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1. INTRODUCI-ON . Let p, q, r be positive integers with r ? 3 and
2r >- q >_ r . We shall denote by g(p, r, q) (resp . f(p, r, q)) the
least integer Q a 0 such that, whenever a graph (resp . conplete graph)
on p points has each of its lines coloured with one of r-1 colours
(resp . r colours) in such a way that every colour is aZ more than k
lines, then the graph has a subgraph an <_q points which contains all
the colours . If no such t exists we put g(p, r, q) = m (resp .
f(p, r, q) = ~o ) . We will prove

Theorem 1. Given n < 1 for p sufficiently large f(p,r,r) > n(2)r -
In particular f(p, 3, 3)

	

for p a 5 -

Theorem 2 . f(p, r, 2r-2) = 0 for r a 3 .

Theorem 3 . f(p, r, 2r-3) _ (2) for r a 4 where a = L~J

Theorem 4 . (2) s f(p, r, 2r-4) < (c'+') for r a 5 where a = CAI and

= r-1 + /(r-1)2 + 4(r"-4r+5)(P` P)
2(r2-4r+5)

Theorem 5 . We always have f a g . In particular we can replace
g in theorens2, 3, 4 .

Theorem 6, Fbr p a 1 we have
(2) s g(p, 4, 4) < (a21) where

v=3+/9+20(p
.p)

10

Notice that theorem 1 really says there is no sensible theorem for
f(p, r, r) , but theorem 6 is one for g(p, r, r) . This is the only
difference that we could find between f and g . Som asynptotic
results on f and g are given in section 4 . In section 5 we give a
best possible theorem on polychromatic trails .
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2 . LOWER BOUNDS FOR f AND g .

	

These can be easily evaluated from

Example 1 . We partition the complete graph Kp into r-l disjoint

subgraphs V1, V 2 , . . ., Vr-l . Let cl , c2 , . . ., c r denote r colours

and for 1 < 14 r-1 colour all lines in V i with ci and write U i

for the union of all the points in Vi, Vi+l, . . .' Vr-l ' Now choose an

1 4 i z we colour every line from

Ui+1 by ci Then for z < i < j r-1

to Vj with cr . The resulting graph

points carrying all r colours, but no

find the least number of lines of one

If we delete all lines colour cr ,

integer z in 0! z 4 r-3 .

a point in Vi to a point

we colour every line from

in

v i

contains a subgraph of 2r-z-2

smaller one does . Hence if we

colour we have a bound for f

then in the same way we get a bound for g . So let the number of

points in Ui and Vi be ui and vi respectively, giving

v1+v2+ . . . +vr-1 e p . When the v i are chosen to yield the

possible v such that vz+l r vz+ , 2 - ' ' - yr-1
e v and

For

largest

(21) + v
iui+l 2! (Z) for 1 <, i z

we get the lower bound (Z) for both f(p, r, 2r-z-3) and g(p, r, 2r-z-3) .

We conjecture that f and g are close to this bound for Large p .

When the z is chosen to 5e odd 7j3 we can modify example 1 as

follows . We colour the Vi and Uz+1 as before . Then for 1, i 4C z

a line from Vi to Vi+1 U Vi+2 U "' V Vi+I(z-1) U Uz+l is colour c i

where suffices are reduced modulo z . We now like vl , v2 , . . ., vz to

be nearly equal and vz+1 , vz+2 , " , yr-1 to be nearly equal when

calculating bounds .

Example 2 . This is like example 1 except we have an extra set V r and

z-T-1 . No r points carry all r colours .

Suitably choosing the vi in example 2 proves the first part of

theorem 1, but we leave the construction for the second part as an

exercise .

Suppose some graph gives a lower bound ~r-( 2 ) for g . Then by

deleting superfluous lines and adding lines of a new colour we get the

same bound for f .



3 . THE PROOFS OF THEOREMS 2-6 . We start by introducing our termino-

logy .

(i)

	

For any positive integers p, r, N we let Gp (r, N) denote

a graph on p points whose lines are coloured by cl , c2, . . ., cr in

such a way that each colour ci is one more than N lines . Also Si

denotes the set of points on at least one line colour ci .

(ü) The colour of a line xy will be denoted by c(xyy) .

(iii) For each point x we let N(x) denote the set of all

points adjacent to x and p(x) be the number of colours in the set

{co(y)ly e N(x)) .

(iv)

	

We put p(G) = Sup{p(x)Ix E G) .

