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1. INTRODUCTION

Recently several authors have investigated the question of approxi-
mating certain functions by reciprocals of polynomials under the uniform
norm on the positive real axis . Perhaps these results have some applica-
tions in industry and elsewhere (cf. [1, 36]) . Our present motivation is
to give a detailed list of all the known results with simplified proofs in
some cases and many new results and finally many open problems .
Gonchar's article [14] may be of great help to people interested in finite
intervals .

Long ago Chebyshev has shown "for any function f(x) continuous on
the whole real axis and having the finite limit lim es (x) = C, there
exists a sequence of continuous rational functions of the form R,,(x) _
Pn(x)/Q,,(x) (where P.(x) and Q,,,(x) are polynomials of degree n) such
that lim II f (x) - Rn(x)11,,.(_~,~) , 0." But Chebyshev never discussed
the rate of convergence of the error to zero . This kind of result has been
obtained by Freud and Szabodas [13] in 1968 .

In 1955, Hastings has shown [15] by computation functions such as

e-x	1	 _e-x'12
á/27r

can be approximated under the uniform norm very closely by reciprocals
of polynomials on [0, co) . In 1969, Cody, Meinardus and Varga have
shown [4] that e-x can be uniformly approximated on [0, cc) by recip-
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rocals of polynomials of degree n with an error (2.298)-n . In 1973,
Schönhage has shown [33] that e-x can be approximated uniformly by
reciprocals of polynomials of degree n on [0, oo) with an error 3- 11 but
not much better . In 1974, D . J. Newman has proved [18] that e_x cannot
be approximated on [0, oo) under the uniform norm by general rational
functions of degree n with an error better than (1280)-1z-1 . Recently Freud,
Newman, and Reddy [12] have shown that e -1 x' can be approximated by
reciprocals of polynomials of degree n on ( oo, -+- cc) with an error
C,(log n)ln but not like a C21n. Further, Freud, Newman, and Reddy have
shown that e x 1 can be approximated on (- oo, + oo) by general rational
functions of degree n with an error like a C,e°q-"1 but not like a
C5e-c-'' . In 1970, Meinardus and Varga [16] have extended the results
of [4] to reciprocals of certain entire functions of perfectly regular
growth. In 1974, Reddy [20] has extended the results of [16] . In 1972,
Meinardus, Reddy, Taylor and Varga [17] have obtained some direct
and converse results . Subsequently in a series of papers by developing
certain new techniques, Erdös, Newman, and Reddy [5], Erdös and Reddy
[6-11], Newman and Reddy [37-39], and Reddy [19-28] have obtained
many results .

We present results in this article not according to the chronological
order but according to certain pattern, perhaps convenient to the readers
to follow. At the end we mention a few results for certain unbounded
domains of the complex plane .

2. DEFINITIONS AND NOTATIONS

Let f (Z) be a nonconstant entire function. As usual write 311f(r) _
M(r) = max 1 , i=, I f (z) 1 ; then the order p and the lower order g of f (Z)
are defined thus

sup log log M(r)

	

pli- inf

	

log r

	

Q

	

(0 < < p

	

(2.1)

If 0 < p < oo, then the type T and the lower type co of f are :

lm in
sup

f
log M(r)

= w

	

(0 < W < T < 00) .

	

(2.2)

If p = 0, then we define the logarithmic order p i = A + 1 and the lower
logarithmic order /3 l of f as :

lim sup log log M(r) _ p, = A + 1

	

(1 < Ra < p i < oo) .

	

(2.3)p mf log log r

	

R
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If p = 0, 0 < < c,--, then we define the logarithmic types T I and u) i
of f as :

sup log M(r)
_

T ilim .r,- mf (log r)~I+i

	

w y (0-wa-Ta-oO) .

An entire function f (Z) is of perfectly regular growth (p, -r) [35, p . 45]
if and only if there exist two (finite) positive constants p and T such that

log M(r)
lim	= T .

Let f (Z) = Ik-o akZk be an entire function with nonnegative real
aja o > 0). Then set SJZ) = Ik-o a l Zk and

AO,rt
_ 4, (f ) = inf 1

	

1
f(x)

	

P(x)

where ar,, denotes the class of all ordinary polynomials of degree at most n .
For given s > 1 and r > 0, let 8(r, s) denote the unique open ellipse

in the complex plane with foci at x = 0 and x - r and semima_jor and
semiminor axes a and b such that b/a - (s2 - 1)(s2 + 1)-r .

Denote MF(r, s) - sup{j F(z), : L E 6(r, s)} .
Let h(x) be a real nonnegative continuous function on [0, +oo) such

that, for all x large, h(x) > 0, and h'(x) exists, is nonnegative, and
satisfies

lim h'(x) = 0.

	

(2.6)

Defining generically the set H,,, 0 < S < 1, in the complex plane by

Hs {Z = x + iy : x > 0 and I y I < Sh(x)} .

	

(2 .7)

H„ -- {Z - x iv: 0 < x

	

C,d„ cos(n (i/ 2 +0 ) and I y I

	

Dh(x)}. (2 .8)

Set for a real q > 1

Let S(B) denote generically the infinite sector

0 < D <	< 1 .

	

(2.9)
~/q -{- 1

S(B) - {Z : 1 arg Z 1 < 0} .

	

(2.10)
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CI) C2) C3, C4, . . . , Ck are suitable positive constants may be different
on different occasions . 0 and 8 also have different meanings in different
theorems .

3 . THEOREMS

THEOREM I (Chebyshev [34, p . 19]) . Let f (x) be continuous on
(- co, + oo) and

lim f (x) = lim~ f (x) = C

lim I I f(x) - R.(x)II L,(-., .) -= 0 .

	

(3 .1)

THEOREM 2 (Freud and Szabados [13, p . 201]) . If f (x) satisfies the
assumptions of the above theorem, then

ll f (x) - R,(x)II L.(- .,.) - 48w(lÍn),

where co(8) is the module of continuity of the function f (tan t/2) on the
interval [-7,7T] .

THEOREM 3. Let f (x) be continuous maintains sign and tends to zero
on the positive real axis. Then there exist a sequence of polynomials
P,zk(x) _ Y-1.0 a lxn1, where {nj is a sequence of natural numbers satisfying
the assumptions that 0 - no < ni < n 2 <

	

< nk and Y-i 1 /n l, = cc,
for which

fira J(x)

	

1
lorn I - P,nk (x)

Remark . There exist functions which can be approximated by
general rational functions on (-oo, -; oo) but not by reciprocal of
polynomials on [0, oo) . One such example is f (x) = 1 + e - x' 1 .

Proof. It is known [3, p. 391] that f (x) satisfying the assumptions of
Theorem 3 can be approximated uniformly on any finite interval [0, 2b]
as close as we like by reciprocals of polynomials {P,j of the form,

k
P%(x) _ Y a

l=0

L a [0,m)

n - 1, 2, 3, . . .,

-0.

	

(3 .2)
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where {n z} satisfies the above conditions . In other words

~ f (x) -	 1	H

	

-> 0
1

	

P, (X) L~[0.2b]

for every finite interval [0, 2b] .
Now we choose e > 0, b > 0 and sufficiently large and a n,(q > k)

such that
1

f(x) - P.,(x) I E(xl b) n' iLJO,bl

	

0 .

This is certainly possible since e(x/b)"7 tends to zero very fast for
b > x > 0, if b

	

x, e being very small (3 .4) is certainly valid .
Now we divide for convenience [0, co) into [0, b] and [b, oo), where

is sufficiently big finite interval . For all x > b, f (x) will be very small and

Pnx(x) + E(xlb)' ,,

lim ','1 f
(x) -

	

1

	

- 0.

