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PROBLEMS AND RESULTS IN RATIONAL
APPROXIMATION

by
P . ERDŐS (Budapest) and A. R. REDDY (Princeton)

Several mathematicians have discussed (cf. [3]-[9]) the problem of
approximating reciprocals of certain entire functions by reciprocals of poly-
nomials under the uniform norm on the positive real axis . The question of
approximating reciprocals of non-entire functions by reciprocals of polynomials
is left open . In this note we obtain, a few results for non-entire functions (we
approximate functions which are continuous and tend to zero by reciprocals
of polynomials, proofs of these results are very simple) and also a few results
for entire functions . Finally, we present some open problems .

NOTATIONS . Let n, denote the class of all algebraic polynomials of degree
at most n, nn denote the class of all algebraic integervalued polynomials
(polynomials which assume integervalues at integers) of degree at most n .

Let f(x) be any non-vanishing continuous function on [0, oo) . Denote

(1)

	

űb „ = inf
P(x)En.

AO ,, = inf
P(x)Ené L_[0,w)

'3n(z) denotes the n-th partial sum of f(z) = Z akzk . C1, C2, C3, . . . , ok are
suitable constants .

	

k=0

THEOREM 1 . Let f(z) _ 2 akzk, ak > 0 be an entire function of finite
order e . Then for each s > 0, k=o

(3)
C+8

lim inf

	

n 5 (1 .4)-1 .
n--
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PROOF. From the notation it is clear that

akxk
(4)

	

0 <	1	- 1 ` k-- 2n

S2n-1(x)

	

.f(x) - an x2n

Since f(z) is an entire function of finite order e, we get for any s > 0,

Set

(7)

Then from (4), (6) and (7) we get

(8)

1

	

1
hm ne+ó Ian In = 0
n--

Then there exist infinitely many n for which
I

	

I

	

I

	

1
(5)

	

(n l)e+e
I an+IIn+

	

ne+óa Ian In , l = 0, 1, 2, 3, . . .

From (5), we obtain by taking l = n+ j, j - 0, 1, 2, . . .,
2n+j

I

	

I

	

(	n	l e+e I
(

I2n j .
6)

	

a2n+j ` l 2n + j1

e

an

n

On the other hand, let
1

	

I

Ian In x

	

(1 .96)0+ó .

Then

(9)

	

1

	

-
1

	

1

	

C

1

`

	

10<
82n-l(x)

	

.f(x)

	

82n-I(x)

	

an xn

	

(1 .96)00+ó

From (8) and (9) we get the result (3) .

REMARx. This result improves a recent result of ERDŐS and REDDY
([3], Theorem 3) .

THEOREm 2A. Let g(z) _ (Z+ 1)n+1 Then

í0'n < 2-n ,

	

n = 1, 2, 3, . . . .

I

	

I
Ian in x C (1 .96)e+ó .

([2], p . 8) .

Z ak x
k

	

a2n+j x j

	

m

	

j

	

2n+j

k=22 2n je0 2	 <

	

Ian In 2 - ~ e+e xj
an x

	

an

	

j=o
j

Z 1 .96 e++ó 2_( Q2n \

	

_ 2n
+ó < CI 2 e+ó .-

j_o 2
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PROOF . It is easy to see that for all x > 0

(10)

	

0 <	1

	

1
(n + 11 x k (x + 1)n+i

k=0 kk

Set
0<x<1 .

Then
X n+1

(11)

	

(x + 1)

	

<

On the other hand for x > 1

(15)

2-(n+1)

1

	

1

f(x)

	

qn(x) [01-)

1

	

1

	

C

	

1

	

<2n(12)

	

0<	
n n+1 k (x +1)n+i

	

n n+l
xk~f k ,

x

	

k=O
f k

Therefore we have from (10), (l,1) and (12) the required result .

REMARfis . It is natural to ask whether one can approximate (x -{- I)-(n+1)
by reciprocals of unrestricted polynomials under the uniform norm with an
error much better than a Sn (0 < 8 < 1) . We show in the next theorem that
one cannot .