(v)

	

Any path abc of length 2 will be called an elbow at b .

(vi) A subgraph H

all colours in G .

of G is called polychromatic if it contains

(vii) Let S be a set and x an element of S

	

We shall denote

the set of all elements of S other than x by S-x .

I~emna 1 . If r > n a 2 then in each Kp(r, 0) with p(Kp) ? n there

is a polychromatic subgraph on <_2r-n points .

Proof . There is a point x on n colours and r-n lines of the other

colours . If these r lines do not form the subgraph we get it by con-

sidering lines on x

Proof of theorem 2 . Apply letuua 1 with n = 2 .

Proof of theorem 3 . Asstmo the theorem is false for a certain

Kp(r, (2)) . By lemma 1 with n = 3 we mast have p(P) = 2 . Choose

an elbow ylx2y2 with cl = c(ylx2 ) and c2 = c(x2y2) say . For
i = 3, 4, . . ., r choose a line xiyi coloured c i . Then x2 x x3

and c(x2x3) is cl or c2 , say the former. Let

S = {x2 , . . ., xr' Y 2 , . . ., Yr) so I S I = 2r-2 .

Claim 1 . c(xix j ) = c(yiy j ) = c(xiyj ) = cl for all i x j in

2 s i, j <_ r . For example c(x2y3) is cl or c2 because p( P)=2,

if it was c2 then S-Y 2 is polychromatic of size 2r-3 a contra-

diction .



Claim 2 . If 3 s i s r and c(ab) = ci for some line ab then

c(x2a) = e l . Indeed if c(x 2a) = c 2 then (S-{y2, xi , yi }) u {a, b}

is polychromatic, a contradiction .

Claim3 . S2 n S 3 = 0 . Indeed if a e S2 n S 3 then c(ab2 ) = c2 and

c(ab3 ) = c3 for some b 2, b3 e N(a) . By claim 2 we have c(x2a) = cl

so p(p) > 2 , a contradiction. Similarly we have S i n Sj = 0 for

2 s i < j s r , so ÍS11 <_ p/(r-1) for same i and the proof is

complete .

Proof of theorem 6 . The first part is trivial, so assume that a given

p (3, (a21)-1) does not contain a polychromatic subgraph of size s4 .

Then p(G) < 3 and there does not exist a path abed in G such that

c(ab), c(bc), c(cd) are all distinct . Thus G can be partitioned into

six sets T1, T12 , T2 , T
23

, T3, T31 , where Ti j is the set of points

on both colour ci and cj , but Ti is the set of points arm ci

only. Let the size of the T's be a, b, c, d, e, h as sham in

figure 1 . Of course some sets or lines may not be in G , but the

figure indicates every possibility. Notice that a+b+h a a+l for

otherwise we would have <( a2 1 ) lines coloured c 1 Similarly

b+c+d a s+1 and d+e+h a s+l .

Claim 1 . The number m of lines missing from G is less than (a+1) 2 .

Indeed, suppose on the contrary that m z (a+1)2 . Then m a 112 and

since 11 is the positive root of 511 2- 311 = p2-p the number of lines in

G is at most

(2)-m 5 (2)-11 2 = 1(5112-311)-11 2 = 2 (11 -1) < 3(a21)

This contradicts our hypothesis that each colour in G occurs on at

least (az l ) lines .

Claim 2, b > e, d > a, h > c . Indeed if b s e say, then b 2 s be

ba s ea, be s ec . Hence using our earlier remarks

(a+l) 2 s (a+b+h)(b+c+d) = ab+ae+ad+b 2+be+bd+hb+hc+hd

s setae+ad+be+ce+bd+hb+he+hd = m

a contradiction to claim 1 .

Y



b

Figure 1

Now since the total number of lines of G is at least 3(a21) , one
of a+b+c, c+d+e, a+h+a is at least a+l , say the first . But then

(a+1) 2 s (a+b+c)(d+e+h) < m becaiLse 0 < (d-a)(h-c) , contradicting

claim 1 . This proves the right hand inequality for g(p, 4, 4) , and

example 1 provides the other one .

Proofof theorem 4 . The constant a is the positive solution of the

simultaneous equations

(1)

	

p = (r-2)a+g and }a(A-1) _ (r-2)6a + }s(0-1) .

Hence the left hand inequality cps from example 1 .