	

(3.5)k' ;I

	

P,n, ,(x)

	

E(x/b)"fl L,[b, -)

We get the result (3 .2) from (3.4) and (3 .5) .

Remarks . If 1 /f (x) is not entire, then the following theorems indicate
that, it is not possible to approximate f (x) very closely by reciprocals
of polynomials .

THEOREM 3A (Erdös-Newman-Reddy [5]) . Let f (Z) _ Y_k=o a kZ1L,
a o > 0, a k > 0 (k ->- 1) be an entire function of order p (0 < p < ~)
type T and lower type w (0 < w < T < oo). Then for all large n,

(f (x)

	

1 (0n(2)) 1 /P (f [(1
g

n)1

o
n 2])-l .

THEOREM 3B (Erdös-Newman-Reddy [5]) . Let f (Z) _ Y-k-o a kZk ,
ao > 0, a k > 0 (k > 1) be an entire function of order p(0 < p < oo)
type -r and lower type w(0 < w < T < oo). Then

4,n ( f (x) ) -<- C,(1og n)II0 n-2 .
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THEOREM 3C (Erdös-Newman-Reddy [5]) . Let f (Z) _ Yk-o ak7k,
a o > 0, ak > 0 (k > 1) be an entire function of order p(1 < p < oo )
type 7 and lower type uá(0 < w < T < oo). Then there is a polynomial
P,,,(x) of degree n for which

'{	x

	

1
1 f (x)

	

P.(x) L~j1,m)

THEOREM 3D (Erdös-Newman-Reddy [5]) . Let f (Z) _ Y-j,, a,„Zk,
ao > 0, aw > 0 (k > 1) be an entire function of order p(0 < p < 1)
type T and lower type co(0 < co < T < oo) . Then there is a polynomial
P(x) of degree n for which

P

f(x)

	

P( )

	

1,~)
< exp( C (log n) )

THEOREM 3E (Erdös-Newman-Reddy [5]) . Let f (Z) _ Y;k o a4,Zk,
a o > 0, a,. > 0 (k > 1) be an entire function of infinite order . Then there
is a polynomial P,,,(x) of degree n for which for infinitely many n

x

	

1

	

2

	

2

	

1 nC(log n )2 n-2
I
an

f (x)

	

Pn(x) ~L~to, .)

THEOREM 4 (Erdös and Reddy [11, Theorem 1]) . Let f (x) be con-
tinuous non-vanishing and tends to +oo on [0, oo) . Then there exist poly-
nomials P,, (x) satisfying the assumptions of the above theorem for which,

lim
n->

limn-

1

	

1

f (x)

	

P.(x)

exp(-Cni/2)

L~[0, .) -0 .

THEOREM 5 (Erdös and Reddy [11, Theorem 2]) . Let f(x)(#0) be a
continuous function defined on [0, oo) . If there exist a sequence ofpolynomials
P„x(x) - Yko a,, x" ,, for which

1 _ 1

f (x)

	

P.,(x)
- 0,

L,[o, m)

where 0 = no < ni < n2 <

	

< nk and Yk 1 1Ink < oc) . Then f (x) is
the restriction to [0, oo) of an entire function F(Z) .
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THEOREM 6 (Reddy and Shisha [30, Theorem 1]) . Let f (x) be a
continuous function (#0) defined on [0, co) . If there exist a sequence of
polynomials (P.(x)l,_0 , with nonnegative coefficients such that

lim
n-1~

1

	

1

f (x)

	

Pn(x) c~[0, -)
- 0.

Then f (x) is the restriction to [0, co) of an entire function F(Z) .

THEOREM 7 (Erdős and Reddy [7, Theorem 1]) . Let f (Z) _ ~k 0 ak,Zk
a 0 > 0, and ai > 0 (k > 1) be any entire function . Then for every E > 0,
there exist infinitely many n for which

A0,n < exp ( (log n)1+E ) .

Remarks . For functions which grow regularly, the above conclusion,
is valid for all large n . For a slightly general result see (Erdős and
Reddy [9, Theorem 1]) .

THEOREM 8 (Erdős and Reddy [7, Theorem 2]) . Let f (Z) be an
entire function of infinite order with non-negative coe dents . Then for
each e > 0, there exist infinitely many n for which

O,n >_ e En

THEOREM 9. Let f (Z) _ Y_ko akZk, a0 > 0, a,, _>_ 0 (k , 1) be a
transcendental entire function of finite order p(0 < p < 00) . Then for
every constant c > 0, for all large n

A,,n < line .

	

(3 .6)

Proof. By definitions for 0 < x < r =(n/2)1/P-E e-1 , E > 0.

0 < S (x)

	

f(x)

	

(

	

a krk / Cl < Cie n

	

dk(re) k
k=nt1

	

k=n=1

< Cue nM(re) < Cl exp((re)-'E - n) < Cle11 1 2 .

	

(3 .7)

On the other hand for x > r.

0

	

1 _ 1

	

1

	

1

	

1<
Sn(x)

	

f (x)
<

S.(x) \ Sn(r)

	

f( r ) - e-n / 2

< C2 C2 < n-~ .
f (r)

	

rc3

(3.6) follows from (3 .7) and (3 .8) by properly choosing Cl , C2i and C3 .
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THEOREM 10 (Meinardus, Reddy, Taylor and Varga [17, Theorem 3]) .
Let f(x) be a real continuous function ( 0) on [0,oo) and assume that there
exist a sequence of real polynomials {Pjx)j- , with P„ c- ,7r,, for each n > 0,
and a real number q > 1 such that

lim sup
n~ m

	 1	1		Í

	

1

f (x)

	

Pn(x) Lx[O, .) ;

	

< q < 1 .

	

(3.9)

Then, there exists an entire function F(z) with F(x) = f(x) for all x > 0,
and F(Z) is of finite order p, i.e .,

l09 l09 111F(r)lira sup	
to

	

- p < co .
rte-

	

g r

In addition, for every S > 1, there exist constants K = K(S, q) > 0,
0 = 0(S, q) > 1 and ro - ro(S, q) > 0 such that

MF(r, S) < (K lI f I L,[O,r])B

	

for all r > r0 .

If, for each S > l, 0(S) is defined by

lim sup Í
log MF(r, S) ? - 0(S)

r-

	

log I f II L.~[O,r]

when ~I f 1L .[o,rl is unbounded as r

	

cc, and B(S) - 1 otherwise, then the
order p of F satisfies

p

	

in f	
log 6(S)

s>i log L2
+ 4(

S
± S )~ 1

and this upper bound for the order p is in general best possible .

Remarks. It is very likely that F(Z) may satisfy that

log log MF(r) _lim	
to

	

p'

	

(0 < p < 00) .r-~

	

g r

It is easy to give examples of entire functions of zero order for which
(3.9) fails .

THEOREM 11 (Meinardus, Reddy, Taylor and Varga [17, Theorem 5]) .
Let f (Z) _ Yko a~~Zk be an entire function with a o > 0 and a,, > 0 for
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all k > 1 . If there exist real numbers A > 0, S > 1, 9 > 0, and r o > 0
such that

MF(r, S) - A(Il .f II L~10,d)B

	

for all r > r,,

then there exist a sequence of real polynomials {P,,(x)}no with P,, E 7T,, for
each n > 0, and a real number q > Si/ (i+e) > 1 such that

lim sup
nam

lim sup
n-> m

Remarks . Quite recently the assumption a o > 0 and ak > 0 (k > 1)
has been weakend by Blatt [2] and Roulier and Taylor [31] .

