SOME PROBLEMS AND RESULTS ON THE IRRATIONALITY OF THE SUM OF INFINITE SERIES

by P. Erdös

It is usually extremely difficult to decide whether the sum of a convergent infinite series is irrational or not. $\sum_{n=1}^{\infty} \frac{1}{n^{2 k}}$ was proved by Euler to be a polynomial in π and is thus transcendental, but $\sum_{k=1}^{\infty} \frac{1}{n^{3}}$ seems intractable.

The situation is a little better if the series converges very fast. I proved that if $n_{k}^{1 / 2^{k}} \rightarrow \infty$ then $\sum_{n=1}^{\infty} \frac{1}{n_{k}}$ is irrational, Straus and I [1] proved the following theorem which is somewhat deeper:

Let $\lim \sup n_{k}^{2} / n_{k+1} \leqslant 1$ and further assume that

$$
\begin{equation*}
\lim \sup \frac{N_{k}}{n_{k+1}}\left(\frac{n_{k+1}^{z}}{n_{k+2}}-1\right) \leqslant 0 \tag{1}
\end{equation*}
$$

then $\sum_{n+1}^{\infty} \frac{1}{n_{k}}$ is irrational except if $n_{k+1}=n_{k}^{2}-n_{k}+1$ for all $k \geqslant k_{0}$ where N_{k} is the least common multiple of n_{1}, \ldots, n_{k}. It is possible that our theorem remains true without the assumption (1) but we have not been able to prove this.

In this paper I prove the following:
ThEOREM 1 Let $n_{1}<n_{2}<\ldots$ be an infinite sequence of integers satisfying

$$
\begin{equation*}
\lim _{k=\infty} \sup n_{k}^{1 / 2^{k}}=\infty \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{k}>k^{1+\epsilon} \tag{3}
\end{equation*}
$$

for some fixed $\epsilon>0$ and $k>k_{0}(\epsilon)$. Then

$$
\alpha=\sum_{k=1}^{\infty} \frac{1}{n_{k}}
$$

is irrational.
The proof will not be entirely trivial. Theorem 2 is much simpler.
Theorem 2 Assume that (3) holds and that for every t

$$
\begin{equation*}
\lim _{k=\infty} \sup n_{k}^{1 / t^{k}}=\infty \tag{4}
\end{equation*}
$$

Then α is a Liouville number.
It is easy to see that Theorem 1 is best possible. It is well known and easy to see that for every A there is a sequence n_{k} satisfying $n_{k}>A^{2^{k}}$ for every $k>0$ but $\sum_{k=1}^{\infty} \frac{1}{n_{k}}$ is rational. (3) is also best possible. Let

$$
f(k) \rightarrow \infty, \quad \log f(k) / \log k \rightarrow 0
$$

There is a sequence n_{k} satisfying (2) and $n_{k}>k f(k)$ for all k; but $\sum_{k=1}^{\infty} \frac{1}{n_{k}}$ is rational. We leave the details to the reader.
$\sum_{k=1}^{\infty} \frac{1}{2^{t^{k}}}$ is not a Liouville number, thus (4) is best possible; but I think if (4) holds then a much weaker condition than (3) will ensure that α is a Liouville number, but I have not yet succeeded in clearing this matter up.

Before I prove the Theorems, I state a few unsolved problems. Let $n_{1}<n_{2}<\ldots, \lim \sup n_{k} / k=\infty$. Is it true that $\sum_{k=1}^{\infty} \frac{n_{k}}{2^{n_{k}}}$ is irrational? I cannot prove this even if $n_{k+1}-n_{k} \rightarrow \infty$ is assumed, but I have no counterexample if we only assume that $\lim \sup \left(n_{k+1}-n_{k}\right)=\infty$. In other words I have no example of a series $\sum_{k=1}^{\infty} \frac{n_{k}}{2^{n_{k}}}$ whose sum is rational, but $\lim \sup \left(n_{k+1}-n_{k}\right)=\infty$. I would guess that such a series exists.

Is it true that for every integer a there is a finite sequence of integers $a<m_{1}<\ldots<m_{k}$ for which

$$
\frac{a}{2^{a}}=\sum_{i=1}^{k} \frac{m_{i}}{2^{m_{i}}} ?
$$

Let $n_{1} \leqslant n_{2} \leqslant \ldots, n_{k} \rightarrow \infty, d(n)$ denotes the number of divisors of n. Straus and I proved that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{d(k)}{M_{k}}, \quad M_{k}=\prod_{i=1}^{k} n_{i} \tag{5}
\end{equation*}
$$

is irrational [2]. Very likely $n_{k} \rightarrow \infty$ (without assuming monotonicity) suffices for the irrationality of (5). I find it frustrating that I cannot prove the irrationality of $\sum_{n=2}^{\infty} \frac{1}{n!-1}$. For further problems see [3].

