromat ic trianE1e s t1- it g't~
the same colour as the triangle, otherwise its colour is
arbitrary . Observe that a quadruple cannot contain two

monochromatic triangles of different colours, thus our

procedure really gives a colouring of the quadruples . This

colouring proves (1) . It seems likely that g (4) (n) > cl log n

holds . Clearly many more problems remain, some of them may

lead to interesting new phenomena .

22 . Finally I state a few miscellaneous problems and

conjectures .

Denote by f(n ;k,r) the smallest integer so that if F is

any family of subsets of size k of a set of size n then if

IFI 2 f(n ;k,r) there are two members of F having exactly r

elements in common . V .T . Sós and I conjectured four years

ago that iff k > 3, n > n0 W then

(1)

	

f(n;k,l) _ ( k- 2 ) + 1 .

Katona (unpublished) proved this for k = 4 . The proof

does not seem to generalise for k > 4 and as far as I know

our conjecture is still. open for k > 4 . V .T . Sós and I

easily settled k = 3 here we have

(2)

	

f(4n ;3,1) = f(4n+1 ;3,1) 4 f(4n+2 ;3,1) = 4n a 1,

f(4n+3 ;3,1) = 4n + 2 .

(2) can be proved by a simple induction .

(1) can be considered as a sharpening of our well known

result with Ko and Rado . Perhaps for n > not k,r)

(2)

	

f(n;k,r) s max((k-r-1)+ l, C(n)(k)-1)+ 1) .

The reason for the first term is clear, we take all

subsets of size k containing the same r + 1 elements . The

second term is explained as follows : C( n )(r) -1 J is the
upper bound for the n ,.mber of k-sets so that every r-set is

contained in at most one cf them . I just thought of (2)

while writing these lines and thus would not be surprised if

i.t would be completely false or at best not completely

accurate .



Denote now by f(n ;r) the smallest integer so that if F
is any family of subsets of 4, 1,~J = n and IFI z f(n ;r)
then there always are two members of F, A1 and A2 satisfying
JA1 n A2 1 = r . (In the definition of f(n ;k,r) we further
assumed that all members of F have k elements .) It is easy
to see that f(n ;0) = 2n-l + 1 and it would not be perhaps
difficult to determine f(n ;r) for fixed r as n - -. For
some time I conjectured the following : Let en< r< (J-e)n .
Then there is a c > 0 so thate
(3)

	

f(n ;r) < (2-c e ) n .

(3) would have immediate application to a geometric
problem considered by Larman and Rogers, but unfortunately I
was not able to prove (3) . It would be very interesting to
determine f(n ;r) explicitly for every n and r but perhaps
this is hopeless, and asymptotic formulas or good
inequalities may be almost equally useful . If JAi n Aj I = r
is replaced by 1Ai n A

i
I z r the problem has been completely

solved by Katona .
G .Y . Katona, Intersection theorems for systems of

finite sets, Acta Math . Acad. Sci . Hung. 15 (1964), 329-337 .
P . Erdős, C . Ko and R . Rado, Intersection theorems for

systems of finite sets, Quarterly J . Math . 12 (1961),
D .E . Larman and C .A . Rogers, The realisation of

distances within sets in Euclidean space, iathematika, l
(1972), 1-24 .

23 . Denote by g(n ;k) the largest integer with the
following property : Let 1 s al < . . .< an be any sequence of
integers, consider all the integers bl < b 2 < . . .< br which

car, be written as the sum or product of k distinct a's . Then

min r = g(n ;k) where the minimum is taken over all sets of
distinct integers {al, . . .,an) . I conjecture that for every
k and n > n0 (k)
(1)

	

g(n ;k) > n

I have not even been able to prove that g(n ;2) > nl+e .



St does not even seem to be easy to prove that
(2)

	

lim g(n ;2)/n-'~ .
n = -

With Szemerédi we observed that (2) will follow from the

results of Freiman . It is easy to see that

g(n ;2) = o n 2

(log n) r
for every r and the true order of magnitude of g(n ;2) is

perhaps n2exp(-clog g n n

	

It is very likely that the value
g(n ;2) does not change very much (perhaps not at all) if we

permit the a's to be real numbers or more generally elements
of a vector space .

Let 1 s al < . . .< an be a set of n distinct integers .
Let ul < . . .< us be the set of all integers which can be

expressed as the sum or product of distinct a's . Put

g(n) = minx

where the minimum is to be taken over all sequences of

distinct integers . It seems certain that g(n) > n k for

every k if n > n 0 (k) but it is not hard to see that

g(n) = o(exp n£ )
for every e > 0 . The true order of magnitude of g(n) is

perhaps exp(exp(log n) a ) for some a < 1 .

E . Straus proved a few years ago that if we only take

subset sums then we get the fewest distinct numbers if the

a's form an arithmetic progression .

Finally we could consider all possible sums of products

formed from the a's with each a occuring at most once and

define i(n) as the smallest number of distinct integers

which we can represent in this form . For n = 3 we have to

consider the terms a l ,a2 ,a3 ,al + a 2 , a1 + a3 , a 2 + a3 , a1 + a 2 + a 3 ,

a1 .a21 al .a31a2 .a,,ala 2a31aI + a2 a 3 , a 2 + a1a31 a 3 + a1a2 . I have

no guess at the moment about the behaviour of, (n) .
6 .A . Freiman, Foundations of a structural theory of set

addition, Amer. Math . Soc . translation of Math . Monographs
vol . 37, 1973 .



