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This paper is in some sense a sequel to our earlier paper I (Acta . Arith ;
28 (1976), 405-412) with the same title although the present paper
is self contained.

Let {b;} be an increasing sequence of integers with 3 < b, < b2 < b3 . . .
1

and

	

blj < oo . Our principal object is to prove, under an assumption
i

on the size of B(x) = E 1, that for any fixed position integer n, the
bj <<x

number of solutions of the equation n = p + t where t is a positive
integer not divisible by any b; and p is a prime exceeds an/logn
o (n/log n), where a is a positive constant, and in particular > 1 for all

sufficiently large n . (The assumption on B (x) is B (x) = o	(	 x	log x log log x
It will be clear from our proof that this can be weakened to

B(x) = o (___)og x if a certain unproved hypothesis on the distribution of

primes in arithmatic progressions is true . We prefer to state this
hypothesis at the end of our proof) .

Before starting the proof proper we make some reductions . Consider

those bj with b' > 100. For these b; we have a (b') > 2 (y is thecp (b,)

	

b j
Euler's totient function and a is the sum of the divisors) and so such bj are

abundant numbers (ni is said to be abundant if ° (m) > 2) . It is easy
m

to see that every multiple of an abundant number is also abundant .
Defining an adundant number N to be primitive if N is the only
abundant number which divides N we have the following :

© INDIAN MATHEMATICAL SOCIETY 1977



282 P . ERDŐS, G. JOGESH BABÚ AND K. RAMACHANDRA

THEOREM (due to P. Erdős, On the density of abundant numbers,
Jour. London Math. Soc . IX (1934), pp. 278-282, see theorem on page
281) . The number of primitive abundant numbers not exceeding x is
	xo ((jogx)2 .

From {bj} construct a new sequence by retaining as they are numbers

bj with b j) < 100 and replacing every other number by its maximum
y (b

primitive abundant divisor . From the resulting set form a sequence
in the increasing order by taking only the distinct ones . Suppose this
sequence is {b.} where 3 < bi < b2 < b3 . . . . (This sequence consists of

un-replaced and replaced numbers of {bj}) . Note that - 1(b ,) is conver-
j

gent . Because

	

1
, (this sum is over all bj. satisfying X < bj < 2X

X, 2X (bj )

and we adopt a similar notation elsewhere) _ Y_ + where Y_ is part
1

	

2

	

1

of the original

	

1 without replacements and E the rest . In
x, 2X (bj)

	

2

	

1
bj < 100 and so

	

= O (

	

1
1
and Y_ = O

C y_'
log log b,

(bj)

	

1

	

X. 2X
bj

	

2

	

X. 2X

	

bj

where Y- denotes the restriction to the altered numbers and so Z
X, 2 X

	

2

= o (log	) and this gives us the convergence of the required

series .

Not let {di} be the sequence 1 = d 1 < d2 < d3 . . . of integers not
divisible by any bj and {dí} the sequence which corresponds to {b',} is a
similar fashion . The sequence {d1 } includes {d1'} and so the number of
solutions of n = p -;- dj is at least the number of solutions of n = p -{- d.' .

We prove for the latter number a lower bound > log n valid for all

large enough n . It follows that the number of solutions of n = p + dj

is also

	

ton for all large enough n . This is in fact the principal
g

result we are looking for . (We however assume only at one place of
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our proof that B (x) = o \lo

	

x	
and at this point of our proof

g x log log x

even the weaker assumption B (x) = o
(10€ x

	 ) would suffice if we

assume the truth of an unproved conjecture concerning the distribution

of primes in arithmetic progressions) . Note that Y-

	

1 = y- -1- E~bJ C x

	

3

	

4

where ~J counts the unreplaced b/ and E counts the replaced ones
a

	

a

and so Y- = O (B (x)) and Y = o	
x

z

	

We may also note
s

	

a

	

(log x) )

	I =Z -{- ~: where ~ = O ~ I and -' _ o log log X
r

	

,

	

'
XI zx y (b; >

	

s

	

s

	

s

	

x, zx b;)

	

s

	

(log X)2

are obvious portions of the sum. From now on we write a; to mean

b, and write A (x) _ y 1 . Throughout the paper we assume
a;mix

B (x) = o (log x ~ which certainly gives A (x) = o
(10

X

X )
. We now start

g

	

g
the proof proper . We find it convenient to split it into several parts .

