APPROXIMATION BY RATIONAL FUNCTIONS

P. ERDÖS, D. J. NEWMAN AND A. R. REDDY

Introduction

Recently approximation of e^{-x} by rational functions has attracted the attention of several mathematicians (cf. [2]-[5], [7]-[10]). In this paper we present several new results. Some of the methods used here may be applied successfully to several related problems.

As usual we use throughout our work $\|\cdot\|$ to mean the maximum modulus within the set of points under consideration.

Lemmas

Lemma 1 [8]. Let $p(x)$ be a polynomial of degree at most n having only real zeros and suppose that $p(x)>0$ on $[a, b]$. Then $[p(x)]^{1 / n}$ is concave on $[a, b]$.

Lemma $2[1 ; \mathrm{p} .10]$. Let $f(x)$ be a function which is $(n+1)$ times continuously differentiable on $[a, b]$ and satisfies the further assumption that $\left|f^{(n+1)}(x)\right| \geqslant M>0$ for all $x \in[a, b]$. Then for any polynomial $p(x)$ of degree at most n,

$$
\|f(x)-p(x)\|_{L_{\omega}[a, b]} \geqslant \frac{2(b-a)^{n+1} M}{4^{n+1}(n+1)!} .
$$

Lemma 3. Let $P(x)$ be any polynomial of degree at most $2 n$ satisfying the assumption that $|P(k)|$ is bounded by 1 , for $k=0,1,2, \ldots, n, n+1, \ldots, 2 n$. Then

$$
\begin{equation*}
\max _{[0,2 n]}|P(x)| \leqslant n 4^{n} . \tag{1}
\end{equation*}
$$

Proof, It is well known that $P(x)$ can be written as

$$
\begin{equation*}
\sum_{j=0}^{2 n} P\left(x_{i}\right) l_{i}(x), \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{i}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \ldots\left(x-x_{2 n}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{2 n}\right)}, \tag{3}
\end{equation*}
$$

and $x_{k}=k$.
From (3), we obtain for $0 \leqslant x \leqslant 2 n, n \geqslant 1$,

$$
\begin{align*}
\left|L_{i}(x)\right| & \leqslant\left|\frac{(2 n)(2 n-1)(2 n-2) \ldots(2 n-n)(0-(n+1))(0-(n+2)) \ldots(0-2 n)}{(2 n-i)(i)(i-1)(i-2) \ldots(1)(-1)(-2) \ldots(i-2 n)}\right| \\
& =\frac{(n!)^{-2} n(2 n)!(2 n)!}{(2 n-i)(i)!(2 n-i)!} \leqslant \frac{n(2 n)!}{i!(2 n-i)!}\binom{2 n}{n} . \tag{4}
\end{align*}
$$

[^0]Hence we get from (2) and (4),

$$
|P(x)| \leqslant \sum_{i=0}^{2 n} \operatorname{Max}\left|P\left(x_{i}\right)\right|\left|I_{i}(x)\right| \leqslant\binom{ 2 n}{n} \sum_{i=0}^{2 n} \frac{n(2 n)!}{(2 n-i) i!}=n 4^{2 n} .
$$

Lemma 4, Let $p(x)$ be a polynomial of degree at most n. If this polynomial is bounded by M on an interval $[a, b] \in[c, d]$, then throughout $[c, d]$ we have the relation

$$
\begin{equation*}
|P(x)| \leqslant M\left|T_{n \prime}\left(\frac{2(d-c)}{(b-a)}-1\right)\right|, \tag{5}
\end{equation*}
$$

where

$$
2 T_{n}(x)=\left(x+\sqrt{ }\left(x^{2}-1\right)\right)^{n}+\left(x-\sqrt{ }\left(x^{2}-1\right)\right)^{n} .
$$

Proof. The inequality (5) follows easily from [11; (9), p. 68].
Lemma 5. If $Q(x)$ be a polynomial and Δ denotes the difference operator with increment 1 , then

$$
\begin{equation*}
\Delta^{n+1}\left(a^{x} Q(x)\right)=a^{x}(a \Delta+a-1)^{n+1} Q(x) . \tag{6}
\end{equation*}
$$