THEOREM 12 (Meinardus, Reddy, Taylor and Varga [17, Theorem 6]) .
Let f (Z) - Y-ko akZk, ao > 0, ak > 0 (k > 1) be an entire function of
order p(0 < p < co) type T and lower type w(0 < w G T < oo) . Then
there exist a sequence of real polynomials {P,,,(x)}n_o for which

lim sup
n-3ro

1

	

1

f(x)

	

P.(x)

1

	

1

f(x)

	

Pn(x)

~I/n

	

1
G1

q

1/n
< 1 .

LJO,a)

THEOREM 13 (Reddy [23]) . Let f (Z) _ J:ko akZk, a o > 0, ak > 0
(k > 1) be an entire function of order p(0 < p < oo) type T and lower
type w(0 < w < T < co). Then

	 1	1
f ( )

	

n

	

k

	

< exp	x

	

~k-o akx Lp,[o .~)

	

( pTe + pw

Remark . There exist functions which fail to satisfy the assumptions
of the above theorem but for which the conclusion is valid in a slightly
different form . One such example is

f (Z) = 1 +

	

Zk ( log k )k .

k=2

	

k

THEOREM 14 (Reddy [20, Theorem C]) . Let f (Z) = Ek-0 akZk,
ak > 0 (k > 0) be an entire function of order p(0 < p < oo), type T, and
lower type co, (0 < w < T < cc) and -r < 2co, then

xy/ux l
Jim Sup (A 0,,' ) 1/n

1/n <

	

T
2w
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where xl is the largest and x 2 the smallest root of the equation,

x log(xle) + w/T = 0 .

THEOREM 15 (Reddy and Shisha [29, Theorem 14]) . Let f (Z) _
Y-ka akZk, a o > 0, ak , 0(k , 1) be an entire function and suppose there
exist constants 8 > 1, C > 1, e > 0 and 0 < Cl < C2 < 1 for which,
for all large r,

M(r8) > {M(r)}B,

	

where B =
42 +

log (48ó	C) + e .
1

	

1 g

Then for every sequence {Pjx)j _o , where each P7 ,(x) is a real polynomial
of degree <n, positive throughout [0, oo), we have

lim inf )	1

	

> C-B > 0 .n- o ( f (x)

	

Pn(x) L~[o .-) )

THEOREM 16 (Erdős and Reddy [9, Theorem 3]) . Let f (Z)
~k_o a kZk, ak , 0(k , 0) be an entire function of order p(0 < p < oo)
type T, and lower type w(0 < w < T < oo). Then

Jim inf (A o,n ) 1 /n ewe

	

xi/°x2
n-w

	

elm/[r(e+I)],r2(e + 1) 4°

	

.

THEOREM 17 (Reddy [22]) . Let f (Z) _ Jko akZk, a k >-- 0(k , 0)
be an entire function of order p(0 < p < oo) type T and lower type
w(0 < w < T < oo). Then

lim inf (AO,n)1/n i (22

THEOREM 18 (Meinardus and Varga [16], Reddy [20]) . Let f(Z) _
Jko akZk , ak >, 0(k , 0) be an entire function of perfectly regular
growth (p, T) . Then

° < lira sup (Ao,n) 1/n <22+1,

	

n -,d,

	

2 1 /0

THEOREM 19 (Reddy [20]) . Let f (Z) _ Yk o akZk, ak ->- 0(k >, 0)
be an entire function of perfectly regular growth (p, T) . Then

lira inf (lo n)l~n >- 1
n->

	

2 2}I/°
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THEOREM 20 (Cody, Meinardus and Varga [4]) . Let f (Z) = ez . Then

6 < hm sup (A,,,,)'/'n <
2.298

THEOREM 21 (Schönhage [33]) . Let f (Z) - ez . Then

Jim (Ao,n) l /n
= 1

THEOREM 22 (Newman [18]) . Let P(x) and Q(x) be any real poly-
nomials of degree less than n. Then

lim inf

THEOREM 23 . Let f (Z) - J , alZk, a„ > 0, a k > 0(k > 1) be an
entire function of perfectly growth (p, T) . Then for every non-vanishing
polynomials P(x) and-(x) of degree at most n, there is a constant C > 4r+1IP

for which

P(x)
e-x -

Q(x)

?l/n

c~[o,-)~

	

(1280) '

hm s
.
up

.f(x)

	

Q(x)

I P(x)l < MT n
2x-a-b

( b-a )

1

C-2 .

Remarks . (a) If P(x) is a constant then (3 .10) is known in a better form
(cf. [22, Theorem]) . (b) The proof adopted here is different from the one
used by D . J . Newman .

We need the following lemma for our purpose .

LEMMA ([34], [9, p . 68]) . Let P(x) be any algebraic polynomial of
degree at most n . If this polynomial is bounded by M on an interval [a, b]
then at any point outside the interval we have

where

2Tn(x) - (x 1/x2 - 1) n (x - \11X2 - 1) n .

Proof of Theorem 23 . Let M(r)

	

max

	

I f (z) 1 . Then by assump-
tion

lim
log M(r)

	

0 < p < 00

)
-

r,w

	

r°	 = T,

	

(0 < 'T < 00 .

(3.10)
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Hence for each e > 0 and 8 > 1, there is an r o - ro(e), such that for
all r i ro(e),

M(r8)

	

{111(r)}s P(1- ) (I+E )

Let us assume on the contrary the theorem is false . Then for all large n,

1

	

P(x)

.f (x)

	

Q( )
< C-2n .

Since limx,, I P(x)l - oc, there exist arbitrary large r for which

~ P(r) I P(t)l,

	

for all t > r .

For each of these values of r for which (3 .13) is valid, we can find
sufficiently large n and a constant C > 4 1+ 1 /P such that

f (r) _ (C - 4)n .
Then at this point x = r, we get

Q(r)
P(r)

If (3.15) is not valid, then

Q(Y)
P(r)

From (3.14) and (3.16), we obtain

< Cn .

Cn .

C-2n < (C - 4)-n - C n
~

1

	

P(x)
J (Y)

	

Q(x)

(3 .17) clearly contradicts (3 .12) . Hence (3 .15) is valid .
At x = r8 - r(C/4), we have from (3 .11) and (3 .14)

f(r8) > f {(r))S~{1-e)/(ItE) > (C _ 1)2(1-e)n/(I-I E)

Since P(x)

	

0, we get from (3 .15) .

1 Q(r) I < I P(r) I Cn .

Now by applying lemma to I, Q(r)l over the interval [0, r8], we get

I Q(r8)l < I P(r)j {2(28 - 1)C}n .

89

(3 .11)

(3 .12)

(3 .13)

(3.14)

(3 .15)

(3.16)

(3.17)

(3.18)

(3.15')

(3.19)
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From (3 .13) and (3.19), we get by choosing t = r8,

Q(r8)
< {2(28 - 1)C} n .

Clearly (3.18) and (3.20) contradicts (3 .12) for all those values of n for
which (3.14) is valid . Since e being arbitrary

C-2n <
[(48 - 2)C]-n - (C - -11 ) -2n < O(r8) f (r8 )

Hence the theorem is proved .