PART I . Estimation of ~

	

S

	

for a suitable X,
Xl<ai4'%n Psn (mod ai)

i<pGn

Denote the inner sum by 7r(n, a ;) and consider

	

1]

	

7r (n, a;)
n/2k+1<aiSnl2k

for a given k = 0, l, 2, . . . . We wish to estimate this uniformly in all
parameters including k . For any given k the sum is Y O(2k) (= O (A (n))

ai
for bounded k) . Because trivially 7r (n, a;) = O (2k) . Thus fixing up
any arbitrarily large constant ko , we have,

y-

	

E

	

7r (n'
a;)
- °

n
to

	

)'O<k<ko n/2k+<ai<n/2k

	

gn

We now introduce the points 2kl" (k = 0, l, 2, . . .) and split up the
range Xl < a; < n accordingly with proper modification at the end
points. We have now to estimate Si =

	

~

	

n(n, a;) .
X16ai<n/2k o

The contribution to this sum from those a; (We now fix up till the
end of the proof small positive constants e, 8, 8 1 which are arbitrary but
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independent of each other) satisfying,

(n, a;) < ai (log n/ai) (log log n/at)i+e

2k

	

n

	

_

	

n

a kik¢, nl,k+~>x,
(k (log

k)'+E * 2k log (n/2 k) ) ) - ° ( log n,

is

Consider the remaining portion Sa of the sum Si . We are led to
estimate

Y-
*

	

7c (n, at)
n/2k+l<at<n/2 k

where * denotes the restriction to those a; which satisfy .
2k

7t (n, a;) >	lc (tog k)1+E

First consider the contribution to Sz from those k for which the

number of a, does not exceed
2k ktlog n

	 . We observe that the contri-

bution from such an integer Ic is by Brun-Titchmarsh Theorem

~	'Z	 where the sum over a; is over an appropriate
O ( ai y (a;) log (n/a,)
range depending on k . We split this last sum into two parts according
as aj is unchanged or changed and we see that it is

O (
	n	~ +

o
(	n	2klog log (n'2k)

a; log (n/n
i
)

	

2k (log (nl2k))z

	

log (2k)

_

		

81 n

	

2k

	

nlob log (n/2k)
O (2k k log n ' log (2k) + ° ( lc (log (n/2k))á

=O
(k~iogn)

-}-( . . .)

n> Xl > nl-8 .

It is easy to see that the last expressions when summed over from k = ko

to [28 log n] is O (logn ) + ° (log n)'

So far we imposed on X l the only condition n > X, > n1-8 . We now
show that if Xl is properly chosen there do not exist any other values
of Ic which make a further contribution to S2 .

So we have now to consider only those k for which the number of
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8, n

	

2k

	

For suchar s is 2k k log n
and each aj satisfies (n, ar)

	

k (log k) 1 +E

a fixed k let s be the number of a, . Let us enumerate these ar (with a
change of notation to avoid too many symbols) as

Lk+,+l<a,<a2< . . .<a.<2k

It follows that if N(t„ t2 ) denotes the total number of triplets (i, j„ j2 )
with tü) = t,, tea) =t2 then

8, n 2k
7C (t„ t2) > AW

og
2+ze

og n
(1t- t2) ruta.

The total number of pairs (t„ t2) does not exceed 22(k+1) and hence
there exists a pair (t„ t2) (of course t, 0 t 2 and 1 < t, < 2k+1 ,

1 < t2 < 2k}1) such that the simultaneous equations n - p, = t, a,
n -P2 = t2 a (where a is a positive integer) have

8, n
2k k3 log n (log k )2+ZE (= Q say)

solutions in triplets (p„ p 2 , a) . That is, there are > Q values of a
(1 < a < n/2k, 2 1, C n') for which n - a t, and n - a t2 are both primes .