Proof. It is well known [6; (10), p. 97] that

$$
\begin{equation*}
\Delta^{m}\left(a^{x} Q(x)\right)=\sum_{i=0}^{m}\binom{m}{i} \Delta^{i} Q(x) \Delta^{m-i} E^{i} a^{x}, \tag{7}
\end{equation*}
$$

where $E=1+\Delta$. A little computation based on (7), along with the well-known fact that

$$
\Delta^{m}(f(x))=\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} f(x+k),
$$

will give us the required result.
Lemma $6[6 ; p$. 13]. If $f(x)$ is a polynomial of degree at most $n+1$, then

$$
\begin{equation*}
(1-\Delta)^{-n-1} f(x)=\sum_{i=0}^{n+1}\binom{n+i}{i} \Delta^{i} f(x) . \tag{8}
\end{equation*}
$$

Henceforth we let N denote the set of non-negative integers.

Theorems

Theorem 1. Let $p(x)$ and $q(x)$ be any polynomials of degree at most ($n-1$) having only non-negative coefficients. Then

$$
\begin{equation*}
\left\|e^{-x}-\frac{p(x)}{q(x)}\right\|_{L_{\omega \omega}(\mathbb{N})} \geqslant\left(4 n e^{n+1}\right)^{-1} . \tag{9}
\end{equation*}
$$

Proof. Let us assume that (9) is false. Let $f(x)=e^{x}$; then there exist polynomials $p(x)$ and $q(x)$ such that at the origin and each positive integer

$$
\begin{equation*}
\left\|\frac{1}{f(x)}-\frac{p(x)}{q(x)}\right\|<\frac{1}{4 n e^{n+1}} . \tag{10}
\end{equation*}
$$

Now at $x=n$,

$$
\begin{equation*}
f(x)=f(n)=e^{n} . \tag{11}
\end{equation*}
$$

At this point

$$
\begin{equation*}
\left|\frac{q(x)}{p(x)}\right|=\left|\frac{q(n)}{p(n)}\right|<\left(\frac{n+1}{n}\right) e^{n} . \tag{12}
\end{equation*}
$$

If (12) were not valid, then (10) would be contradicted.

$$
\text { At } x=n+1 \text {, }
$$

$$
\begin{equation*}
f(x)=f(n+1)=e^{n+1} . \tag{13}
\end{equation*}
$$

From (12), and the assumption that $p(x)$ and $q(x)$ have non-negative coefficients, we have that

$$
\begin{equation*}
\left|\frac{q(n+1)}{p(n+1)}\right| \leqslant\left|\frac{(n+1)^{n-1} q(n)}{n^{n-1} p(n+1)}\right|<\left(\frac{n+1}{n}\right)^{n} e^{n} . \tag{14}
\end{equation*}
$$

From (13) and (14), we get easily for $x=n+1$, that

$$
\begin{equation*}
\frac{1}{4 n e^{n+1}} \leqslant\left(\frac{n}{n+1}\right)^{n} e^{-n}-e^{-n-1}<\frac{p(x)}{q(x)}-\frac{1}{f(x)} \tag{15}
\end{equation*}
$$

The relation (15) clearly contradicts (10) at $x=n+1$, and hence the result is established.

Theorem 2. The rational function

satisfies

$$
r_{m, n}(x)=\frac{\int_{0}^{\infty} t^{n}(t-x)^{m} e^{-t} d t}{\int_{0}^{\infty} t^{m}(t+x)^{m} e^{-t} d t}
$$

$$
\begin{equation*}
\left\|e^{-x}-r_{m, n}(x)\right\|_{L_{\mathrm{e}}[0,1]} \leqslant \frac{m^{m} n^{n}}{(m+n)^{m+n}(m+n)!} \tag{16}
\end{equation*}
$$