Obviously $\sum_{n=0}^{\infty} \frac{1}{(n+2) n!}=1$. This led Straus and me to the following question: A sequence $n_{1}<n_{2}<\ldots$ is said to have property P if for every
$m_{k}>0, m_{k} \equiv 0\left(\bmod n_{k}\right) \sum_{k=1}^{\infty} \frac{1}{m_{k}}$ is irrational. In particular we wondered if $n_{k}=2^{2 k}$ has property P. I will prove this conjecture. By the way property P is only interesting if $\lim n_{k}^{1 / 2^{k}}<\infty$ and in fact I cannot prove that such a sequence with property P exists if $\left(n_{i}, n_{j}\right)=1$ is also assumed. I do not know if there is a sequence n_{k} with property P for which n_{k} does not tend to infinity very fast.

To prove our Theorems we first need the following simple lemma:
Lemma. Let $n_{1}<\ldots$ satisfy (3) for every k. Then

$$
\sum_{i=1}^{\infty} \frac{1}{n_{k+i}}<\frac{c_{t}}{n_{k+1}^{6 / 1+i}} .
$$

The proof is very easy. First of all it is clear from (3) that the number of $n_{t}<x$ is at most $x^{1 / 1+t}$; thus from (3) we easily obtain

$$
\sum_{i=1}^{\infty} \frac{1}{n_{k+i}}<\frac{1}{n_{k+1}} n_{k+1}^{1 / 1+\epsilon}+\sum_{T>n_{k+1}^{1 / 1+\epsilon}} \frac{1}{T^{1+\epsilon}}<\frac{c_{\epsilon}}{n_{k+1}^{\prime!/+\epsilon}}
$$

which proves the Lemma.
Our Lemma almost immediately implies Theorem 2. To prove that α is a Liouville number it suffices to show that for every s there is a k so that

To prove (6) let $t=t(\epsilon, s)$ be sufficiently large and choose k such that

$$
\begin{equation*}
n_{k+1}^{1 / /^{k+1}}>n_{j}^{1 / t^{j}} \quad \text { for every } j \leqslant k \tag{7}
\end{equation*}
$$

Such a k exists by (4). Thus by (7)

$$
\begin{equation*}
M_{k}<n_{k+1}^{1 / t-1} \tag{8}
\end{equation*}
$$

(8) and our Lemma immediately give (6) for sufficiently large t which proves Theorem 2.

The proof of Theorem 1 will be more complicated. First of all assume that for every l there is a k so that

$$
\begin{equation*}
n_{k+1}>M_{k}^{l} \tag{9}
\end{equation*}
$$

(9) easily implies the irrationality of $\alpha=\sum_{i=1}^{\infty} \frac{1}{n_{i}}$. Assume $\alpha=\frac{a}{b}$. Multiply both sides by $b M_{k}$. We obtain that $b M_{k} \sum_{i=1}^{\infty} \frac{1}{n_{k+i}}$ is a positive integer and therefore $\geqslant 1$. From (9) and Lemma 1 we thus obtain

$$
b n_{k+1}^{1 / 2} n_{k+1}^{-6 / 1+\epsilon} \geqslant 1
$$

which is clearly false for $l>\frac{1+\epsilon}{\epsilon}$ and sufficiently large k. This contradiction proves the irrationality of α.

Henceforth we can assume that there is an l so that for every k

$$
\begin{equation*}
n_{k+1}<M_{k}^{\prime} \tag{10}
\end{equation*}
$$

(10) implies by induction that for every k

$$
\begin{equation*}
n_{k}<2^{(l+1)^{k}} \tag{11}
\end{equation*}
$$

To prove Theorem 1 we now distinguish two cases. Assume first that for every $k>k_{0}$

$$
\begin{equation*}
n_{k}>2^{k} \tag{12}
\end{equation*}
$$

(12) implies $\sum_{n_{k}<x} 1<\frac{\log x}{\log 2}+0(1)$. Thus by the same argument as used in the proof of our Lemma we obtain that (12) implies that for some absolute constant c and every k

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{1}{n_{k+i}}<\frac{c \log n_{k}}{n_{k}} . \tag{13}
\end{equation*}
$$

Put $n_{k}^{1 / 2^{k}}=L_{k}$. By (1) $\lim _{k=\infty} \sup L_{k}=\infty$. Thus it is easy to see that for infinitely many k

$$
\begin{equation*}
L_{k+1}>\left(1+\frac{1}{k^{2}}\right) \max _{1<j<k} L_{J} . \tag{14}
\end{equation*}
$$