THEOREM 24 (Reddy [21 ]) . Let f (Z) - ~k-o a,;Zk, a o > 0, a,, > 0
(k > 1) be an entire function of order p(0 < p < oo), type T and lower
type w(0 < cu < -r < oo). Then one cannot find for n = 0, 1, 2, . . .,
polynomials Pn(x) and Ojx) with nonnegative coe dents and of degree at
most n for which

lim inf
n ~cc

'̀ I

	

1

	

Pn (x)

	

~ 1
/n

l f ( x )

	

Qn(x ) L ,[o, )

THEOREM 25 . Let f (Z) - Jk~, a,;Z4̂ , ao > 0, a,,. > 0(k > 1) be an
entire function of order p and maximal type or of (finite) order p + e . If P"(x)

and Ojx) are, for n -- 0, 1, 2, . . . polynomials with nonnegative real
coefficients of degree at most n, then

1

	

Pn (x)
f (x)

	

Q,(-v)

< (5.2)-,/p1 .

(3 .20)

p/n

> (2.75) -1 .

	

(3.21)
L~[o, =) ~

Proof. If (3 .21) is not valid, then for all large n,

1

	

P(x)
(2 .75)-n/p .

	

(3.22)
f (x)

	

Q(x) L_[o'x)

By our assumption f (Z) is either an entire function of order p(0 < p < cc)
and maximal type or of order p + E(E > 0), then it is known ([3], p. 8)
that

lim sup log M(r)
oo,

	

(3.23)
nix

	

J ,p

where M(r) = Max lzl _, . f(Z)j . From (3.23), it follows that there exists
arbitrarily large values of r for which

log M(r)

	

log M(t)

	

0 < t < r .

	

(3.24)r p

	

t p
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From (3.24) we obtain for all those values of r, with

t=C,Or,

	

0<C<1,

M(r) % [M(t)](rlt)P = [M(t)] c 1.

	

(3.25)

For sufficiently large r, we can find an n such that

M(CI1Pr) = (2.75)(01)c. .

	

(3.26)

At this point, that is at x = Cllr,

0 (x)

P(x) < í2.75) (n/P)c2

	

where 0 < Ci < C < 1 .

	

(3 .27)

(3.27) follows easily from (3 .22) and (3 .26) . But at x - r, we get by
(3.25) and (3.26),

M(r) % [M(t)] cz l = (2 .75)'z/P

	

(3 .28)

Because of the assumption that the coefficients of P(x) and Q(x) are
nonnegative, we get along with (3 .27),

P(r) y (~
b~C1 PCik Pr k/P(rC1 P)' < CYnioQ(rCl P)

- (2.75)(n n)cz Cin P

x-o

	

J

	

a
(3 .29)

From (3.28) and (3.29) we get at x - r, with Cl - 0.945, C, = 0 .95 .

(2.75)-m' < (2.75)(-nlo)c2 C I
nip _ (2.75)-n/o < P(x) -1

	

(3 .30)
Q(x)

	

.f (x)

This flatly contradicts (3.22), hence the result is proved .

THEOREM 26 (Erdős and Reddy [8, Theorem 1]) . Let g(n) be any
sequence tending to infinity arbitrarily fast, then there is an entire function
of infinite order such that for infinitely many n - n,

_ 1A,.,

	

t;(

	

.

THEOREM 27 . Let h(n) be any sequence tending to -{- oc very
Then there is an entire function such that for infinitely many n

1
h(n)

The proof of this is similar to Theorem 2 of [7], hence the details are omitted .

slowly .
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THEOREM 28 (Erdős and Reddy [10, Theorem 1]) . Let f (Z) _
Yko a,.Zk , ao > 0, a7, > 0 (k > 1) be an entire function of finite order
p(0 < p < oo) . Then for every e > 0, there exist infinitely many n for
which

1
Ao,n < (1 .4)n/o+ e

THEOREM 29 (Erdős and Reddy [11A, Theorem 2]) . Let f (Z) _
Yko bkZk, bo > 0, bk > 0, bk > 0 (k > 1) be an entire function of
order p and lower order g (0 < g < p < oc) . Then there exist an entire
function h(Z) _ J,_o an,,Z4lD (for convenience we let a,, , = C, no = 0)
formed from the series f (Z) for which

1

	

1/nlogn
lim inf 1 , ( h(x) )J

	

< exp
n-o~

THEOREM 30 (Erdős and Reddy [I IA, Theorem 3]) . There is an entire
function of positive lower order for which

	1
f (x)

lim inf 0 o,n)1/nloglogn = 0-n-3

THEOREM 31 (Erdős and Reddy [I IA, Theorem 1]) . Let f (Z) _
J:k-o akla° , ao > 0, ak > 0, a le > 0 (k > 1) be an entire function of lower
order R and order p(0 < g < p < co) . Then for every e > 0, there is an
no = no(e), such that for all n > no(e),

A o , n

	

exp(-ns(1-E)/p(1+e» .

THEOREM 32 . Let f (Z) _ Jlk o akZk, ao > 0, ak > 0 (k > 1) be an
entire function of order p and lower order /3(0 < g < p < co) . Then for
all large n > n o(s),

Ao,n % exp(-no(l+E)/a(1-e)), (3 .31)

Proof. Let us assume (3.31) is false . Then there exist infinitely
many n for which

P.(x) , < exp(-n P(1+e)/a(1-e)),
c,[o, .)

1 (3 .32)



By assumption f (x) is increasing, hence for every large n and any E > 0
there is an r > 0 such that

nP ('+E) /a ( I-E)
f (r) - exp (	4	 ) .

	

(3.33)

By assumption for each E > 0, there is an r o = ro (E) such that for all
r > r o (E) .

In (3 .33) we choose n so large such (3 .33) and (3 .34) valid simultaneously .
From (3.32) and (3.33) it is easy to see that

From (3 .33) and (3.34) we obtain
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exp(ra(i-E)) ~f(r) < exp(rP ( i+E)) .

	

(3 .34)

no ( 1-~E) /Q( 1-E)
P,~(r) < exp (	3	 ) .

	

(3.35)

r > nl/a(1-E)4-i/P('+E) (3.36)

Now at x - r8, where 8 satisfies the assumption that n8a(I-E) -
2wP 1+E)/a('-E) 4e(i-E)/P(i+E), we have from (3 .36) along with the definition
of lower order,

U, Q(1-E)/P(,+E)
f(r 8 ) > e1P[(r8)fj (1 -E)] > exp

[n ( 4 )

	

> exp[2np( i+E ) /aa -E) ] .

(3 .37)
But by using lemma of Theorem 23 we get

nP(1.+E)/R(1-E)
P,z(r8) < (48)n P,,,(r) < (48)x'- exp (	3	) < exp(n°(1+E)/a(1-E)), (3.38)

(3.37) and (3 .38) clearly contradicts (3 .32), hence the result is proved .

THEOREM 33 (Erdős and Reddy [11, Theorem 4]) . Let f (Z) -
Yk , b,,.Zh', bo > 0, b k > 0 (k > 1) be an entire function of order
p(0 < p < o`) type r and lower type w, satisfying the assumption that
0 < w < 8 < T < oo . Then there exist an entire function h(Z) _
~,n=o a.,,,Z- formed from the series off (Z) for which we get

lim inf %

	

r	
w

ii- ` o` \ h(x) . ~

ln

	

8
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THEOREM 34 (Meinardus, Reddy, Taylor and Varga [17, Theorem 7]) .
Let f (Z) be an entire function of logarithmic order p l = A + 1 (0 < A < OC))
and logarithmic types T l and co, (0 < w i, < T, < co) . Then

lim

	

= 0.
nl

Remark . 0 < co, < T l < oo, guarantees the following

0 < lim log log M(r) _ A + 1 < oo .
r-~

	

g g
On the other hand

0 < lim log log Iff(r) - A + 1 < oo
r-~ log g

may not imply that 0 < w i < 7 i < oo .