Proof. It is easy to check that for $0 \leqslant x \leqslant 1$

$$
\left|\frac{\int_{0}^{\infty} t^{n}(t-x)^{m} e^{-t} d t}{\int_{0}^{\infty} t^{m}(t+x)^{n} e^{-t} d t}-e^{-x}\right|=\left|\frac{\int_{0}^{\infty} t^{n}(t-x)^{m} e^{-t} d t-\int_{0}^{\infty} t^{m}(t+x)^{n} e^{-(t+x)} d t}{\int_{0}^{\infty} t^{m}(t+x)^{n} e^{-t} d t}\right|
$$

$$
=\left|\frac{\int_{0}^{\infty} t^{\prime \prime}(t-x)^{m} e^{-t} d t-\int_{x}^{\infty} t^{n}(t-x)^{m} e^{-t} d t}{\int_{0}^{\infty} t^{\prime \prime}(t+n)^{n} e^{-t} d t}\right|
$$

$$
\leqslant\left|\frac{\int_{0}^{x} t^{n}(x-t)^{m} e^{-1}(-1)^{m} d t}{\int_{0}^{\infty} t^{m}(t+x)^{n} e^{-t} d t}\right|
$$

$$
\begin{equation*}
\leqslant\left|\frac{\int_{0}^{x} t^{\prime \prime}(1-t)^{m} e^{-t} d t}{\int_{0}^{\infty} t^{m+n} e^{-t} d t}\right| \leqslant\left|\frac{\int_{0}^{\infty} t^{n}(1-t)^{m} c^{-t} d t}{(m+n)!}\right| . \tag{17}
\end{equation*}
$$

It is easy to verify that $t^{\prime \prime}(1-t)^{m}$ attains its maximum on $[0,1]$ for

$$
\begin{equation*}
t=\frac{n}{m+n} \tag{18}
\end{equation*}
$$

From (17) and (18), we get the relation

$$
\left|\frac{\int_{0}^{\pi} t^{n}(1-t)^{m} e^{-t} d t}{(m+n)!}\right| \leqslant \frac{m^{m} n^{n}}{(m+n)^{m+n}(m+n)!} .
$$

Hence the result (16) is proved.
Theorem 3.

$$
\begin{equation*}
e^{-x}-\left.\frac{1}{\sum_{k=0}^{n} \frac{x^{k}}{(k)!}}\right|_{L_{\alpha}[0, \infty)} \leqslant 2^{-n} \tag{19}
\end{equation*}
$$

Remark. This theorem is already known (cf. [2]). But the proof presented below is very simple.

Proof. It is known that

$$
S_{n}(x)=\sum_{k=0}^{n} \frac{x^{k}}{k!}=\frac{1}{n!} \int_{0}^{\infty} e^{-t}(t+x)^{n} d t .
$$

Therefore

$$
\begin{aligned}
0 \leqslant \frac{1}{S_{n}(x)}-e^{-x} & =\frac{\int_{0}^{\infty} e^{-t} t^{n} d t-\int_{x}^{\infty} e^{-t} t^{n} d t}{\int_{0}^{\infty} e^{-t}(t+x)^{n} d t} \\
& =\frac{\int_{0}^{x} e^{-t} t^{n} d t}{\int_{0}^{\infty} e^{-t}(t+x)^{n} d t} \leqslant \frac{\int_{0}^{x} e^{-t} t^{n} d t}{\int_{0}^{x} e^{-t}(2 t)^{n} d t}=2^{-n} .
\end{aligned}
$$

Hence (19) is proved.
Theorem 4. Let $p(x)$ be any polynomial of degree at most n having only real negative zeros. Then

$$
\begin{equation*}
\left\|e^{-x}-\frac{1}{p(x)}\right\|_{L_{x}(N)} \geqslant \frac{1}{4 n e^{5}} . \tag{20}
\end{equation*}
$$

Proof. Let us assume that $p(x)>0$ on $[0,2]$. Then according to our Lemma 1, $[p(x)]^{1 / n}$ is concave on $[0,2]$.
Therefore

$$
\begin{equation*}
2[p(1)]^{1 / n} \geqslant[p(0)]^{1 / n}+[p(2)]^{1 / n} . \tag{21}
\end{equation*}
$$

Let us write for $p(x)$ at $x=0,1$ and 2 ,

$$
\begin{equation*}
\left\|e^{x}-p(x)\right\|=\varepsilon \tag{22}
\end{equation*}
$$

Then

$$
\begin{align*}
& p(0) \geqslant 1-\varepsilon, \\
& p(1) \leqslant e+\varepsilon \leqslant \frac{e}{1-\varepsilon}, \tag{23}\\
& p(2) \geqslant e^{2}-\varepsilon \geqslant e^{2}-e^{2} \varepsilon=e^{2}(1-\varepsilon) .
\end{align*}
$$