If (14) would hold for only a finite number of values of k let k_{0} be the largest such k and then for every $r>k_{0}$

$$
L_{r} \leqslant \max _{1<k \leqslant k_{0}} L_{k} \prod_{k \leqslant k_{0}}\left(1+\frac{1}{k^{2}}\right)<c
$$

which contradicts (1). As far as I know this simple and useful idea was first used by Borel, but I cannot give an exact reference.
(11) and (14) easily imply the irrationality of α. Assume $\alpha=\frac{a}{b}$ and let k satisfy (14) and be sufficiently large. As before we obtain that

$$
\begin{equation*}
b M_{k} \sum_{i=1}^{\infty} \frac{1}{n_{k+i}} \geqslant 1 \tag{15}
\end{equation*}
$$

Thus by (13) and (15)

$$
\begin{equation*}
b c M_{k} \frac{\log n_{k+1}}{n_{k+1}} \geqslant 1 \tag{16}
\end{equation*}
$$

By (14)

$$
\begin{equation*}
n_{k+1}>M_{k}\left(1+\frac{1}{k^{2}}\right)^{2^{k+1}} \tag{17}
\end{equation*}
$$

Thus from (16) and (17)

$$
n_{k+1}>\exp \left[\left.\left(1+\frac{1}{k^{2}}\right)^{2^{k}} \right\rvert\, b c\right]
$$

which contradicts (11) for sufficiently large $k>k_{0}(l)$; hence α is irrational.
Thus finally we can assume that for infinitely many k

$$
\begin{equation*}
n_{k} \leqslant 2^{k} . \tag{18}
\end{equation*}
$$

As in the previous cases to prove the irrationality of α we show that

$$
\begin{equation*}
\lim _{k=\infty} \inf M_{k} \sum_{i=1}^{\infty} \frac{1}{n_{k+i}}=0 . \tag{19}
\end{equation*}
$$

To prove (19) we shall show that for every $\epsilon>0$ there is a $k=k$, so that

$$
\begin{equation*}
M_{k} \sum_{i=1}^{\infty} \frac{1}{n_{k+i}}<\epsilon . \tag{20}
\end{equation*}
$$

To prove (20) we will use (18), (10), (11) and (2). Let $A=A(\epsilon)$ be sufficiently large and let k_{1} be the smallest integer for which

$$
\begin{equation*}
L_{k_{1}}>\max _{k<k_{1}} L_{k}>A\left(L_{k}=n_{k}^{1 / 2^{k}}\right) \tag{21}
\end{equation*}
$$

By (2) such a k exists. From our Lemma we have

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{1}{n_{k_{1}+i}}<\frac{1}{n_{k_{1}}^{\ell / 1+\epsilon}}<\frac{1}{\left(\boldsymbol{A}^{\ell / 1+\epsilon}\right)^{2^{k}}} \tag{22}
\end{equation*}
$$

Let k_{2} be the greatest integer not exceeding k_{1} satisfying (18). By our assumption such a k_{2} exists. From (13) and (22) we have for every $k_{2}<k<k_{1}$

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{1}{n_{k+1}}<\frac{c \log n_{k+1}}{n_{k+1}}+\frac{1}{n_{k_{1}}^{0 / 1+\epsilon}} . \tag{23}
\end{equation*}
$$

Observe that $n_{k_{1}}^{1 / 2^{k_{2}}} \rightarrow 1, n_{k_{1}}^{1 / 2^{k_{1}} \rightarrow \infty}$. Thus as in (14) there is a $k_{2} \leqslant k \leqslant k_{1}$ for which

$$
\begin{equation*}
L_{k+1}>\left(1+\frac{1}{k^{2}}\right) \max _{k, \leqslant j \in k} L_{j} . \tag{24}
\end{equation*}
$$

Let in fact k_{0} be the smallest k satisfying (24). [Observe that from (10) and (11) it is easy to see that $L_{k_{0}}<C$ and $k_{1}-k_{0} \rightarrow \infty$]. From (24) it follows as in (17) that

$$
n_{k_{0}+1}>M_{k_{0}}\left(1+\frac{1}{k_{0}^{2}}\right)^{2^{k_{0}}} M_{k_{3}}^{-1} .
$$

But from $n_{k_{z}}<2^{k_{z}}, M_{k_{z}}<2^{k_{1}^{\prime}}$. Thus

$$
\begin{equation*}
n_{k_{0}+1}>M_{k_{0}}\left(1+\frac{1}{k_{0}^{2}}\right)^{2^{k_{e}}} 2^{-k_{2}^{2}}>M_{k_{0}}\left(1+\frac{1}{2 k_{0}^{2}}\right)^{2^{k_{0}}} \tag{25}
\end{equation*}
$$

Now from (25) and (23)

$$
\begin{equation*}
M_{k_{0}} \sum_{i=1}^{\infty} \frac{1}{n_{k_{0}+i}}<\left(1+\frac{1}{2 k_{0}^{2}}\right)^{-2^{k_{0}}} c \log n_{k_{0}+1}+M_{k_{0}} n_{k_{2}}^{-\infty / 1+1} . \tag{26}
\end{equation*}
$$