EXAMPLES

fi(Z) = 1 +

	

exP[(n log n)2] '
n=2

It is easy to verify that for

Zn

f2(Z) - 1 + ~ -
Zn

n=2 exP[(n/log n)2]

A = 1 = Nl - 1,

	

Tl = 0.

A=1=P,-1,

	

W,=oo.

THEOREM 35 (Reddy [19] and [22]) . Let f (Z) satisfy the assumptions
of Theorem 34 . Then

exp	,

	

-A	1 	lira SUP ( A o,n)n-[l+1t 11 < 1 .
(~I + 1)[(ál ', 1) I ll

	

\ n-am

THEOREM 36 (Reddy [24]) . Let f (Z) be an entire function satisfying
the assumptions that

lim sup log log 1111(r) < lim inf
log log M(r)

+ 1 .r'~

	

log log r

	

r-m

	

log log r
Then

hm 00,nY In = 0 .
n,>
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THEOREM 37 . Let f (Z) _ Y_l_o a Zk, ao > 0, a,. > 0 be an entire
function satisfying the assumptions that 0 < A < oo, 5 < 2co i < 2-r l < oo .
Then

lim inf (1o,n)n (~+i~n)
n-»

The proof of this theorem is very similar to the proof of Theorem 32,
with the only difference we use here

and
log 8 =

[,,(~)- )]
11/+1

	

[6,T,(í I E )]II(A+1)

We omit all the details to the reader .

THEOREM 38 (Erdős and Reddy [9, Theorem 6]) . Let f (Z) _
Yk-o akZk, ao > 0, ak > 0 (k , 1) be an entire function of logarithemic
order p i = A + 1 < oo. Then

lim inf (Ao ,n)n-(1 "A") < 1 .
nix

THEOREM 39 . Let f (Z) = J]k-o akZk, a o > 0, a,, > 0 (k > 1) be an
entire function of logarithemic order p l = A + 1 < ao . Then for each
E > 0,

lim Sup (A o . n )n '1
A+E < 1 .

The proof of this theorem is very similar to the proof of Theorem 9, with
the only difference we use here

A = lim sup	
log n

log f log 1 ,

n

	

an
instead of

lim sup log log M(r)
_ P

= lim sup n logín
log

an

hence we omit the details to the reader .

f(r) = exp
nA6 /A

),

607/21/i-7

,
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THEOREM 40 (Erdős and Reddy [9, Theorem 4]) . Let f (Z) -
I + Jki Zkl(did2 . . . dk ) with dk+1 > dk > 0, k = 1, 2, 3, . . ., be an
entire function of finite order p . Then for any e > 0, we have for all large n,

dld2 . . . dn

	

<Adld2 . . . dn	 d2n+1	

24ndn(Pi-E)dn+ldn+2 • • ' d2n

	

0,2n-1

	

dn+idn+2 . . . d2n ( d2n+1 - d2n

EXAMPLES .

(1)

For this function, A = oo . But

llm (í O n )1/n1Ogn = 1
nom'

	

2

(2)

(3)

	 Z'
f(Z)=1+ ' 21og231og3 . . . klogk

k=1

ro

f(Z) =1 + Y Zk8-2%

	

(1 < s < ~0) .

w

k=1

For this function A = 0. But

lim (AO,n)1/2(n+') = 1n1~

	

(S
m

	

Zk
f(Z) = 1 +

	

223344 . . . kk
k=1

For this function 11 = 1, T z = 0. But

Iim (íi )1/n21Ogn = e-114 .O,n

THEOREM 41 (Erdős and Reddy [9, Theorem 7]) . Let f (Z) _
1 + I]á , ankZn7, , lim infk,, nk+1/nk > B > 1 be an entire function of
order p (0 < p < oo) . Then

lim inf (i 0 n )~P+E) /n <
In,w

	

Q .

Remarks . We stated this result in [9] without proof .
a proof .

Proof. By assumption for each c > 0,

hm nl/P+cal/nk

	

0 .k

	

nkk,

(3.39)

Now we present

(3.40)



Now as usual by definitions for 0 < w < r = B1/2(p+Fran1ln,~ along with
(3.41) we get

1

	

1

	

`~ nz
Snk(x)

	

f(-) ~ i=k+1
an r

On the other hand for x > r =
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From (3 .40) we get for a sequence of values of k and all i > k,
1/p+E 1/ni

	

1/nk

	

1/p+eni

	

a.,

	

ank (n k)
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(3.41)

0-(ni/26,+M < e-nk/2G,+E)C; . ( 3 .42)

B1/2(p+e)

	

1/nr .n k,
1

	

1

	

1

	

1

	

nk/2(p+E)
0 v ~nk(x)

	

.f(x) , S.,,(~')

	

ankrn'

	

8

	

(3 .43)

(3 .39) follows from (3 .42) and (3.43) .

THEOREM 42 (Erdős and Reddy [10]) . For all large n > n o(c), we have

1

	

1

	

< c log n
~~ xk

	

1:

	

xk L [0, .)

	

nk=0

	

k=0

	

w

THEOREM 43 (Erdős and Reddy [10]) . There is a polynomial Pn(x) of
degree at most n for which

1

	

1

	

\ 2 n
(X T 1)n+1

	

Pn(x) IIL_[o, .)

THEOREM 44 (Erdős and Reddy [10]) . For every polynomial P,,(x) of
degree at most n, we have

1

	

1

	

> (16)-n .
(x T 1 )

n-1

	

Pn(x) IL~[O,w) /

THEOREM 45 (Reddy [26, Theorem 4]) . Let f(Z) - 1k=o akZk,
ao > 0, a jv > 0 (k > 1) be an entire function of order p = 2, type -r and
lower type W(25 < Co < T < 00) or order p(2 < p < co), type -r and
lower type cá(0 < w < T < co). Then it is not possible to find exponential
polynomials of the form J o b j.ekx (bk > 0) for which

lim inf
1 _

	

1
n—o

f (x)
~i~=o k

pw/n2 7
e- '
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EXAMPLES . Letf (Z) = 1 E Yk=1 ezk/1 12 23 3

	

kk . This is an entire
function of order p = 2 and type T = 0. This function fails to satisfy the
assumption of Theorem 45 . But for this function it is easy to show that

lim sup
f (x) Ln a k

(2) The following example suggests the assumption p = 2, T > 0
is not sufficient for the conclusion of

THEOREM 45 . Let

1

	

1

f(z)

	

eza,k
_ y_ 2 .

k=o e "k

0=po<P1<p2<p3< . . .<pk< . . .,

This is an entire function of order p = 2 and type T > 0 . For this
function we can show easily

lim inf
n-c,

lim sup
n -

lim Yk+1 = CO
k-~ pk

f (x)

	

n e-k
k=o epk 2 z,,[o, .)

THEOREM 46 (Reddy [26, Theorem 5]) . Let f (Z) _ Jk-o akzk
ao > 0, ak > 0, ak > 0 (k > 1) be any entire function of order p
(1 < p < oo) type r and lower type co(0 < w < 7 < co) . Let ~(Z) be
any transcendental entire function with non-negative coefficients satisfying
the assumption that

0 < lim logl g(2 ) = 0 < 1 .r-~

Then for every g n(x) _ Ik=o bk{~(x)jk, with bk > 0, we have

1

	

1
,Í (x)

	

~k=o bk {~(x)} )~
o/n(logn)(loglogn)

>
L~[o,x)

1/n2 logn

	

1

L,[o, .)

