SETS OF INDEPENDENT EDGES OF A HYPERGRAPH

By B. BOLLOBÁS, D. E. DAYKIN and P. ERDÖS

[Received 7 October 1974]

Given a set X and a natural number r denote by $X^{(r)}$ the set of r element subsets of X. An r-graph or hypergraph G is a pair (V, T), where V is a finite set and $T \subset V^{(r)}$. We call $v \in V$ a vertex of G and $\tau \in T$ an r-tuple or an edge of G. Thus a 1 -graph is a set V and a subset T of V. As the structure of 1-graphs is trivial, throughout the note we suppose $r \geqslant 2$. A 2 -graph is a graph in the sense of (5). The degree $\operatorname{deg} v$ of a vertex $v \in V$ is the number of r-tuples containing v. A set of pairwise disjoint r-tuples is said to be independent. We say $G^{\prime}=$ (V^{\prime}, T^{\prime}) is a subgraph of $G=(V, T)$ and write $G^{\prime} \subset G$ if $V^{\prime} \subset V$ and $T^{\prime} \subset T$. If $G=(V, T)$ and $v \in V$ then $G-v=\left(V^{\prime}, T^{\prime}\right)$, where $V^{\prime}=$ $V-\{v\}$ and $T^{\prime}=\{\tau \in T: v \notin \tau\}$. If X, Y are sets $|X|$ denotes the cardinality of X and $X-Y$ is the set theoretic difference of X and Y. An r-graph with p vertices and all $\binom{p}{r}$ possible r-tuples is denoted by K_{p}. Thus K_{p} is the complete graph with p vertices. Also \bar{K}_{p} is the graph with p vertices and no r-tuples.

Let $E_{r}(n, k)(0 \leqslant k \leqslant n)$ be an r-graph (V, T), where $|V|=n$ and $T=\left\{\tau \in V^{(r)}: \tau \cap W \neq \phi\right\}$ for some k-element subset W of V. (Thus adapting the notation of (5) to r-graphs, $E_{r}(n, k)=K_{k}+\bar{K}_{n-k}$.) Put

$$
e_{r}(n, k)=|T|=\binom{n}{r}-\binom{n-k}{r} .
$$

The graph $E_{r}(n, k)$ clearly does not contain $k+1$ independent r-tuples and it is maximal with this property if $n \geqslant(k+1) r$. Let us define another maximal r-graph with at most k independent r-tuples, $F_{r}(n, k)=$ (V_{1}, T_{1}). Let $\left|V_{1}\right|=n>k+r$, let W_{1} and R be disjoint subsets of $V_{1},\left|W_{1}\right|=k-1,|R|=r$, and let $v \in V_{1}-W_{1}-R$. Then the set of r-tuples of $F_{r}(n, k)$ is

$$
\begin{aligned}
& T_{1}=\left\{\tau \in V_{1}^{(r)}: \tau \cap W_{1} \neq \phi\right\} \cup\left\{\tau \in V_{1}^{(r)}: v \in \tau \text { and } \tau \cap R \neq\right. \\
&\phi\} \cup\{R\} .
\end{aligned}
$$

Quart. J. Math. Oxford (2), 21 (1976), 25-32

If $n \geqslant(k+1)$ then $F_{r}(n, k)$ is a maximal r-graph without $k+1$ independent r-tuples. Put

$$
\begin{aligned}
f_{r}(n, k) & =\left|T_{1}\right|=\binom{n}{r}-\binom{n-k}{r}-\binom{n-k-r}{r-1}+1 \\
& =e_{r}(n, k)-\binom{n-k-r}{r-1}+1
\end{aligned}
$$

It was proved by Erdös and Gallai [(3) theorem 4.1] that if a 2-graph G on $n[>(5 k+3) / 2]$ vertices has at least $e_{2}(n, k)$ edges and does not contain $k+1$ independent edges then G is exactly $E_{2}(n, k)$. This result was extended to r-graphs by Erdös (2) in the following form.

Given $r \geqslant 2$ there exists a constant c_{r} such that every r-graph with $n>c_{r} k$ vertices and $e_{r}(n, k)+1$ or more r-tuples contains $k+1$ independent r-tuples. The proof of this result is based on the corresponding theorem for $k=1$ and arbitrary r, proved by Erdös, Ko and Rado (4). It is conjectured in (2) that if an r-graph with $n \geqslant(k+1) r$ vertices contains more than

$$
\left.\max \left[(\underset{r}{(k+1) r-1}), e_{r}(n, k)\right)\right]
$$

r-tuples then it contains $k+1$ independent r-tuples. This conjecture is still open for all $r \leqslant 3$.

Sharpening the result of Erdös, Ko and Rado (4) it was proved by Hilton and Milner (7) that if an r-graph without 2 independent r-tuples has $n \geqslant 2 r$ vertices and $f_{r}(n, 1)+1$ or more r-tuples then it is a subgraph of $E_{r}(n, 1)$.