From (21) and (23), we have

$$
\begin{equation*}
\frac{2 e^{1 / n}}{(1-\varepsilon)^{1 / n}} \geqslant(1-\varepsilon)^{1 / n}+e^{2 / n}(1-\varepsilon)^{1 / n} \tag{24}
\end{equation*}
$$

From (24), we get

$$
\begin{equation*}
\frac{1}{(1-\varepsilon)^{2 / n}} \geqslant \frac{e^{-1 / n}+e^{1 / n}}{2} \geqslant 1+\frac{1}{2 n^{2}} \tag{25}
\end{equation*}
$$

From (25), we obtain

$$
\begin{equation*}
\frac{1}{(1-\varepsilon)} \geqslant\left(1+\frac{1}{2 n^{2}}\right)^{n / 2} \geqslant\left(1+\frac{1}{4 n}\right)=\frac{4 n+1}{4 n}, \text { that is, } \varepsilon \geqslant(1+4 n)^{-1} \text {. } \tag{26}
\end{equation*}
$$

Let us assume that $\left[p_{n}(x)\right]^{-1}$ deviates least from e^{-x} at $x=0,1,2$, and let

$$
\begin{equation*}
\left\|e^{-x}-\frac{1}{p_{n}(x)}\right\|=\delta \tag{27}
\end{equation*}
$$

Then we get from (27), for $x=0,1,2$, by noting the fact that $p_{n}(x)$ has non-negative coefficients and $\delta \leqslant(e n)^{-1}(c f$. [9; Theorem 1]),

$$
\begin{equation*}
\left\|e^{x}-p_{n}(x)\right\| \leqslant \delta e^{2} p_{n}(2) \leqslant \delta e^{4}\left(1-e^{2} \delta\right)^{-1} . \tag{28}
\end{equation*}
$$

But from (22) and (26), we have for every $p_{n}(x)$, at $x=0,1,2$,

$$
\begin{equation*}
\left\|e^{x}-p_{n}(x)\right\| \geqslant(1+4 n)^{-1} . \tag{29}
\end{equation*}
$$

Hence $1 /(1+4 n) \leqslant \delta e^{4}\left(1-e^{2} \delta\right)^{-1}$, which implies that $\delta \geqslant e^{-5}(4 n)^{-1}$.

THEOREM 5. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, a_{0}>0, a_{k} \geqslant 0(k \geqslant 1)$ be an entire function. Then there is a polynomial $p(x)$ of degree at most n for which, for all $n \geqslant 2$,

$$
\begin{equation*}
\left|\frac{1}{\mid f(x)}-\frac{1}{p(x)}\right|_{L_{x(N)}} \leqslant \frac{2}{f(n)} \tag{30}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
p_{n}(x)=\left.\sum_{k=0}^{n}\binom{x}{k} \Delta^{k} f(x)\right|_{x=0} . \tag{31}
\end{equation*}
$$

Then, clearly,

$$
\begin{equation*}
f(x)=p_{n}(x), \quad x=0,1,2, \ldots, n . \tag{32}
\end{equation*}
$$

Therefore, for $x=0,1,2, \ldots, n$,

$$
\begin{equation*}
\left\|\frac{1}{f(x)}-\frac{1}{p_{n}(x)}\right\|=0 \tag{33}
\end{equation*}
$$

For $x \geqslant n+1$,

$$
p_{n}(x)=\left.\sum_{k=0}^{n}\binom{x}{k} \Delta^{k} f(x)\right|_{x=0}>f(n) .
$$

Therefore for $x=n+1, n+2, n+3, \ldots, 2 n, 2 n+1, \ldots$,

$$
\begin{equation*}
\left\|\frac{1}{f(x)}-\frac{1}{p_{n}(x)}\right\| \leqslant \frac{1}{f(n)}+\frac{1}{f(n)}=\frac{2}{f(n)} \tag{34}
\end{equation*}
$$