THEOREM 2B . Let f(z)

	

1)n+1 Then

> 1lim inf (4,n)n >
nom

	

a ],6

PROOF . For each E > 0, 0 < x < 1 - e and all large n,

(13)

	

0<f(x)<f(1-E)G(2-E)n+i<2n< 1
,

AO,n

(cf. Theorem 2A) . Now consider qn (x) E am which gives best approximation in
sense of uniform norm, that is

(14)

	

2O,n = max

From (14) we get, with a simple calculation for 0 < x G 1 - E,

	 (x)	
< q, (x) - f(x) <	

2
(x)	

f(x) + ( AO,n) -1 ~

	

(4,J-1 - f(x)

Since the right-hand side of (15) is monotonic increasing with f(x),
we can write from (13),

(16)

	

1 qn(x) - f(x) 1 G	(2 - E)2(n+l)

	

0 < x <
(AO,n)-1 - (2 - E)n+l

29



30

	

ERDOS, REDDY: RATIONAL APPROXIMATION

Now let

(17)

From (16) and (17) we get

(18 )

	

E, :<	(2 - E)2(n+l)

n< (20,n)-1 - (2 - E)n+ l

To obtain a lower bound for E n , we use a result of BERNsTEIN [1, p . 10]
which gives for the interval [0, 1 - E]

(1
(19)

	

En >
- E)n+ 1
22n+1

Now by (18) and (19) we have

(20)

	

(1

	

E)i+1

G

	

(21 E)2(n+l)

	

1 for all large n.
2

	

Po,n)

	

(2 - E)n+

From (20) we get with a simple calculation
c (1 - ',)n

(21)

	

A0 ' n~ [2(2 - E)] 2n

E being arbitrary, (21) gives us the required result .

ItEMAxRx . It is very likely the limit may exist in Theorem 2B. 1

TaEOSEM 3. Let f (z) _

	

(k + 1) z k . Then for all large n,
k=0

(22)

	

20,n <
c3
n

PROOF . As earlier we get for 0 < x < 1

Z (k + 1)xk
(23)

	

0<	 1	- 1 G k=n+1	< (n + 2)xn+ 1 _

(k + 1) xk ,f(x) ~fix) Z (k + 1)xk
k=0

	

k=0
Set

Then

(24)

En[(x-{
W+1] = infsüp lPn(x) - (x + 1 )

n+l
~t0,1-eh

P.Enn

x<1- 2 log n
n

(n + 2)xn+1 G 3 .
n

' Added in proof : Recently D. J . NEwMAN has shown the limit to be
(4
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On the other hand we get for

xZ1-
2logn

n

(25) 0<	
1	1 `	1	<

Z (k + 1)xk f(x)

	

(k+ 1)xk Z (k + 1) (1 -
log n k

k-0

	

ks0

	

k=0

	

n

(2 log nl 2 <
c4

(Jog nl 2

(26)

(27)

Set

Then

(28)

On the other hand for x (1-

We obtain the required result from (24) and (25) .

THEOREM 4. Let f(z) _ S z k . Then for all large n
k=0

c5 log n

n

n

n

PROOF. As usual

~ xk

0 ` 1 - 1 < k=n+1 _ xn+1 .
n

xk
Z

xk
Z

xk
k=0

	

k=0

	

k=0

x<1- log n
n

S~	 nj n+1

	

_n+l
xn+1

	

1 _log

	

< n n .

log n

(29)

	

0<
1	1

<
1 <	1

	

cs log n

xk 2 xk Z xk
~

l1

_ logn~ k
5 n

k=0

	

k=0

	

k=0

	

k=0

	

n

because for all large n
n
xk

	

log n

j

k ce(n -1)
n

	

log n
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The result (26) follows from (28) and (29) .
k

THEOREM 5 . Let f(z) = 1 -}

	

z
. Then for all sufficiently

k=I k

(30)

	

log
	 n7

PROOF . As usual it is easy to see for 0 _ x < 1 _ log n
n

x k

k= I k

	

c< xn+I <
xk

	

8

1

	

n+Z k
1

	

1(31)

	

0< 1

	

n xk

k=I
k

On the other hand for

1+ z k

log n

n-

ThenThen there is a c (0 < c < 1) such that
I

lim inf (~ p , n)n -' c .
n-

large n

(32)
1

	

1

	

1

	

1

	

c9
O`1+2xk 1 +~ xk ~ l

+Z xk`1
+
Z1 1 log	 n k-logn

k=I k

	

k=I k

	

k=I k

	

k=I k f

	

n

Hence the result .

