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GIVEN a set X and a natural number r denote by X(r) the set of r-
element subsets of X. An r-graph or hypergraph G is a pair (V, T),
where V is a finite set and T c V(r) . We call v E V a vertex of G and
z c- T an r-tuple or an edge of G . Thus a 1-graph is a set V and a subset
T of V. As the structure of 1-graphs is trivial, throughout the note
we suppose r > 2. A 2-graph is a graph in the sense of (5) . The degree
deg v of a vertex v c- V is the number of r-tuples containing v . A set
of pairwise disjoint r-tuples is said to be independent . We say G' =
(V', T') is a subgraph of G = (V, T) and write G' c G if V' c V and
T' c T. If 0 = (V, T) and v E V then G - v = (V', T'), where V' =
V - {v} and T' = {z E T : v 0 r} . If X, Y are sets IX I denotes the
cardinality of X and X - Y is the set theoretic difference ofX and Y.
An r-graph with p vertices and all (p) possible r-tuples is denoted by
Kp . Thus Kp is the complete graph with p vertices. Also Kp is the
graph with p vertices and no r-tuples .

Let Er(n, k) (0 < k G n) be an r-graph (V, T), where I VI = n and
T = {z E V (r) : z n W :A 0 } for some k-element subset W of V. (Thus
adapting the notation of (5) to r-graphs, Er(n, k) = Kk+gn-k .) Put

e r (n, k) = ITI =
(r

)
-

Cn

r k)
.

The graph Er(n, k) clearly does not contain k+1 independent r-tuples
and it is maximal with this property if n > (k + 1)r. Let us define another
maximal r-graph with at most k independent r-tuples, Fr(n, k) =
(Vi, T1 ) . Let IV, = n > k+r, let W1 and R be disjoint subsets of
V 1 , I W1I = k-1, IRI = r, and let v E V1- W1-R . Then the set of
r-tuples of Fr(n, k) is

T1 = {,C EVm :ti n W1 ~ 0} u {ze V (r) :vezand-rnR ~
0} v {R} .
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If n > (k + 1) then F,(n, k) is a maximal r-graph without k + 1 inde-
pendent r-tuples . Put

fr(n,
k) =

I T11
=

C7/ - Cn r
kl -

Cn r
k i rl + 1

n-k-r
= er(n~ k) - C r-1

	

+ 1 .

It was proved by Erdös and Gallai [(3) theorem 4 .1] that if a 2-graph
G on n[> (5k+3)/2] vertices has at least e2(n, k) edges and does not
contain k+1 independent edges then G is exactly E2(n, k) . This result
was extended to r-graphs by Erdös (2) in the following form .

Given r > 2 there exists a constant c r such that every r-graph with
n > crk vertices and er(n, k) + 1 or more r-tuples contains k + 1 in-
dependent r-tuples . The proof of this result is based on the correspond-
ing theorem for k = 1 and arbitrary r, proved by Erdös, Ko and Rado
(4) . It is conjectured in (2) that if an r-graph with n > (k+ 1)r vertices
contains more than

max [((k+ ))r-1) er(rG, k))]

r-tuples then it contains k+1 independent r-tuples . This conjecture is
still open for all r G 3 .

Sharpening the result of Erdös, Ko and Rado (4) it was proved by
Hilton and Milner (7) that if an r-graph without 2 independent r-tuples
has n > 2r vertices and fr(n, 1) + I or more r-tuples then it is a sub-
graph of Er(n, 1) .

In this note we sharpen the result of Erdös (2) (and put it in a more
explicit form) by extending the result of Hilton and Milner (7)
for every k > 1 (Theorem 1), provided n > 2r3k . Naturally the graph
Fr(n, k) shows that fewer r-tuples do not imply the assertion . An
immediate consequence of Theorem 1 is an extension of a result of
Hilton (6) concerning sets of independent r-tuples (Corollary 1) .

The main aim of this note is to give another condition on an r-graph
G that ensures k+1 independent r-tuples unless G c Er(n, k) . Instead
of requring a sufficient number of r-tuples, we require that the degree of
each vertex be sufficiently large (Theorem 2) .

The minimal degree in Er(n, k) is

(n-11

(n-k-1
e,-,(n - 1, k) .

It follows from Theorem 2 that if in an r-graph G on n[> 2r3 (k+2)]
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vertices the degree of every vertex is greater than the above then G
contains k+ 1 independent r-tuples . The graph Er (n, k) shows that this
condition on the degrees can not be weakened if we want to ensure the
existence of k + 1 independent r-tuples .