The relation (30) follows from (33) and (34).
THEOREM 6. Let $0=a_{0}<a_{1}<a_{2}<\ldots<a_{n}<a_{n+1}<\ldots$ be any given sequence of real numbers. Let $f(x)$ be any continuous, non-vanishing and monotonic increasing
function of x. Then there exists a sequence of polynomials $p_{2 n}(x)$ for which at $x=a_{0}$, $a_{1}, a_{2}, \ldots, a_{n}, a_{n+1}, \ldots$, for all n,

$$
\begin{equation*}
\left\|\frac{1}{f(x)}-\frac{1}{p_{2 n}(x)}\right\| \leqslant \frac{2}{f\left(a_{n}\right)} \tag{35}
\end{equation*}
$$

Proof. Set

$$
\begin{equation*}
p_{2 n}(x)=\sum_{k=0}^{n} l_{k}^{2}(x) f\left(x_{k}\right), \tag{36}
\end{equation*}
$$

where

$$
l_{k}(x)=\frac{\left(x-a_{0}\right)\left(x-a_{1}\right) \ldots\left(x-a_{k-1}\right)\left(x-a_{k+1}\right) \ldots\left(x-a_{n}\right)}{\left(x_{k}-a_{0}\right)\left(x_{k}-a_{1}\right) \ldots\left(x_{k}-a_{k-1}\right)\left(x_{k}-a_{k+1}\right) \ldots\left(x_{k}-a_{n}\right)}
$$

Therefore, for $x=a_{0}, a_{1}, a_{2}, \ldots, a_{k}, \ldots, a_{n}$,

$$
\begin{equation*}
f(x)=p_{2 n}(x) \tag{37}
\end{equation*}
$$

For $x=a_{n+1}, a_{n+2}, a_{n+3}, \ldots$ and so on, it is easy to check that

$$
\begin{equation*}
p_{2 n}(x)>f(x) . \tag{38}
\end{equation*}
$$

Now we get from (37) and (38) at $x=\left\{a_{j}\right\}_{j=0}^{\infty}$ that

$$
\left\|\frac{1}{f(x)}-\frac{1}{p_{2 n}(x)}\right\| \leqslant \frac{1}{f\left(a_{n}\right)}+\frac{1}{f\left(a_{n}\right)}=\frac{2}{f\left(a_{n}\right)}
$$

Hence the result (35) is established.
Theorem 7. Let $p(x)$ be any polynomial of degree at most n having only nonnegative coefficients and $q(x)$ be any polynomial of degree most n. Then we have, for all $n \geqslant 1$,

$$
\begin{equation*}
\left\|e^{-x}-\frac{p(x)}{q(x)}\right\|_{L_{=0}[0,1]} \geqslant\left[e+2^{-1} e^{2} 4^{n}(n+1)!\right]^{-1} \tag{39}
\end{equation*}
$$

Proof. Let us assume that p / q deviates least from e^{-x} in the interval $[0,1]$; then set

$$
\begin{equation*}
\left|e^{-x}-\frac{p(x)}{q(x)}\right|=\varepsilon \tag{40}
\end{equation*}
$$

We assume without loss of generality that $q(x)>0$, on $[0,1]$. From (40), it follows that, on $[0,1]$,

$$
\begin{equation*}
\left|e^{x}-\frac{q(x)}{p(x)}\right| \leqslant \frac{\varepsilon e^{x}|q|}{|p|} \leqslant \frac{\varepsilon e|q|}{|p|} . \tag{41}
\end{equation*}
$$

It is well known that e^{x} can be approximated by its nth partial sum on $[0,1]$ with an error $(n!)^{-1}$. Hence, clearly,

$$
\begin{equation*}
\varepsilon \leqslant \frac{4}{n!} \tag{42}
\end{equation*}
$$

From (40),

$$
\begin{equation*}
\frac{|p|}{|q|} \geqslant \frac{1}{e^{x}}-\varepsilon \geqslant \frac{1}{e}-s=\frac{1-\varepsilon c}{e} \tag{43}
\end{equation*}
$$

on the interval $[0,1]$. From (41), (42) and (43),

$$
\begin{equation*}
\left|e^{x}-\frac{q(x)}{p(x)}\right| \leqslant \frac{s e^{2}}{1-c e} \tag{44}
\end{equation*}
$$