Assume that a given Kp(r, 041 )-l) does not contain a poly-

chromatic subgraph of size s2r-4 . B9 lemur 1 we have p(p) < 4 . We

shall next show that p( p) < 3 . Indeed if p( p) = . 3 then there

exists a point x in Kp and yl, y2, y3 e N(x) such that c(xyl) ,

c(xy2) , c(xy3 ) are distinct (say = c l , c2 , c 3 respectively) . Fbr

4 s i s r choose a line xiyi coloured ci . Then c(xx4) is cl ,

c 2 or c3 , say cl . Let S = {x, x4' " *' xr, y2' " " " yr}

	

Then

by similar argument as those used in the proof of theorem 3, we have :

Claim 1 . c(xxi ) = c(xyi ) = c l for i = 4, 5, . . ., r .



Claim 2 . If 4 s i <_ r and c(ab) = c i for some line ab then

c(xa) = cl .

Claim 3 . There is no elbow abc such that c(ab) = ci , c(bc) = cj

with 4<_i< j sr .

Claim 4 . If 4 <_ i < j < r and ab, cd are lines coloured

respectively then c(ac) = c1 .

Claim5 . There is no path of the form abed with

{c(ab), e(be), c(cd)} _ {c2, c3, ci } where i ? 4 .

Now by claim 3 we have Si n Sj = 0 for 4 < i < j < r . Also

S3 A (S4 u S5 u . . . u Sr) x ~ for otherwise we would have less than

(a+1) lines coloured c 2 since by claim 5 all lines from S 3 to Si

with i ? 4 are not coloured c2 Similarly we have

S2 n (S4 u . . . U Sr) x

	

Let us assums without loss of generality

that S2 n S4 x ~ .

Claim 6 . S3 n Si = 0 for 5 i s r . Indeed if false for i = 5 say

choose elbows abc, def such that c(ab) = c2 , c(bc) = c4 , c(de) = e3 ,

c(ef) = c 5 . Then (S-{x,y2 ,y3,y4,y 5 ,x4 ,x5}) u {a,b,c,d,e,f} is a poly-

chromatic subgraph of size s2r-4 , a contradiction .

Claim i . S3 n Si = 0 = S2 U Si for 5 s i s r . This follows from

claim 6 by symmetry .

Next consider the subgraph G = S2 U S3 u S4 of P with all

lines colour cl omitted therefrom. Then G carries only three colours

and if it has w points, by (1) we have

(2)

	

w s p-(r-4)(a+l) s p-(r-4) a = 2a+S .

Now from exanple 1 the p of theorem 6 is the solution of

(3)

	

w = 2u+y and }U(u-1) = 2YU+jY(Y-1) .

Since r ? 5 comparison of (1), (2), (3) shows that u+1 < a , or in

other words that each colour occurs Imre than g(w, 4, 4) tines in G .

Hence by theorem 6 there is a polychromatic subgraph H of size s4 in

G . Then (S-{x,y2 ,y 3 ,y4 ,x4}) u H is a polychromatic subgraph of size

ci , c j



s 2r-4 of Kp . By this contradiction we have so far proved that

p(Kp ) < 3 , so it must be 2 .

There must be an elbow in
P

	

Suppose it has colours cl and

c2

	

Since p(Kp ) = 2 we can not have another elbow colour c 3 and

04

	

In general for 3 s i < j s r we have Si n Sj = 0 and further,

all lines from Si to Sj are the same colour c l say. The last
paragraph now gives a contradiction which this time canpletes the proof .

Proof of theorem 5 . Write f for f(p, r, q) and let G (r-1, f) be

given . The case f = - is trivial so assume f < . Remove lines

arbitrarily until colour c i occurs exactly f times for 1 s i s r-l .

Let m be the number of lines missing from G

	

Then

m = (2)-(r-1)f z f since obviously r(2) z f

	

Add to G all the

missing lines and colour them c1

	

This gives a Kp (r, f) which by

definition of f contains a polychromatic subgaph H of size sq ,

Evidently H , as a subgraph of G , is also polychromatic . This

proves that f ? g , and the remainder of the theorem follows by taking

suitable versions of example 1 .

4 . SOME ASYMPTOTIC RESULTS . We will need

Lemon 2 . Let n a 2 be an integer and Gp(r ; (2 )) be given with

a =
LnJ
	Then no n of the Si ts are paiswise disjoint .