In this note we sharpen the result of Erdös (2) (and put it in a more explicit form) by extending the result of Hilton and Milner (7) for every $k \geqslant 1$ (Theorem 1), provided $n>2 r^{3} k$. Naturally the graph $F_{r}(n, k)$ shows that fewer r-tuples do not imply the assertion. An immediate consequence of Theorem 1 is an extension of a result of Hilton (6) concerning sets of independent r-tuples (Corollary 1).

The main aim of this note is to give another condition on an r-graph G that ensures $k+1$ independent r-tuples unless $G \subset E_{r}(n, k)$. Instead of requring a sufficient number of r-tuples, we require that the degree of each vertex be sufficiently large (Theorem 2).

The minimal degree in $E_{r}(n, k)$ is

$$
\binom{n-1}{r-1}-\binom{n-k-1}{r-1}=e_{r-1}(n-1, k)
$$

It follows from Theorem 2 that if in an r-graph G on $n\left[>2 r^{3}(k+2)\right]$
vertices the degree of every vertex is greater than the above then G contains $k+1$ independent r-tuples. The graph $E_{r}(n, k)$ shows that this condition on the degrees can not be weakened if we want to ensure the existence of $k+1$ independent r-tuples.

It is interesting to note that the graph $E_{r}(n, k)$ is also the unique solution of the following extremal problem. An r-graph H is said to be $(r+k)$-saturated if H is a maximal r-graph which does not contain a K_{r+k}. Then among $(r+k)$-saturated r-graphs on $n(\geqslant r+k)$ vertices $E_{r}(n, k)$ is the unique graph with the minimal number of r-tuples. This was proved by Bollobás in (1) using the method of weights.

In the proofs of our theorems, we shall make use of the following simple inequalities.

$$
\begin{align*}
& l\binom{m-1}{s-1} \geqslant\binom{ m}{s}-\binom{m-l}{s} \geqslant l\binom{m-l}{s-1} \\
& \quad \text { where } 1 \leqslant s \leqslant m-l \leqslant m \tag{1}\\
& \binom{m-l}{s} /\left(\frac{m}{s}\right) \geqslant\left(1-\frac{l}{m-s}\right)^{s} \geqslant 1-\frac{s l}{m-s}, \\
& \text { where } 0 \leqslant \delta<m-l \leqslant m \tag{2}
\end{align*}
$$

[The second inequality of (2) follows from $(1-x)^{s} \geqslant 1-s x$ if $0 \leqslant x<$ 1.]

We shall also make use of the following simple lemma whose proof we omit [cf. the proof in (2)].

Lemma 1. Let $G=(V, T)$ be an r-graph on n vertices containing at most $p \geqslant 1$ independent r-tuples.
(a) If $u \in V$ and $G-u$ contains p independent r-tuples then

$$
\operatorname{deg} u \leqslant\binom{ n-1}{r-1}-\binom{n-1-r p}{r-1} \leqslant r p\binom{n-2}{r-2} .
$$

(b) There is a vertex v in G such that

$$
\operatorname{deg} v \geqslant \frac{|T|}{r p}
$$

Theorem 1. Let $G=(V, T)$ be an r-graph with

$$
r \geqslant 2, k \geqslant 1,|V|=n>2 r^{3} k \text { and }|T|>f_{r}(n, k)
$$

Suppose G contains at most k independent r-tuples. Then $G \subset E_{r}(n, k)$; in other words there exists $W \subset V$ with $|W|=k$ such that every r-tuple of G intersects W.

Proof. For $k=1$ this was proved by Hilton and Milner (7), so suppose $k>1$ and that the result holds for smaller values of k.

Suppose first that there is a vertex $u \in V$ such that $G-u$ has at most $k-1$ independent r-tuples. As

$$
\begin{aligned}
|T|-\operatorname{deg} u>f_{r}(n, k)-\operatorname{deg} u \geqslant f_{r}(n, k)-\binom{n-1}{r-1} & = \\
& f_{r}(n-1, k-1),
\end{aligned}
$$

the induction hypothesis implies that $G-u \subset E_{r}(n-1, k-1)$ and so $G \subset E_{r}(n, k)$.
Suppose now that $G-u$ has k independent r-tuples for every vertex $u \in V$.

The two parts of Lemma 1 imply that if G is not a subgraph of $E_{r}(n, k)$ then

$$
\begin{equation*}
\frac{|T|}{r k} \leqslant r k\binom{n-2}{r-2} . \tag{3}
\end{equation*}
$$

By (1) we have

$$
|T|>f_{r}(n, k) \geqslant k\binom{n-k}{r-1}-\binom{n-k-r}{r-1}+1>(k+1)\binom{n-k}{r-1},
$$

and it follows from (3) and (2) that

$$
(r k)^{2} \geqslant \frac{(k-1)(n-k)}{r-1}\left\{1-\frac{(r-2)(k-1)}{n-r}\right\} .
$$

Routine calculations show that this contradicts the assumption $2 r^{3} k<n$, and the proof is complete.