Set $p(x)=\sum_{k=0}^{n} a_{k} x^{k}, a_{k} \geqslant 0(k \geqslant 0)$; then, from (44) on $[0,1]$,

$$
\begin{equation*}
\left|e^{x} p(x)-q(x)\right| \leqslant \frac{\varepsilon e^{2}}{1-\varepsilon e} p(x) \leqslant \frac{\varepsilon e^{2} p(1)}{1-\varepsilon e} \tag{45}
\end{equation*}
$$

Now by applying Lemma 2 to $e^{x} p(x)$, we obtain on $[0,1]$

$$
\begin{equation*}
p(1) \frac{\varepsilon e^{2}}{1-\varepsilon e} \geqslant\left\|e^{x} p(x)-q(x)\right\| \geqslant \frac{\operatorname{Min}\left|(D+1)^{x+1}(p(x))\right|}{(n+1)!4^{n} 2^{-1}}, \tag{46}
\end{equation*}
$$

where as usual $D=d / d x$.
It is not hard to check that

$$
\begin{equation*}
\operatorname{Min}\left|(D+1)^{n+1} p(x)\right| \geqslant \sum_{k=0}^{n} a_{k}=p(1) . \tag{47}
\end{equation*}
$$

From (46) and (47),

$$
\begin{equation*}
\frac{v e^{2}}{1-\varepsilon e} \geqslant \frac{2}{4^{\prime \prime}(n+1)!} \tag{48}
\end{equation*}
$$

From (48), it follows easily that

$$
\varepsilon \geqslant\left\{e+2^{-1} e^{2} 4^{n}(n+1)!\right\}^{-1}
$$

Hence the result (39) is established.

Theorem 8. Let $p(x)$ and $q(x)$ be any polynomials of degrees at most $n-1$ where $n \geqslant 2$. Then we have

$$
\begin{equation*}
\left|e^{-x}-\frac{p(x)}{q(x)}\right|_{L_{n}(N)} \geqslant \frac{(e-1)^{n} e^{-4 n} 2^{-7 n}}{n(3+2 \sqrt{ } 2)^{n-1}} \tag{49}
\end{equation*}
$$

Proof. Let us denote for any given $p(x)$ and $q(x)$ at $x=0,1,2,3, \ldots, n, n+1, \ldots$,

$$
\begin{equation*}
\left|e^{-x}-\frac{p}{q}\right|=\varepsilon \tag{50}
\end{equation*}
$$

Normalize $q(x)$, such that, for $k=0,1,2, \ldots, n, \ldots, 2 n$,

$$
\begin{equation*}
\operatorname{Max}|q(k)|=1 . \tag{51}
\end{equation*}
$$

From (51) and Lemma 3, we obtain,

$$
\begin{equation*}
\operatorname{Max}_{[0,2 n]}|q(x)| \leqslant n 4^{2 n} . \tag{52}
\end{equation*}
$$

From (52), we get by applying Lemma 4 that

$$
\begin{equation*}
\operatorname{Max}_{[0,4 \pi]}|q(x)| \leqslant n 4^{2 n}(3+2 \sqrt{2})^{n-1} \tag{53}
\end{equation*}
$$

From (50) and (53), we have, for all $x=0,1,2, \ldots, 4 n$,

$$
\begin{equation*}
\left\|e^{-x} q(x)-p(x)\right\| \leqslant \varepsilon n 4^{2 n}(3+3 \sqrt{2})^{n-1} \tag{54}
\end{equation*}
$$

Set

$$
R(x)=e^{-x} q(x)-p(x)
$$

Then we get by using Lemma 5 that

$$
\begin{equation*}
\Delta^{n} R(x)=\Delta^{n}\left(e^{-x} q(x)-p(x)\right)=\Delta^{\prime \prime}\left(e^{-x} q(x)\right)=e^{-x}\left(\frac{\Delta+1-e}{e}\right)^{n} q(x) \tag{55}
\end{equation*}
$$

On the other hand it is well known that

$$
\begin{equation*}
\Delta^{n} R(x)=\sum_{t=0}^{n}(-1)^{n-1}\binom{n}{l} R(x+l) \tag{56}
\end{equation*}
$$