[r-2t+1

Proof . By hypothesis we have I Si I > a for 1 <_ i s r If

S1 , S2 , . . ., S say are disjoint then
p 5 is11 +

I
S2

1
+ . . . + IST1 I z n(a+l) > p , a contradictiarm,

Theorem7 . If r ? 2t ? 2 then g(p, r, 2r-t-2) s (2) where

a

		-

p]

-

	

-



Proof. Given Gp (r-1, (2)) choose the maximum possible niunber s of
elbows such that the 2s lines involved carry 2s distinct colours . We
have s t t for otherwise by applying lemma 2 with n = r-2t+l to the
remaining colours we can increase s by 1 . `these elbows together with
one line for each of the remaining colours form a polychromatic subgraph

on sr+2t-2 points as required .

Theorem 8 . If r > 5 then g(p, r, 2r-5) s (2) where a
provided p is sufficiently lame .

Proof . Assume the theorem is false for a certain Gp(r-1, (2 )) .
Claim 1 . No three elbows carry six colours . Otherwise by choosing a

line for each of the other r-7 colours we get all colours on _<2r-5
points, a contradiction .

As in the proof of the last theorem we can get a pair of elbows
carrying say cl, c2 and c3 , c4 respectively . Then S5 , . . ., S 1
are pairwise disjoint by claim 1. Using lemma 2 shows that
S1 n (S5 u . . . U 51-1 ) x 0 so S, n S5 x ~ say. Similarly there is a
j in 5 s j s r-1 with S3 n Sj x ~ , and there is a largest i in
5 s i 5 r-1 with S 2 n Si m ~ . We can not have i > 5 as we would
then have elbows coloured c3, .c4 and cl, c5 and c2, ci contra-
dicting claim 1 . By using symmetry claims 2 and 3 below follow easily .

Claim 2 . For i = 1, 2 the sets S i , Sk are disjoint for 6 s k s r-1,
but Sl n S5 x 0 and S2 n S5 x 0 .

Claim 3 . For i = 3, 4 the sets Si , Sk are disjoint for 5 s k s r-1,
k x j, but S3 n Sj x

	

and 34 n Sj z .

Case j = 5 . IL-re since I Si ~ a a+1 > p/(r-4) we have

w = Is1u . . .us5 1 = P-1561- . . .-1Sr-l1 < p-(P-6)p/(r-4) = 2p/(r-4)

and hence

2(

	

-1](

	

-21 < 5(2) s (2 ) < ~( 4)(rp4
-11

which is impossible for large p .



Case j > 5 say j = 6 . In this case

w' _ IS I U . . .us6 1 = P-lS7'- . . .-'Sr-11 < P-(r-7)P/(r-4) = 3P/(r-4)

Vow if Q = S1 U S2 U S5 and R = S3 U S4 u S6 by claim 1 we must have

Q n R = 0

	

Hence we may assume I RI <_ zw' < 3P/2(r-4) and so

2
(
r-4

	

-2) < 3(2)

	

2 (2(r-4) ,(2(r-4) ] (2(r-4) -i
	 3P

2~

which is also impossible for p large, completing the proof .

Conjecture . If 0 s z <_ r-3 then f = g(p, r, 2r-z-2) ti (2) where

a = [T,-P-1 , provided r is sufficiently large .

This conjecture says that when r is large the sets V1,V2, . . .,Vz

of example 1 are small . With a little extra work g can be replaced by

f in theorems 7 with r > t+2 and 8 with r > 5 . Hence the conjecture

is true when z is 0, 1, 2, 3 by theorems 2, 3, 7, 8 respectively . It

does not extend to z = r-2 by our earlier remarks on theorems 1 and 6 .
Fbr 2 s z s r-3 if the conjecture is true it is best possible by

example 1 . We feel it would be the most important result in this

subject .

5 . POLYCHROMATIC TRAILS . We shall call a sequence T of lines

ala2 , a2a3 , . . ., ahah+l a trail if all lines are distinct . The number

•

	

is called the length of the trail T .

Lemma 3 . Let G be a connected subgraph of K with r z 1 lines .

If p > !3r+2 there exists a trail T of length <3 containing all

edges of G . Mareover T contains at most one more arbitrarily

chosen point a than G and if b, c are the end points of T the

lines ab, ac are not in T and a x b,c .