CONCLUDING REMARKS . By observing Theorems 3,4 and 5, it is easy to
note that the error (4,n) becomes less when the function f(x) grows faster . This
fact is quite contrary to the known case of entire functions (cf . [4]-[7]),
where the error (for all large n) becomes smaller for functions which grow
regularly and of small growth in comparison with those which grow regularly
and of fast growth. Whether or not this is only an isolated case or there is
a general result for non-entire functions is not clear .

Open problems

PROBLEM 1 . Let f (z) _

	

ak z k , ap > 0, ak > 0 (k 1) be an entire
k=0

function of order e (0 < e < oc), with the further assumption that
I

"M SUP (A p , n)n < 1 .
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PROBLEM 2 . Let f(z) _

	

akz•

	

k , ak > 0 (k 0) be an entire function
k=0

of order a (0 < e < oo) with the further assumption that 0 < co = z < ow

Then there is a 6 > 1, for which

REMARK. For f(x) = e", 6 = 3 (cf. [9]) .

PROBLEM 3. Let f(z) _ 2 akz• k (>0 on [0, oo)) be an entire function
k=0

with the additional property that it grows on [0, oo) as fast as anywhere else
in the complex plane, then for each e > 0, there exist infinitely many n for
which

A <ex

	

-n
° 'n

	

p
í (log n)1+B

.

n
PROBLEM 4 . Let f(z) _

	

akz k, a 0 > 0, ak Z 0 (k > 1) be an entire
k=0

function of order e (0 < e < oo) type r and lower type w (0 < co z < oo) .
Then for any polynomials P(x) and Q(x) of degree less than n, there is a cl > 1
for which

1

	

P(x)
f(x)

	

Q(x)

REMARK . For f(x) = ex, cl = 1280 (cf. [8]) . 2

PROBLEM 5 . Let f (x) be any non-vanishing infinitely differentiable and
monotonic function tending to + Then for infinitely many n

1
A',< tog n

PROBLEM 6. Let f(x) be any non-vanishing infinitely differentiable and
monotonic function tending to -boo . Then, there exist polynomials of the form

k
Q(x) =

	

aíx n '
t=0

with no = 0, n0 < nl < n2 < n3 < . . . , 57 1 = oo, for which for infinitely
many k

	

;=1 n,

1

	

1
f(x) Q(x)

i
lim (AO,

n)n
= b-1.

> Cin .
L-[ .,-)

1
log log nk

Added in proof: A. R . REDDY has settled this problem .
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PROBLEM 7 . Let f(z) _

	

akzk, a o > 0, ak 0 (k ~ 1) be an entire
k=0

function . Then for infinitely many k and any c > 1,

1

	

1
f(x) Q(x)

< 1
L- [ .,- )c (log nk)`

.

PROBLEM 8 . Let f (z) _

	

akzk , ao > 0, ak 0 (k > 1) be an entire
k=0

function of order e (0 < e < co) type r and lower type w (0 < co < T < a) .
Then there exist polynomials of the form

k
Q(x) _ Z al xn ',

i=o
where

0=no<nj<nz< . . .<n„ Z 1 =00,
i=i n,

for which for infinitely many k

PROBLEM 9 . Let f (x) be any entire function satisfying the assumption

that lim f(x) is finite. Then there exist rational functions of the form Q"(x)
n xX--

1

	

1

	

< 1
.f(x)

	

Q(x) L-[.,-)~ nk

of the degree at most n for which for each s > 0 there exist infinitely many n,

such that,
1

	

Pn(x)

.f(x)

	

Qn(x) í
-n< exp (lo-

og n)1+E .

PROBLEM 10 . Let f(z) and g(z) be entire functions of perfectly regular
growth (e, z), (e + s, -r), respectively for any s > 0 . Then for all large n

1

	

1
9
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