By the double sieve, the number of such integers a is p n (log log n)2
2k (log n)2

(see page 45, Satz 4 .2 of Prachar's book). This gives

8, log n
k3 (log k)2+2e = ((log log n)2.)

where
8, n

	

2k

Write

For any

s
2k k log n

and Zr = (n, ar) %J k (log k)1 +i: '

2r 1>(
n - p( P = tY) ar where 1 t~l)< 2k+1

fixed i the number of pairs (pj(i Pj,»9 Ul j2) i i

k

	

8, n
i. Hence the total

4k' (log k)2+2E
and there are s Z

2k k log n values of

number of pairs is

>1
j~ (Z ) 8, n 2kr

	

2' 4k3 (log k)2}26 log n
Let t,, t2 be integers satisfying t, t2, 1 < t,< 2k+1 and 1 < t2 < 2k+1,
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log n

	

1/3
This gives a contradiction for large n if k G

((log log n)4+38 )

So we can choose X, to be
_ 4}3s

X, = n 2-
[(log n) 1 í3 (log log n)

	

3 )

This completes the proof that

Z 7r (n, a,) _ 0
8 l n

(log

	

°
n

tox 1<n;<n

	

g n

	

g n
where X, is chosen as stated Just now (actually since the left side is
independent of 81 the first term on the right can be dropped) .

PAxc IL Estimation of

Z

	

7c (n, ai)
i~? L,ai<n1-8

where 8 > o is fixed and L is a large constant.

Applying Brun-Titchmarsh theorem the estimate for the required sum

/'

	

n

	

_

	

n0 (

O `L y ( al) log n )

	

l-

	

og n (L))

where vi (L) tends to zero as L tends to infinity because of the conver-
gence of E (y (a,))- 1

PART 111 . Estimation of

Y_

	

7r (n, aj) .
nI- a < ai < n Exp (-(log n)i (log log n)-a)

We split up the range into minimum number intervals of the type
X < ar < 2X with modification at the end points and write it in the

(1)

	

(2)

form Y Ex . Each Ex can be written Ex + Y_x where (1) is over those
x

a; with
108 n

(n, a°) E (ai) log n

and (2) is over the remaining a;. By the convergence of E (ep (ai)) -1 we
have easily

(1)

	

nE Ex = ° (log n) .
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(z)
)-7 x is by Brun-Titchmarsh theorem

((2)
	 n		(z.1)

	

(z, z)
O Ex

	

	n =o~y + y~
y (a;) log _ )) x

	

x
a t ,

where (2, 1) is over unchanged a, and (2, 2) is over the replaced ones .
Trivially

(2,2)

	

n log log xy- E = y- 0 (

	

n ))x x

	

x

	

(1oX)z loó

	

g

Let AM (X) be the number of unchanged a; lying between X and 2X for
which

rc (n a,) >	
10 8 n

y (a;) log n'
Then

(z.l) AM )

n
y- y-=0 y	
x x

	

x

	 X

logW-
.

By using a bound of the type AI1 I (X) = O (A (X)) we can easily prove

that the last quantity is o (log jz) if we assume A (X) = o (Iogx log log X)'
On the other hand we can also majorise AM (X) by A(z) (X) the number

s
of all integers q satisfying X < q < 2X and n (n, q) >

(1
log n

and

make the

1 ~ 3

HYPOTHESIS . Uniformly in n 1-5 < X < 2X < n Exp

	

log n) 1 j 1

- (log log n)z

there holds A(z) (X) = O (X (log X)-513-8s ) for some constant 8, > 0.

We see on replacing log n by (log X)1 J 3 (log log X)-z, that

(z,1)

	

n

X X -
o (log n) .

PART IV . Lower bound for the number of solutions of n = p + d; .

Write Az, for the finite sequence (al , az , . . ., aL) and for any positive

	 n
log n)'

287
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integer n write (In this section t will stand for a positive integer)

f (n, Az) _

	

1 .
n=p+t,t 0(moda,)forj=ltoL

We use a similar notation for any other finite or infinite sequence of

positive integers in place of AL- We choose L to be a large but fixed

integer and another fixed positive integer h < L then certain odd primes
qi (1 < i < h), in the following way . Since aj is never less than 3, it is
divisible either by 4 or by an odd prime qj (in the latter case we fix qj

to be the least odd prime which divides aj) . If in this process 4 occurs
we designate it by qo and if it does not occur we just ignore the symbol

qo . Of course qj (j = 1 to h) need not be distinct . Let A* denote the
finite sequence (qo, q1 , q2 , • , •, D', ah+1, ah+2, . . ., az) • Before proceeding
further it may be helpful to remark that f (n, AL) ,,f (n, A*) . For
simplicity we write A** for the sequence obtained from A* by retaining
only the distinct qj (1 < j 6 h) . Next in A** retain only those