Now by $L_{k_{0}}<C, M_{k_{2}}<2^{k_{2}^{2}}$ we have

$$
M_{k_{0}}<C^{2^{k_{0}+1}} 2^{k_{1}^{1}}<(2 C)^{2^{k_{0}+1}}
$$

But $n_{k_{1}}>A^{2^{k}}$. Thus for sufficiently large A

$$
\begin{equation*}
M_{k_{e}} \sum_{i=1}^{\infty} \frac{1}{n_{k_{0}+l}}<\left(1+\frac{1}{2 k_{0}^{2}}\right)^{-2 k_{0}} c \log n_{k_{\theta}+1}+2^{-2 k_{0}} . \tag{27}
\end{equation*}
$$

(27) and (13) implies (20) and (19) and thus our proof of the irrationality of α is complete.

It is easy to prove by the same method that if $\lim _{k=\infty} \inf n_{k}^{1 / 2^{k}}>1$ and $\lim _{k=\infty} n_{k}^{1 / 2^{k}}$ does not exist then $\sum_{k=1}^{\infty} \frac{1}{n_{k}}$ is irrational.

Now we prove
Theorem 3 We have $n_{k} \equiv 0\left(\bmod 2^{2^{k}}\right), n_{k}>0$ and wish to prove that $\alpha=\sum_{k=1}^{\infty} \frac{1}{n_{k}}$ is irrational. Observe that we did not assume that the sequence $\left\{n_{k}\right\}$ is monotonic. Reorder it as a monotonic sequence $m_{1} \leqslant m_{2} \leqslant \ldots$. We evidently have $m_{k} \geqslant 2^{2^{k}}$. Thus we can assume

$$
\begin{equation*}
\lim _{k=\infty} \sup m_{k}^{1 / 2^{k}}=C<\infty \tag{28}
\end{equation*}
$$

for otherwise the irrationality of α immediately follows from Theorem 1 . (28) and $m_{k} \geqslant 2^{2^{k}}$ imply as in the proof of our Lemma that

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{1}{m_{k+l}}<\frac{c}{m_{k+1}} . \tag{29}
\end{equation*}
$$

At least two of the $m_{i}^{\prime} s, 1 \leqslant i \leqslant k$ are divisible by $2^{2^{k-1}}$. Thus

$$
\begin{equation*}
M_{k} \leqslant N_{k} 2^{-2^{k-1}} \tag{30}
\end{equation*}
$$

where N_{k} is the least common multiple of the $m_{i}, i \leqslant i \leqslant k$ and M_{k} is their product. Let now $m_{k_{r}}$ be a sequence satisfying

$$
\begin{equation*}
m_{k_{r}}>\left(C-\epsilon_{r}\right)^{2 k}, \epsilon_{r} \rightarrow 0 \text { as } k_{r} \rightarrow \infty \tag{31}
\end{equation*}
$$

To prove the irrationality of α it clearly suffices to show that

$$
\begin{equation*}
\lim _{r=\infty} M_{k_{r}-1} \sum_{i=0}^{\infty} \frac{1}{m_{k_{r}+i}}=0 . \tag{32}
\end{equation*}
$$

Thus by (29) it suffices to show that

$$
\begin{equation*}
\lim _{r=\infty} M_{k_{r}-1} / m_{k_{r}}=0 \tag{33}
\end{equation*}
$$

By (28), (31) and (30 we obtain by a simple computation that for every $\delta>0$ if $r>r_{0}(\delta)$

$$
m_{k_{r}}>N_{k_{r}-1}(1+\delta)^{-2^{k}}>M_{k_{r}-1^{2^{2 k-2}}(1+\delta)^{-2^{k}}}
$$

which implies (32) and therefore Theorem 3 is proved.
I cannot decide whether there is a sequence u_{k} having property P and satisfying $u_{k}^{1 / 2^{k}} \rightarrow 1$, or $u_{k}>C^{2^{k}},\left(u_{i}, u_{j}\right)=1$. I would tentatively guess that such sequences exist.

References

[1] Erdös, P. and Straus, E. G. (1968): On the irrationality of certain Ahmes series, J. Indian Math. Soc., 27, 129-133.
[2] Erdös, P. and Straus, E. G. (1971): Some number theoretic results, Pacific J. Math., 36, 639-646; a second paper on the same topic will soon appear in the Pacific Journal.
[3] For some further problems see my papers: On arithmetical properties of Lambert series, J. Indian Math. Soc., 12 (1948), 63-66; On the irrationality of certain series, Nederl. Akad. Wetensch (Indigationes Math.), 60 (1957), 212-219; Sur certaines séries a valeur irrationnelle, Enseignment., Math. 4 (1958), 93-100.