Lemma 2. Let $F=(V, T)$ be an r-graph with

$$
r \geqslant 2, k \geqslant 2,|V|=n>2 r^{3}(k-1) \text { and }|T| \geqslant f_{r}(n, k-1) .
$$

Suppose every r-tuple of F meets a set W having $|W|=k-1$. Let τ be an r-tuple which does not meet W. Then the r-graph $F \cup \tau$ has k independent r-tuples.

Proof. The number of r-tuples of F which meet τ is at most

$$
h=\binom{n}{r}-\binom{n-r}{r}-\binom{n-k+1}{r}+\binom{n-r-k+1}{r} .
$$

The case $k=2$ follows because $h<f_{r}(n, k-1)$, so we assume $k \geqslant 3$. The number h^{\prime} of r-tuples of $F-\tau$ satisfies

$$
h^{\prime} \geqslant f_{r}(n, k-1)-h=1+e_{r}(n-r, k-2)>f_{r}(n-r, k-2) .
$$

If $F-\tau$ has $k-1$ independent r-tuples then those together with τ give the desired result. Suppose on the other hand $F-\tau$ has at most $k-2$ independent r-tuples. Then by Theorem 1 we know $F-\tau \subset E_{r}(n-r$, $k-2)$ so $h^{\prime} \leqslant e_{r}(n-r, k-2)$. This contradiction completes the proof.

To formulate the next result let us recall a definition of Hilton (6). We say that an r-graph G contains a simultaneously independent k-sets if there are $s k$ of the r-tuples that can be partitioned into s classes, such that each class contains k independent r-tuples.

Corollary 1. Let $G=(V, T)$ be an r-graph with

$$
r \geqslant 2, k \geqslant 2,|V|=n>2 r^{3}(k-1)
$$

and

$$
|T| \geqslant f_{r}(n, k-1)+(s+1) k-1
$$

Suppose G has at most s simultaneously independent k-sets. Then there are s of the r-tuples of G such that the r-graph obtained from G by omitting these r-tuples is a subgraph of an $E_{r}(n, k-1)$.

Proof. Let p be the largest integer for which G has p simultaneously independent k-sets and let S denote such a family. If $G^{\prime}=\left(V, T^{\prime}\right)$ where $T^{\prime}=T-S$ then by definition of p there are at most $k-1$ independent r-tuples in G^{\prime}. Since

$$
\left|T^{\prime}\right|=|T|-p k \geqslant f_{r}(n, k-1)+k-1
$$

by Theorem 1 there is a set W with $|W|=k-1$ such that every r-tuple of G^{\prime} meets W. Now each class of S must contain an r-tuple which fails to meet W, but suppose some class C contained two such r-tuples τ and σ. Then Lemma 2 shows that $G^{\prime} \cup \tau$ has k independent r-tuples and we will denote them by C_{1}. If we omit C_{1} from $G^{\prime} \cup \tau$ and adjoin σ we can again apply the lemma to get a second set C_{2} of k independent r-tuples. However replacing C in S by C_{1} and C_{2} contradicts the definition of p. Thus we have shown that each class of S contains exactly one r-tuple which fails to intersect W and omitting these r-tuples from G produces a subgraph of $E_{r}(n, k-1)$.

It is likely that a somewhat more careful proof would show that the same assertion holds if we require only that $|T| \geqslant f_{r}(n, k-1)+s$.

For the next theorem and its corollary notice that

$$
\binom{n-1}{r-1}-\binom{n-k}{r-1}
$$

is the minimum degree in $E_{r}(n, k-1)$.

Theorem 2. Let $G=(V, T)$ be an r-graph with

$$
r \geqslant 2, k \geqslant 1 \text { and }|V|=n>2 r^{3}(k+2)
$$

Suppose G contains at most k independent r-tuples. If

$$
\operatorname{deg} v>d=d_{r}(n, k)=\binom{n-1}{r-1}-\binom{n-k}{r-1}+\frac{r^{3}}{n-k+1}\binom{n-k-1}{r-2}
$$

for every $v \in V$ then $G \subset E_{r}(n, k)$.
Proof. We shall prove the theorem by induction on k. Suppose first that $k=1$. By Lemma 1b there is a vertex v such that

$$
\operatorname{deg} v>|T| / r>n d / r^{2}=r\binom{n-2}{r-2}
$$

Let $H=G-v$. Then H can not have an r-tuple since otherwise Lemma la contradicts the previous inequality. Thus every r-tuple of G contains v and so $G \subset E_{r}(n, 1)$.