qj (1 < j < h) which do not divide n and afterwards only those aj (j > h)

with (aj, 11

	

q,) = 1 . Call the resulting set
1<i<h

~=(qo, ql, . . q;, a J+l~ ' aJ+2' . . ., aT)

where the notation is sufficiently self-explanatory . Let S* and S** be
two finite sets of distinct integers and 1 be an element of S** . We
observe that the set

s* n (S** - 1)

has at least as many elements as - 1 plus the number of elements in

s* n s**- Using this remark repeatedly one can verify that

f (n, Az) >f (n, A+) >f (n, qj , ql, q2, . . . , A, aJ+, , a'J+2, . . , , a~T) - J.

We now make the convention that qj (1 < j < J) are in the increasing
order. We next replace all aj(j > J) which are even but not multiples
of 4 by Zaj and designate the set resulting from a; (J < j < T) in the
increasing order by aj" (J < j < T) . Our last lower bound forf(n, AL) is
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tt
> f(n, 4, ql, q,, . . ., qJ, aí+,, aJ+2, . . ., aT) - J

> f (n, 4, ql, q2, . . . , qJ) - J
T

v=Jt1 n=p+t,t#omodgj foralljin(o<,J<J),t=_0(moda,)

Here (and from now on) we put qo = 4 . Note that the present qn

always denotes 4 whether the old qo already introduced may or may
not exist . This will not cause any confusion since the purpose of
introducing the old qo is over and we do not need it any more . By
using the prime number theorem for arithmetic progressions and a simple
argument of Eratosthanes it is not hard to verify the following steps
(the notations are obvious and we do not explain them)

.f (n, % ql, . . . , qJ)= n (n) -

	

7r (n, qi, n) + y n (n, qi qJ, n) - + . . .
r

	

1 Ji>i

log n 0 < J ( 1 cp (qt)) +
Oi, ((log n)')

In the sum over v the v-th term is

= n (n, a„ , n) - Z 7c (n, [a,", qil, n)
i

+

	

n (n, [av , qt qjl , n) - + . . .
1#i.i>J

(a„) log n o < t < J (
1

	

(qi) )
+ Oh, av

(,log
n) 2)

Thus f (n, Az,) exceeds

log n ,<<j( 1 y (qi))( 1 +
O

(„ > 1 y (a,) )) +
OL

((log n) 2) .

From our definition of a, and the convergence of E I 	it follows
y (av)

that the last expression exceeds

Cn

	

n
log n + OL

Gog n)2)

where C(> o) is independent of L and n but depends only on h . Now
if we fix first a large h and then a larger L, we have
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f (n, A) > f (n, AL) - Y-

	

y- 1
t=o(mod a, )

> log	 n (Cl > 0 independent of n)

provided n > no, by the results of parts I, 11 and 111 .

PART V. Statement of the main theorem . Collecting together we
state

THEOREM. Let {bj},j = 1, 2, . . . be a finite or an infinite sequence of

of integers satisfying 3 < b < b < b

	

1
~ 1

	

2

	

a . . . . and Y_ b < oo .

	

Let

1 = d, < d2 < d3 . . . be the sequence of all integers dI (i = 1, 2, 3, . . .) which

are not divisible by any b ;. Let B (x) _ Z 1 and B(x)=o	
x	

(log x log logx)bf G x
Then the number solutions for any fixed n > no (a large constant depending
on the constants implied by the sequence and the nature of o ( . . )) of the
equation

n=p+d; (p-prime)

is > long n and in particular > 1 .

REMARK . The conclusion of thetheorem is valid even with the milder

assumption B (x) = o (log x) if the following hypothesis regarding the

distribution of primes in arithmetic progressions is true .

HYPOTHESIS . Let 8 > o be any small constant and

ni-e < X < 2X < n Exp (-(log n)1/3 (log log n)-2) .

Then the number of integers q satisfying X < q < 2X , •nd

(f> q, f)

	

s
y (q) log n is 08 (-(/Ogx)")

where T > á is a constant .

The following hypothesis is also sufficient and is perhaps simpler to
prove than the one stated above .
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HYPOTHESIS . Let n1- $ < X < 2X < n Exp (-(log n)11 3) . Then the

number of integers q satisfying X < q < 2X for which

(n, g, n) n (log log n)e (q log n) -i is o (X (log X log log X)-') .
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