It is interesting to note that the graph Er(n, k) is also the unique
solution of the following extremal problem . An r-graph H is said to be
(r + k)-saturated if H is a maximal r-graph which does not contain a
Kr+k . Then among (r + k)-saturated r-graphs on n( > r + k) vertices
E r(n, k) is the unique graph with the minimal number of r-tuples . This
was proved by Bollobas in (1) using the method of weights .

In the proofs of our theorems, we shall make use of the following
simple inequalities .

l (m8

	

8-1) (m) - (m8 l)
l ( 8-1) ,

where 1 < s < m-l < m . (1)

(M13 1)/(s ) C1- m
	 l

s)8
1- msl s

where 0 < 6 < m-l < m . (2)

[The second inequality of (2) follows from (1-x)s > 1-sx if 0 <x <
1 .]
We shall also make use of the following simple lemma whose proof

we omit [cf. the proof in (2)] .

LEMMA 1 . Let G = (V, T) be an r-graph on n vertices containing at
most p > 1 independent r-tuples .

(a) If u c V and G-u contains p independent r-tuples then

n-1

	

n-1-rp

	

n-2
degu < (r-1) - ( r-1 ) <rpCr-2) .

(b) There is a vertex v in G such that

deg v > ITI .
rp

THEOREM 1. Let G = (V, T) be an r-graph with

r > 2, k > 1, I V I = n > 2r3k and ITI > fr(n, k) .

Suppose G contains at most k independent r-tuples . Then G e E,(n, k) ;
in other words there exists W e V with I W I = k such that every r-tuple of
G intersects W .
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Proof. For k = 1 this was proved by Hilton and Milner (7), so suppose
k > 1 and that the result holds for smaller values of k .

Suppose first that there is a vertex u c V such that G - u has at most
k -1 independent r-tuples . As

T -deg u> fr(n k) -deg u> f,(n, k) -
n-1
(r- 1_

f,-(n-1, k-1),

the induction hypothesis implies that G-u c Er(n-1, k-1) and so
G c Er(n, k) .
Suppose now that G - u has k independent r-tuples for every vertex

uCV.
The two parts of Lemma 1 imply that if G is not a subgraph of

Er(n, k) then

kI Srk (r-2)'
By (1) we have

ITI > fr(n, k) > k (r-1) - (nr kl r) +1 > (k+1) (r-1) ,

and it follows from (3) and (2) that

(rk)2 > (k - 1)(n - k)
~I

- (r - 2)(k - 1))
r-1

	

n-r

Routine calculations show that this contradicts the assumption
2r 3k < n, and the proof is complete .

LEMMA 2. Let F = (V, T) be an r-graph with

r >2,k >2, IVI = n > 2r 3(k-1) and ITI >,fr(n, k-1) .

Suppose every r-tuple of F meets a set W having I W I = k -1 . Let i be an
r-tuple which does not meet W . Then the r-graph F u i has k independent
r-tuples .

Proof. The number of r-tuples of F which meet r is at most

h-(r)-(n-r)-(n-k+l)+(n-rYk+l)

The case k = 2 follows because h < fr (n, k-1), so we assume k > 3 .
The number h' of r-tuples of F - i satisfies

h' >fr(n, k-1)-h = l+e r(n-r, Ic-2) > fr(n-r, k-2) .

(3)



and
ITI > fr(n, k-1)+(s+l)k-1 .

Suppose G has at most s simultaneously independent k-sets . Then there
are s of the r-tuples of G such that the r-graph obtained from G by omitting
these r-tuples is a subgraph of an E r (n, k -1) .

Proof. Let p be the largest integer for which G has p simultaneously
independent k-sets and let S denote such a family . If G' _ (V, T')
where T' = T - S then by definition of p there are at most k -1
independent r-tuples in G' . Since

IT'I = ITI -pk > fr(n, k-1)+k-1,
by Theorem 1 there is a set W with I W I = k -1 such that every r-tuple
of G' meets W. Now each class of S must contain an r-tuple which fails
to meet W, but suppose some class C contained two such r-tuples T and
v. Then Lemma 2 shows that G' v i has k independent r-tuples and we
will denote them by C1 . If we omit Cl from G' v i and adjoin a we can
again apply the lemma to get a second set C2 of k independent r-tuples .
However replacing C in S by Cl and C2 contradicts the definition of p .
Thus we have shown that each class of S contains exactly one r-tuple
which fails to intersect W and omitting these r-tuples from G produces
a subgraph of E, (n, k -1) .