24 . Let 1 5 a1
	

_

	

ax be a set or h integers for which
the sums ai t aI- , i # j are all distinct . Is it true that
there is an nk and a perfect difference set b l , . . .,bt
mod nk , t z - t + 1 = nk , so that the a's are a subset of the
b's?

An analogous result has been proved a few years ago by
C . Treash . She proved that to every k there is an nk so
that every incomplete Steiner system on k elements can be
imbedded in a Steiner system on nk elements . A family of
triples is an incomplete Steiner system if every two of them
have at most one element in common .

C .C . Lindler very recently proved that nk s 6k,+ 3 .

The best value of nk is not yet known - it certainly must
be greater than 2k .

C . Treash, The completion of finite incomplete Steiner
triple systems with application to loop theory, J .C .T . Ser .
A 10 (1971), 259-265 .

C .C . Lindler, A partial Steiner triple system of order
n can be embedded in a Steiner triple system of order 6n + 3,
ibid 18 (1975), 349-351 .

25 . Let

	

) be a graph of n vertices . Is it true that

if every induced (or spanned) subgraph of i,(n) having C2]
z

vertices has more than 50 edges then
á
contains a triangle?

z
It is easy to see that 50 if true is best possible . More
generally denote by f(a,n) the smallest integer so that if
every spanned subgraph of .~(n) of [an] vertices has at least
f(a,n) edges then

	

n) has a triangle . Determine or
z

estimate f(a,n) . By Turán's theorem f(l,n) = C 4 ] + 1 . If
the determination of f(a,n) is too complicated it would be
of interest to determine

lim f(a,n)/n= g(a) .
n =

Thus the first step towards our conjecture would be to
prove g(') = 1



Clearly many generalisations are possible if the
triangle is replaced by other graphs or hypergraphs . There
is no doubt that one gets interesting and fruitful problems

if the triangle is replaced by larger complete graphs . I am

not sure if new phenomena occur if the triangle is replaced

say by a bipartite graph .

26 . Let J.,fl = 2n, Ai C ~, 1 s i s tn . Assume that the

number of pairs 1 s i t < 12 s to with Ai n Ai = 0 is at
1

	

2

least 2 2n . Is it true that to z (1+0(1))2n+1 7 Or in a

sharper form determine the smallest possible value of t o for

which the number of the intersecting pairs is z 2 2n . It is

easy to see that

- min t y p .n

Clearly this problem can be extended and generalised in

many ways .

27 . The following problem is due to Rothschild and

myself . Let

2 n+1

(n) be a graph of n labelled vertices . Denote

by C 2 ( (n)) the number of ways one can colour the edges of

~(n) with two colours so that there should be no

monochromatic triangle . Clearly C2 (J(n)) s 2e( (n)) . We
conjecture that for n > n 0

(1)

	

max C2 +n)) = 2 Cn 2 /4] .

Equality only for the Turán graph K2 (f27,C n 2 1 7) .

Probably (1) holds already for quite small n, but it is

easy to see that it does not hold for all n .

Clearly many generalisations are possible, the number

of colours can be increased, the triangle can be replaced by

a general graph or hypergraph, again there is no shortage of

problems or conjectures but unfortunately we have no results
as yet .



28 . A group G is said to have property A(SC) iP it 1,— atmost k elements which pairwise do not commute . Determine
estimate the smallest f(k) (if it exists) so that every
group with property A(k) is the union of f(k) or fewer

Abelian groups . This problem is a finite modification of a

problem of B . Neumann .

Isaac proved

R 1 z 9, 2 for which the vertex

(l+c) k < f(k) < k : 2+s .

The exact determination of f(k) will perhaps not be

easy .

29 . Let f l (n) be the smallest integer for which every

X~(n ;fi(n)) contains two edge disjoint circuits C R and

set of C R is a subset of
2

of CR ' f 2 (n) is the smallest integer for which
1

~,(n ;f2(n)) contains two

same vertex set . f 3 (n)

every M n ;f3 (n)) contains

edge disjoint circuits C R having the

is the smallest integer for which

two edge disjoint

CR
2

so that if (xl,x2), . . .,(xR 1-1,x91
1
),(X

1
,xl ) are the edge

of CR then the edges of C R are
1

	

2

(xl) x i ), . . .,(x i

	

i

	

),(x i

	

,xl ) with 1 < 1 1 < . . .< iR < R 1
1

	

R
2-1

5X
R 2

	

R 2

	

2

(i.e . geometrically the edges of C R do not cross each

other) .

	

2

An old result of Pósa states that every

	

n;2n-3) has a

circuit with a diagonal, 2n - 3 is best possible . He has

various refinements from which I think one can deduce

f l (n) < cn . I do not know about f 2 (n) and f3 (n) .

Denote by gi (n) the smallest integerr for which every

n ;g i (n)) contains a CR with at least i diagonals emanating

from one . of its vertices . Pósa's result gives g l (n) _ 2n - 3

and the proof of Czipszer easily gives g i (n) s (i+l)n + c i ,

g 2 (n) = 3n - 8 . 1 conjectured that

every

or

CR
2

that

circuits C R and
L



ci)
	

gi(n) _ (i+l)n - (i+1) 2 + 1 .

(1) would follow if g i (2i) = i 2 + 1 would hold, but M .
Lecvin disproved this and thus (1) is in doubt . It is easy

to see that if (1) holds then it is best possible .

Pósa`s result appeared as a problem in Matematikai

Lapok about twelve years ago . The proof of Czipszer appeared

there too .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24