	

e

= 0.
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Remark . There exist entire functions of infinite order, whose
reciprocals can be approximated by reciprocals of Ek_0 {0(x)}k(k!)-1 or
[0, oo), with an error Cn (0 < C < 1). For example let

where

lim su
n,-

f (Z) _ Y, {«)}'
k=0

~(Z) =
1 Z+

Z-1 112233 . . . i 2

clearly f (Z) is an entire function of infinite order . For this function we
can show easily

1

	

1
f(x)

	

n
{«x)}k

k=0 k! L~[0, .)

< 1 .

THEOREM 47 (Saff and Varga [32]) . Assume that g is a continuous
function (,L- 0) on [0, oo), and assume that there exist a sequence of polyno-
mials {Pn(x)}n=1 , with P E ~r„ for each n

	

1, and a real number q > 1
such that

l lí'2lim sup

	

1

	

1

	

, 1- < 1 .
n>A

	

g(x)

	

Pn(x ) L~[0,d

	

q

Then as is known [17, Theorem 3], there exists an entire function G(Z) of
finite order with G(x) = g(x) for all x > 0 . Next, assume that h is a
continuous function on [0, + oo) with h(x) > 0 for all x > 0, and such
that h'(x) exists, is nonnegative for all x large, and satisfies limx,, h'(x) - 0 .
Assume further that no zeros of P,, lie in the interior of H l (defined in (2.7))
for all n sufficiently large . If D satisfies (2 .9) and if G is nonzero on the
vertical segment {Z = iy : I y I < Dh(0)}, then

1 n

	

,+

	

2
lim scup		

<G(Z) - Pn(Z) L,(HD)

	

q 1 - D < 1 .

THEOREM 48 . Let g(Z) _ ~k-o Zka-k2, where a , 2, and let S n(Z) _
Yko Zka-k2 . Then, on every closed sector S(B) (defined in (2.10)) with
0<e<7T

lim
n-~

1/n2

	

1
L~(S(e)) ~

	

~/a
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THEOREM 49 . Let f (Z) = 1 + 11c-1 Zk/dld2

	

d,. , with d,,+1 >
d,, > 1 (k > 1) be an entire function of order p < 2. If there exist a
sequence of polynomials {Pn(x)n_1 with P,z E 7r,, for each n > 1 and a real
constant q > 1 such that

If D satisfies (2.9), then

lim sup
n~ w

By definition

lim sup
n-~co

tn-k
t„

.f(x)

	

P.(x)

1

	

1
F(Z) Pn(Z)

We need the following lemma for our purpose

LEMMA 2 . Let f (Z) = 1 + Jk i Zkl d1d2 • • • dkk be an entire function
satisfying the assumption that

1 _ _1

We show here for all k > n (1/2)+E

1/n 1
< 1 .

q

,ln<1(
1+D )2<1.

L, (II(D»)

	

q 1 - D

n;-1

Then S l(Z) = 1 } Yk-1 Zkld1d 2 dk , l > n is zero free in a region
bounded by r = C3 d, v and B - ±n ((1 / 2) +E ) , where Z = reia, and as usual
Cl , C2 , C 3 , . . . are suitable constants.

Proof. Let Z - reel, t,,, = a n Z", a,, = (did, --- d72 ) -1 , and assume
d„ < r < d,,,_F , , then clearly nth term of f (Z) becomes the maximum
term. To be very precise, let r = d,, z . Then

Sl(Z) - tl+tl-, + . . . +tn+tn-,+ . . . +tn-k + . . . + tl+t0

t,n t o _i t1 + . .. + tn-k-11 + t„_k 1 + tn-k+1

	

. . . +, tn-1
( t1

	

t n

	

tn

	

(

	

tn-k

	

tn-k

t l )i

	

t n
t n-I-1	to+2	to+k

	

to+k+l ~+ tn + tn	 +	 + . . .

	

+ to

	

T( t n

	

t,,,

	

tn

	

( tn

tn-7c = o(tn) .

< (1 + n2 ) .

dn-k+ldn-k+2' dn I <
Zk

d.n-C5k
dn

(3 .44)



If k > n(1 /2) +E, then clearly eCsk2/n

	

0. Similarly we can show if
k > n(1/2>+E

On the other hand

1 + tn-k+1. ~_ tn-k+2 +

	

+ tn-1
tn-k

	

tn-k

	

tn-k

1<

Similarly
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Now by using the fact that

1 + Cl _ do,, \ 1 + Cz
n

	

do

	

n
We get

t~nk I ~ ( d~Csk k ( 1 + C k )- k	 6

	

eCs k 2 /n
yl

	

\

tn+k = o(tn) .

	

(3.45)

Z

	

Z2

	

Z3

	

Zk

+ d,-k+1
T

dn-k+ldn-k+2

	

dn-kdn-k+3

	

dn-k+, "' dn-k

d

	

d

	

2

	

d

	

k
1
+ ( dn-k+1 + ( dn-k+1 ) +

. . • + ( dn-7+1 )

1 +c, ( dnnk+1 +
C9

( dnnk l )2

	

C6 (	dnnk+l ) k

1	< Clo(n - k) .

	

(3.46)

1 - (
dn-k

)dn-k+1

+ tn+2

	

, . , + tn+k
tn

	

tn

Hence, we get from (3.44)-(3 .47) .

SI(Z) - tn + tnC12n + Ctn-k(n - k)C + t,,C13

- tn( 1 + C12n + C13) + C(n - k) t n-k

- Clgntn + Ci5(n - k) tn-k .

S I(Z) = 0,

	

if C14ntn = -C15(n - k) tn-k

C16Zn

	

Zn-k(n - k)C16
d,d2 . . . dn

	

-

	

(n)

Clln . (3 .47)

1.0
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Then clearly
r7c

	

-
= C17dn-k+ldn-k+2 . . . do (n

	

k)
n

= Cls(dn)'` (1 - k/n)

e,elk - e(zTl) ZT

	

j = 0, +1, 4-2, +3, +4 t . . .,

9

	

(2i+1)
1

	

k

Hence S,ti (Z) is zero free in a region bounded by

r = C3dn , e = ±C20n-((1/2)+e)

Proof of the Theorem . From the above lemma it follows that SJZ) is
zero free in HD . Now by adopting the reasoning of Theorem 47 the
result follows .

Remark . For functions of order p >, 2, clearly y becomes zero, hence
the theorem is proved for p < 2 .

THEOREM 50. Let f (Z) = 1 + Yk , Zk(dld2

	

dk)-1 , be an entire
function with d1-, + d,, < d( 1 _,_á ) (0 < a < 1, k ->- 2), where d1 is positive
and continuous for all positive values of k >, 1 and increases to + co with k .
If there exist a O(n) > n and a ~ (0 < e < 1) for which

Then on every closed sector S(O), with 0 < 8 < 7r,

11n1 (Ao .n)1/0(n) _

where
1 _ 1

~o,n = Pn(ze n* f (Z)

	

Pn(Z) L~(. (0))

7r,á * denote the set of all complex polynomials of degree at most n
variable Z.

We need the following lemma to prove the above theorem .

LEMMA 3 . Let f (Z) - 1 + Iki Zk(dld2 . . . d,,)-1 , d1.-, -f - dr < d(1. +~)
(0 < a < 1), where d,, is positive and continuous for all positive values of

in the



k > 1 and increases steadily to + co with k . Then all the partial sums of
f (Z) have zeros on the negative real axis only .