•

	

f. Let dl, d2 , . . ., dv be the degree sequence of G with di odd

for 1 <_ i s a and d . even for a< i s v

	

If a= O then G hasi
an Eulerian circuit C , and if a = 2 then G has an Eulerian trail

• . We can then put T = C or D in these cases . Since a is always

even, we may assume that a z 4 . If the line joining two points of odd

degree of G is not in G we adjoin it to reduce the nwtber of odd



degree points . Repeat this as often as possible to get a graph H with

degree sequence el , e 2 , . . ., ev with e i = di for

and by renumbering the points, there is a B ? 2
di+1 for B < i s a .for 1 s i < B and ei =

if B ? 4 any two points

in fact in G . Hence

points and still leave

number of points is at

we

G

a<i<_v

such that e i = di

Farom our construction,

of H of odd degree are adjacent in H , and

can remove ( 82 1 ) lines from among these B
connected . Since in a connected graph the

most the number of lines plus one, we have

(1)

	

v s r

	

(82 1 )+l for B z 2 .

If B = 2 , then H has an Eulerian trail T and the number of lines
is r + }(a-S) < r + I(v-B) = r + }v - 1 < 2 by (1) . Now suppose that
B > 4 . If a point of H of even degree is not joined to two points

of odd degree in H , we join it to reduce the number of odd points by
2 . We repeat as often as possible to get a graph I with y odd
points 2 s y c B . If y= 2, then I contains an Eulerian trail T
and at most r + 12(a-B) + ( B-y) lines . But (1) yields

r + }(a-B) + ( B-y) s r + }(v-S) + (B-2) s 3r ,

with strict inequality if B > 4 . However if B = 4 inspection of the

graph shows we have strict inequality in (1) . Hence we get the required
result when y = 2 and now assurre y >- 4 . 9hen in I each point of

even degree is adjacent to at least y-1 points of odd degree so

(2)

	

r ? (Y) + (v-y)(y-1) .

Now r :a (2) ? 2(y-1) and hence 3r+2 >_ yrl + 2 •> v where the last
inequality is (2) . Thus there exists a point a of

P
not in G .

We join y-2 of the odd degree points of I to a , obtaining a graph
J with two odd points different from a . Thus there is an Eulerian
trail T of J of length at most

r + ~(a-B) + (B-y) + ( y-2) <_ r + J(v-B) + ( B-2) < 2r ,

completing the proof.



For lemma 3 the example where G is a star shows that 2r cannot

be reduced . Also we need p > 3+2 because any graph with three

vertices having maximum possible degree p-1 odd has no T .

Theorem 9 . Given Kp (r, 0) with r >_ 3 and p > 3r+2 there is a

polychromatic trail of length s2r-3 .

Proof . Let F be a sub graph of Kp consisting of one line of each

colour. If each connected component of F is a path the desired trail
is easily constructed . Hence suppose G is a connected component of F

with s lines which is not a path. Then G has a vertex o£ degree

greater than 2 and s >_ 3 . If s = 3 we easily get all the colours

of G in a trail of 3 or 4 different colour lines . If s > 3 by

lemma 3 we can embed G in a trail T of <2 lines . Thus in every

case we can embed G in a trail T , with end points b, c say, con-

taining t colours and <_2t-3 lines . Moreover the t colours include

all the s colours of G

	

We may have a point a E T\G but a x b,c

and the lines ab, ac e T .

Now if F\T is empty we have finished, so suppose it has a connec-

ted component G' with s' lines . If G' is not a path, by the method

of the last paragraph, we can embed G' in a trail T' with ends b',c'

containing t' colours and <_2t'-l lines . This weaker result <_2t'-1

holds also if G' is a trail . We repeat the process on F\ (T u T') to

get V' and so on. Note carefully that if in applying lemma 3 we need

a new point we will always choose the end b of T . We now adjoin the

lines cb', c'b", c"b"', . ., and this connects T, T', . . . into the

required trail . If we needed a point a in the first paragraph it does

not matter where it happens to lie . We have t+t' + . . . = r and

t <_ 2t-3 and t+t'+l <_ (2t-3) + (2t'-1) + 1 = 2(t+t') - 3 and so on,

so the trail has the correct length .

The example where r-1 colours each appear on only one line shows

the theorem is best possible . It is clearly stronger than theorem 2 .



6 . ACLASS OF PROBLEMS . Consider a graph G whose lines or points or

both have been coloured with single colours or sets of colours . It is

natural to look for global and local conditions on the colouring which

ensure that a particular kind or class of coloured graphs exist as sub-

graphs of G . This paper denIs with One such problem, others appear in

11, 2, 37, and there must be many more interesting ones . The conditions

on the colouring place restrictions on the histogram for the number of

lines of each colour for G and for each point of G .
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