It is likely that a somewhat more careful proof would show that the
same assertion holds if we require only that IT I > f ,(n, k -1) + s .

For the next theorem and its corollary notice that

(r -1) - (r -1)

is the minimum degree in E,(n, k-1) .
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If F - ,c has k -1 independent r-tuples then those together with i give
the desired result. Suppose on the other hand F - ,r has at most k - 2
independent r-tuples. Then by Theorem 1 we know F - c c E,,(n - r,
k - 2) so h' ` e r(n - r, k - 2) . This contradiction completes the proof.

To formulate the next result let us recall a definition of Hilton (6) .
We say that an r-graph G contains a simultaneously independent k-sets
if there are sk of the r-tuples that can be partitioned into s classes, such
that each class contains k independent r-tuples .

COROLLARY 1 . Let G = (V, T) be an r-graph with

r > 2, k a 2, IVI = n > 2r3(k-1)
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THEOREM 2 . Let G = (V, T) be an r-graph with

r > 2, k > 1 and I VI = n > 2r3(k+2) .

Suppose G contains at most k independent r-tuples . If

degv >d=dr(n,k)= n-1

	

n-k
(r-1)-(r-1)+n-k

	 r3
+l(

n-k-1
r-2 )

for every v c V then G C: Er(n, k) .

Proof. We shall prove the theorem by induction on k. Suppose first
that k = 1 . By Lemma lb there is a vertex v such that

Consequently (4) gives

deg v > I T
I
/r > nd/r 2 =

r (n-2)
r-2

Let H = G - v. Then H can not have an r-tuple since otherwise
Lemma la contradicts the previous inequality . Thus every r-tuple of
G contains v and so G c Er(n, 1) .

Suppose now that k > 1 and the result holds for smaller values of k .
As in the case k = 1, Lemma lb implies that there exists a vertex v such
that

Put H = G - v . Then

deg v > ITI >
nd

.

	

(4)
rk

	

r2k

degHu >degGU- (r-2) > dr(n,k)- (r-2) = dr(n-1,k-1)

for every vertex u of H .
If H contains at most k -1 independent r-tuples, the induction

hypothesis implies that there is a set W with I W I = k-1 such that
every r-tuple in H meets W . Hence in this case every r-tuple of G meets
Wv{v} and IWv{v}I =k.
Thus we can assume without loss of generality that H contains k

independent r-tuples . Then by Lemma la we have

deg v S rk
(

n-2)
r-2

r3k2 (n-2) > d > (n-1) - (n-k
n r-2

	

r-1

r-1)



I

	

r3k2

	

(r-2)/(r-2)
n-kn-2 > 1 (r-2)(k-2)>	 >

	

-	
n(k-1)

	

n-r

This contradicts our assumption on n, so the theorem is proved .
Notice that the number of r-tuples in G guaranteed by the condition

on the degrees is less than fr (n, k) so Theorem 2 does not follow directly
from Theorem 1 .

COROLLARY 2 . Let G = (V, T) be an r-graph with

r > 2, k> 2 and I VI = n> 2r3(k+1) .

Suppose that

and

c

Thus (1) implies

and so by (2)

ON HYPERGRAPHS

r 3k 2
(
n-2

	

n-k> (k-1)

	

,
n r-2

	

r-2

1 G s C z- ín
r
-k
-2

deg v > n-1 + rk(s-1)
(r-1) n-k+1

for every v e V. Then G has s simultaneously independent k-sets .

Proof. Let p be the largest integer for which G has p simultaneously
independent k-sets and let S denote such a family . We assume p < s
and obtain a contradiction . If G' _ (V, T') where T' = T-S then
there are at most k -1 independent r-tuples in G', and for every v e V

degG , v >, degG v-p > dr(n, k-1) .

Hence by Theorem 2 there is a set W with I WI = k-1 such that every
r-tuple of G' meets W. Clearly

degG , z > (r n-1

	

n-k
-1) - (r -1)

for every z e V - W, but there is at least one ze e V - W for which

rkpdegG zo G degG , zo+

contradicting our hypothesis about deg v.

n-k+1

31
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It is easily seen that the restrictions on the parameters in Theorem 2
and Corollary 2 can be weakened by proving a more accurate result for
k=2.

We are grateful to Dr . A. J. W. Hilton for drawing our attention to
(6) .
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