Proof. Let Z - retie, t o = a,,Z",, an = (did, . . . d,,)-l T,, - I t,,i I and
assume d,2 < r < d,z+1 , then clearly nth term of f (Z) becomes the
maximum term. To be very precise let r = dn,+a (0 < a < 1), then

n

	

k

	

_1 =

	

tn-2

	

tn-3

	

t0
Sn(Z) _ Y Z (did2 . . . dk )

	

, tn + tn-1 (1 +
t,1

	

tn-2

	

+
t)k=0

	

1

= tn + to 1 1 ++ do- , + dn-2dn-1 + . . .

	

d1d2 . . . d,1 ) .
Z

	

Z2

	

Zn-1 )'

Therefore

607/2111-8

IRI

It is easy to verify that

dn-1 _ d,-. .,
I
Z

I - ~ d1,+a

dn-,

	

dn-2dn-1 + . . . + dlds . . . dn-,
Z

	

Z2

	

Zn-1

dn-1 + ( dn-1 ) 2 + . . . + ( dn-1
dn+a

	

dn+a

	

dn+a

	1	-1
1 - ( dn-1 )

dn+a

dn-,
dn+a

- dn-1 .

RATIONAL APPROXIMATION
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Hence S,,(Z) - t72 (1 + 9), where

dn-2n-1 I

	

( gn=1 ) 2
L

	

~ n+2

\ I
1t

.t.-1 1 I
1
+ dn+

dn
d,,-, ) - dn+a ) dn+- dn-1 )

dn
dn+a. - dn-,)

.

But by our assumption dn/(d72+a - d,,z_1) < 1, therefore 5,.á(Z) has
zeros in the circle r = d,,, , and (n - 1) zeros in the circle r = d„-I+a
and therefore one zero between the circle d,,,-1+a and d,,+, . Let
Z - -d,,,, , then 5,,,(Z) has the sign of t,z , i .e. of (-1)"z and when
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Z = -dn_l+a it has the sign of (-1)' _l . Hence S„(Z) has a real negative
zero lying between the circles r = d7,,, and dz_1 _ F ,, . We noted earlier
that only one zero lies between two circles (successive circles) hence all
the zeros are real and negative .

Proof of the Theorem . From the statement of the theorem it is clear
that f (Z) is an entire function of zero order. For example d1 . = 827`_1
satisfies the assumptions of the above theorem with A - 0. For this dl,,
it is known (Theorem 40, example 2) that 0(n) = 711 + 1, ~ _ ( 1/8)
(1 < 8 < oo) . Now by adopting the reasoning of Theorem 48, we get

lim sup

	

I _ 1
n'W ~ I .f (Z)

	

SxZ)

On the other hand we get easily from Theorem 40, that

lim inf (~o .n)1/m(n)

	

lim inf (Ao,n)1/0(n) .

	

(3 .49)n~~

	

n-o

The result follows from (3 .48) and (3.49) .

OPEN PROBLEMS

PROBLEM 1 . Let f (z) - 1k o akZk, a 0 >0, ar, > 0 (k > 1) bean
entire function of order p (0 < p < oo), with the further assumption
that

1im sup (l o, n )i/n < 1 .
n-~

Then there is a c (0 < c < 1) such that

lim inf (A o , n ) 1 /n >- "-n-

PROBLEM 2 . Let f (z) _ I:.=, akzk, ak > 0 (k >, 0) be an entire
function of order p (0 < p < oc) with the further assumption that
0 < w = -r < oo . Then there is a 8 > 1, for which

lim (~, n) 1 ' = 8-1 .

Remark . For f (x) = ex, 6 = 3 (cf. [33]) .

1/~G(n)
(3 .48)

s(a)
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PROBLEM 3 . Let f (z) - Y-k_p akZk (>0 on [0, oo)) be an entire
function with the additional property that it grows on [0, oo) as fast as
anywhere else in the complex plane, then for each e > 0, there exist
infinitely many n for which

AO ,,, - exp ( ( log	n ,_,E
) .

PROBLEM 4 . Let f (z) _ J:k. a, zk, ao > 0, a,, > 0 k > 1) be an
entire function of order p(0 < p < oo) type T and lower type co

(0 < co < T < oo). Then for any polynomials P(x) and Q(x) of degree
less than n, there is a cl > 1 for which

1

	

P(x)

.f (x)

	

Q(x) L~[0, .)
Cl

n

Remark . For f (x) = ex, c l = 1280 (cf. [18]) .

PROBLEM 5 . Let f (x) be any nonvanishing infinitely differentiable
and monotonic function tending to + oo . Then for infinitely many n

PROBLEM 6 . Let f(x) be any non-vanishing infinitely differentiable
and monotonic function tending to + co . Then, there exist polynomials
of the form

with no = 0, no < n, <n 2 < n 3 <

	

/n2 = oo, for which for
infinitely many k

1

	

1
.f (x)

	

Q(x)

PROBLEM 7 . Let f (z) - Y_k-o akzk, ao > 0, ak > 0 (k > 1) be an
entire function . Then for infinitely many k and any c > 1,

1

	

1
f(x)

	

Q(x)

1
AO" - ( log n)

Q(x) - Y alxnl
l=0

L~[0,.) (
	 1	l

log log nk l '

1
L~Eo, .)

	

(log nk) c
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PROBLEM 8 . Let f (z) = G k-p a kzk, a p > 0, a,,

	

0 (k > 1) be
an entire function of order p(0 < p < oo) type T and lower type
co(0 < co < T < oo). Then there exist polynomials of the form

where

0=no <n l <n2 <

for which for infinitely many k

1 _ 1
f (x)

	

Q(x)

PROBLEM 9 . Let f (x) be any entire function satisfying the assumption
that lim,, f (x) is finite . Then there exist rational functional of the form
(P.(x)/Q.(x)) of the degree at most n for which for each E > 0 there
exist infinitely many n, such that,

1

	

P,,,(x)
.f (x) WX)

k

0 (x) _ Y aix"z ,
i=o

< ni,,

1
L. [o, .)

	

nk

-n
c~( o,~)

	

exp (log n)1F'

PROBLEM 10, Let f (z) and g(z) be entire functions of perfectly
regular growth (p, T), (p + e, T) respectively for any E > 0. Then for
all large n

CONCLUDING REMARKS

It is clear from Theorem 3A continuous functions which maintain
sign and satisfy lim, f (x) = 0 = lim x,pf (x) cannot be approximated
well . The method used to obtain a lower bound in Example 1 can
be applied to any function which vanishes at the origin and tends to
zero at infinity. As far as we know no other method is known to
attack this kind of problem . This method was first used in [5] which is
slight variation of the technique we used in [9] .

The method used in Theorem 32 can be applied very successfully to
find lower bounds to k jl /f ), where f is an arbitrary entire function .
Unfortunately for entire functions of perfectly regular growth this

1ni 00 ,
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method does not yield sharper bounds . For functions of this category
the method used in [16] and [20] is very successful . Unfortunately the
method used in [16] and [20] is useless for entire functions where lower
order is less than order .

The method used to prove Theorem 13 is very elementary and can be
applied to all those entire functions for which we know the upper bound
of M(r) for all large r .