Suppose now that $k>1$ and the result holds for smaller values of k. As in the case $k=1$, Lemma lb implies that there exists a vertex v such that

$$
\begin{equation*}
\operatorname{deg} v>\frac{|T|}{r k}>\frac{n d}{r^{2} k} \tag{4}
\end{equation*}
$$

Put $H=G-v$. Then

$$
\operatorname{deg}_{\mathrm{H}} u \geqslant \operatorname{deg}_{\mathrm{G}} u-\binom{n-2}{r-2}>d_{r}(n, k)-\binom{n-2}{r-2}=d_{r}(n-1, k-1)
$$

for every vertex u of H.
If H contains at most $k-1$ independent r-tuples, the induction hypothesis implies that there is a set W with $|W|=k-1$ such that every r-tuple in H meets W. Hence in this case every r-tuple of G meets $W \cup\{v\}$ and $|W \cup\{v\}|=k$.

Thus we can assume without loss of generality that H contains k independent r-tuples. Then by Lemma la we have

$$
\operatorname{deg} v<r k\binom{n-2}{r-2}
$$

Consequently (4) gives

$$
\frac{r^{3} k^{2}}{n}\binom{n-2}{r-2}>d>\binom{n-1}{r-1}-\binom{n-k}{r-1}
$$

Thus (1) implies

$$
\frac{r^{3} k^{2}}{n}\binom{n-2}{r-2}>(k-1)\binom{n-k}{r-2}
$$

and so by (2)

$$
\frac{1}{2}>\frac{r^{3} k^{2}}{n(k-1)}>\binom{n-k}{r-2} /\binom{n-2}{r-2} \geqslant 1-\frac{(r-2)(k-2)}{n-r}
$$

This contradicts our assumption on n, so the theorem is proved.
Notice that the number of r-tuples in G guaranteed by the condition on the degrees is less than $f_{r}(n, k)$ so Theorem 2 does not follow directly from Theorem 1.

Corollary 2. Let $G=(V, T)$ be an r-graph with

$$
r \geqslant 2, k \geqslant 2 \text { and }|V|=n>2 r^{3}(k+1)
$$

Suppose that

$$
1<s \leqslant \frac{1}{2}\binom{n-k}{r-2}
$$

and

$$
\operatorname{deg} v>\binom{n-1}{r-1}+\frac{r k(s-1)}{n-k+1}
$$

for every $v \in V$. Then G has s simultaneously independent k-sets.
Proof. Let p be the largest integer for which G has p simultaneously independent k-sets and let S denote such a family. We assume $p<s$ and obtain a contradiction. If $G^{\prime}=\left(V, T^{\prime}\right)$ where $T^{\prime}=T-S$ then there are at most $k-1$ independent r-tuples in G^{\prime}, and for every $v \in V$

$$
\operatorname{deg}_{G^{\prime}} v \geqslant \operatorname{deg}_{G} v-p>d_{r}(n, k-1)
$$

Hence by Theorem 2 there is a set W with $|W|=k-1$ such that every r-tuple of G^{\prime} meets W. Clearly

$$
\operatorname{deg}_{G^{\prime}} z \geqslant\binom{ n-1}{r-1}-\binom{n-k}{r-1}
$$

for every $z \in V-W$, but there is at least one $z_{0} \in V-W$ for which

$$
\operatorname{deg}_{G} z_{0} \leqslant \operatorname{deg}_{G^{\prime}} z_{0}+\frac{r k p}{n-k+1}
$$

contradicting our hypothesis about $\operatorname{deg} v$.
c

It is easily seen that the restrictions on the parameters in Theorem 2 and Corollary 2 can be weakened by proving a more accurate result for $k=2$.

We are grateful to Dr. A. J. W. Hilton for drawing our attention to (6).

REFERENCES

1. B. Bollobás, 'On generalised graphs', Acta Math. Acad. Sci. Hung. 16 (1965) 447-452.
2. P. Erdös, 'A problem of independent r-tuples', Annales Univ. Budapest 8 (1965) 93-5.
3. P. Erdös and T. Gallai, 'On the maximal paths and circuits of graphs', Acta Math. Acad. Sci. Hung. 10 (1959) 337-57.
4. P. Erdös, Chao Ko and R. Rado, 'Intersection theorems for systems of finite sets', Quart. J. Math., Oxford (12) (1961) 313-20.
5. F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
6. A. J. W. Hilton, 'Simultaneously independent k-sets of edges of a hypergraph (to appear).
7. A. J. W. Hilton and E. C. Milner, 'Some intersection theorems for systems of finite sets', Quart. J. Math., Oxford (2), 18 (1967) 369-84.

University of Cambridge
University of Reading
University of Wisconsin, Madison