It is interesting to know, what connection exists between the structural
properties of f and the rate of convergence of

lim sup 1

	

Pn l/n
G 1 .

f

	

Qn L~[0,~)

It is likely that f (x) is quasianalytic in the sense of S . N. Bernstein .
Let f (Z)

	

o akZk, ao > 0 and ak > 0 (h > 1) be an entire
function satisfying the further assumption that

0 G lim log	g
M(r)

- P G 00,r-,,

	

log

then it is known ([35, p.43]) that there exist a subsequence
natural numbers satisfying the assumptions that

log np+l -p m log n, 1
and

lim np log np
P --k log

	

I = P .
g ant,

Iff (Z) satisfies the assumption (*) then it follows from Theorems (31)
and (32) that

log log 1
lim	

~

	 n

	

1
n-'~,

	

tog n

From (A) and (B) we get for the above sequence {n,,}

n,, log log (AI ) - p log 1

(*)

{np} of

(A)

(B)
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It is interesting to observe certain class of continuous function which
vanish at the origin and tends to zero at infinity can be approximated
much better by rational functions than by reciprocals of polynomials .
One such example is f (x) = xe- x, this can be approximated by P,,IQ,,
roughly with an error of 2-12, this cannot be approximated by reciprocals
of polynomials even like c log n1n 2 .

Just recently the Problem 4 has been solved completely in [28] .

REFERENCES

1 . S . N. BERSTEIN, "Collected Works," Vol . 1, Constructive theory of functions (1905-
1930), U .S. Atomic Energy Commission, AEC-tr-3460, Technical Information
Service Extension, Oak Ridge, Tennessee .

2. HANs-PETER BLATT, Rational Tschebyscheff-approximation iffier unbeschr5nkten
intervallen, Habilitationsschrift, Universitdt Erlangen, Nürnberg, 1974 .

3 . B. BOEHM, Convergence of best rational Tchebyshev approximations, Trans. Amer .
Math. Soc . 115 (1965), 388-399 .

4. W. J . CODY, G . MFINARDUS, AND R. S . VARGA, Chebyshev rational approximation to
e-1 in [0, +oo) and applications to heat-conduction problems, J. Approximation
Theory 2 (1969), 50-65 .

5. P . ERDŐS, D. J . NEWMAíN, AND A. R. REDDY, Rational Approximation 11, Advances in
Mathematics, (to appear) .

6. P. ERD6S AND A . R. REDDY, Rational approximation to certain entire functions in
[Q -I- m), Bull. Amer. Math. Soc . 79 (1973), 992-993 .

7. P. ERD6S AND A . R. REDDY, Chebyshev rational approximation to entire functions in
[0, oo), "Math . Struct., Comput . Math., Math . Modelling," dedicated to L . Iliev's 60
anniversary, Bulgaria, 1975, pp . 225-234 .

8 . P. ERD6S AND A. R. REDDY, A note on rational approximation, Periodica Math. Hung .
6 (1975), 241-244 .

9 . P. ERD6S AND A . R. REDDY, Rational approximation on the positive real axis, Proc.
London Math. Soc . 31 (1975), 439-456 .

10 . P. ERD6S AND A . R. REDDY, Problems and results in rational approximation on the
positive real axis, Periodica Math. Hung. 7 (1976), in press .

11 . P. ERDŐS AND A. R. REDDY, Müntz's theorem and rational approximation, J. Approxi-
mation Theory 17 (to appear) .

11A . P. ERD6S AND A . R. REDDY, A note on rational approximation (to appear) .
12. G. FREUD, D . J. NEWMAN, AND A . R. REDDY, Chebyshev rational approximation to

e - 1 1 1 on the whole real line, Quart . J. Math . Oxford (to appear) .
13. G. FREUD AND J . SzABADos, Rational approximation on the whole real axis, Studio .

Sci. Math. Hung. 3 (1968), 201-209.
14. A. A. GoNCHAR, Properties of functions related to their rate of approximability by

rational fractions, Amer. Math. Soc . Transl. 91, 2 (1970), 99-128 .
15. C. HASTINGS, JR., "Approximations for Digital Computers," Princeton University

Press, Princeton, N . J . 1955.
16. G. MEINARDUS AND R . S . VARGA, Chebyshev rational approximation to certain entire

functions in [0, oo), J. Approximation Theory 3 (1970), 300-309.



RATIONAL APPROXIMATION 109

17. G. MEINARDUS, A . R. REDDY, G. D. TAYLOR, AND R . S . VARGA, Converse theorems
and extensions in Chebyshev rational approximation to certain entire functions in
[0, c,~,, ), Trans. Amer. Math . Soc . 170 (1972), 171-185.

18. D . J . NEWMAN, Rational approximation to e -5 , J. Approximation Theory 10 (1974),
301-303 .

19. A. R. REDDY, Addendum to "Converse Theorems and extensions in Chebyshev
rational approximation to certain entire function in [0, +oo)," Trans . Amer. Math .
Soc. 186 (1973), 499-502 .

20. A. R. REDDY, A contribution to rational Chebyshev approximation to certain entire
functions in [0, -r-oe), J. Approximation Theory 11 (1974), 85-96 .

21. A. R. REDDY, A note on rational Chebyshev approximation on the positive real axis,
J. Approximation Theory 11 (1974), 201-202 .

22. A. R. REDDY, A note on rational approximation [0, oo), J. Approximation Theory 13
(1975), 489-490.

23. A. R. REDDY, A note on rational approximation, Bull. London Math . Soc. 8 (1976),
41-43 .

24. A. R. REDDY, Rational Chebyshev approximation to certain entire functions of zero
order on the positive real axis (I1), Proc. Amer. Math . Soc . 54 (1976), 251-254.

25. A. R. REDDY, Rational Chebyshev approximation to certain entire functions of zero
order on the positive real axis, J. Approximation Theory 15 (1975), 206-208 .

26. A. R. REDDY, Some results in Chebyshev rational approximation, (submitted for
publication) .

27. A. R. REDDY, Recent advances in rational approximation, J. Approximation Theory,
(to appear) .

28. A . R. REDDY, On approximation by rational functions, J. Approximation Theory 16
(1976), 199-200 .

29. A. R. REDDY AND O . SHISHA, A class of rational approximations on the positive real
axis-A survey, J. Approximation Theory 12 (1974), 425-434 .

30. A . R. REDDY AND O . SHISHA, A characterization of entire functions E,', a,,.zk with all
a k

	

0, J. Approximation Theory 15 (1975), 83-84 .
31 . J. RoULIER AND G . D. TAYLOR, Rational Chebyshev approximation on [0, +oc), J.

Approximation Theory 11 (1974), 208-215 .
32. E. B. SAFE AND R . S . VARGA, Angular overconvergence for rational functions con-

verging geometrically on [0, oo), to appear in the proceedings of the Approximation
Theory Conference, Calgary, Alberta, Canada, August 11-13, 1975 .

33. A. SCH6NHAGE, Zur rationales approximierbarkiet von e-1 über [0, cc), J. Approxima-
tion Theory 7 (1973), 395-398 .

34. A . F. TIMAN, "Theory of Approximation of Functions of a Real Variable," Macmillan,
New York, 1963 .

35. G. VALTRON, "Theory of Integral Functions," Chelsea, New York, 1949 .
36. R . S . VARGA, Functional analysis and approximation theory in numerical analysis, In

"CBMS Regional Conference Series, No . 3," SIAM, Philadelphia, Pennsylvania, 1971 .
37. D . J. NEWMAN AND A. R. REDDY, Rational approximation, 111, J. Approximation

Theory, to appear .
38. D . J. NEWMAN AND A . R. REDDY, Rational approximation to I x I Al + xzm) on

(-x, +oo), J. Approximation Theory, to appear .
39. D . J. NEWMAN AND A. R. REDDY, Rational approximation of e-x on the positive real

axis, Pacific J. Math ., to appear.


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32