From (54) and (56), we get for $x=0,1,2, \ldots, n, \ldots, 3 n$,

$$
\begin{equation*}
\left|\Delta^{n} R(x)\right| \leqslant \sum_{t=0}^{n}\binom{n}{l}|R(x+l)| \leqslant 2^{3 n} e n 4^{n}(3+2 \sqrt{ } 2)^{n-1} \tag{57}
\end{equation*}
$$

Now we have from (55) and (57), for $x=0,1,2, \ldots, n, n+1, \ldots, 3 n$,

$$
\begin{equation*}
\left|(\Delta+1-e)^{n} q(x)\right| \leqslant e^{x} e^{n} 2^{3 n} e n 4^{n}(3+2 \sqrt{2})^{n-1} \leqslant \varepsilon e^{s n} 2^{5 n} n(3+2 \sqrt{ } 2)^{n-1} \tag{58}
\end{equation*}
$$

Set

$$
S(x)=(\Delta+1-e)^{n} q(x)
$$

Then for $x=0,1,2, \ldots, n, n+1, \ldots, 2 n$, we get by using Lemma 6 , that

$$
\begin{align*}
|q(x)|=\left|(\Delta+1-e)^{-n} S(x)\right| & =\left|(1-e)^{-n}\left(1-\frac{\Delta}{e-1}\right)^{-n} S(x)\right| \\
& \leqslant\left|(1-e)^{-n} \sum_{i=0}^{n}\binom{n+i}{i}\left(\frac{\Delta}{e-1}\right)^{i} S(x)\right| \\
& \leqslant(e-1)^{-n}\left|\sum_{i=0}^{n}\binom{n+i}{i} \Delta^{\prime} S(x)\right| \\
& \leqslant(e-1)^{-n} \varepsilon e^{4 n} 2^{5 n} n(3+2 \sqrt{2})^{n-1} \sum_{i=0}^{n}\binom{n+i}{i} \\
& \leqslant(e-1)^{-n} \varepsilon e^{4 n} 2^{7 n} n(3+2 \sqrt{2})^{n-1} . \tag{59}
\end{align*}
$$

From (59), we get for $x=0,1,2,3, \ldots, 2 n$,

$$
\begin{equation*}
\operatorname{Max}|q(x)| \leqslant s e^{4 n} 2^{\tau n} n(3+2 \sqrt{2})^{n-1}(e-1)^{-n} \tag{60}
\end{equation*}
$$

From (51) and (60) we get

$$
\varepsilon \geqslant(e-1)^{n} e^{-4 n} 2^{-7 n} n^{-1}(3+2 \sqrt{2})^{-n+1}
$$

Hence (49) is established.
We would like to thank the referee for his suggestions.

References

1. S. N. Bernstein, Leçons sur les propriétés extręmales et la meilleare appraximation des fonctions analytiques d'une variable réelle (Gauthier-Villars, Paris, 1926).
2. W. J. Cody, G. Meinardus and R. S. Varga, "Chebyshey rational approximation to e^{-x} in $[0,+\infty)$ and applications to heat cenduction problems ", J. Approximation Theory, 2 (1969), 50-65.
3. P. Erd/s and A. R. Reddy, "Rational approximation on the positive real axis", Proc. London Math. Soc., 31 (1975), 439-456.
4. P. Erdós and A. R. Reddy, "Rational approximation ", Adkances in Mathematics, 21 (1976), 78-109.
5. G. Freud, D. J. Newman and A. R. Reddy, "Chebyshev rational approximation to $e^{-|x|}$ on the whole real line ", Quart. J. Math. (Oxford), 28 (1977), 117-122.
6. C. Jordan, Calculus of Finite Difficences (Chelsea Publishing Co., New York, 1947).
7. D. J. Newman, " Rational approximation to $e^{-x "}$, J. Approximation Theory, 10 (1974), 301-303.
8. D. J. Newman," Rational approximation to e^{x} with negative zeros and poles ", \boldsymbol{J}, Approximation Theory, 20 (1977) to appear.
9. D. J. Newman and A. R. Reddy, "Rational approximation to e^{-x} on the positive real axis ", Pacific J. Math., 64 (1976), 227-232.
10. A. R. Reddy, "A contribution to rational approximation ", J. London Math. Soc., 14 (1976), 441-444.
11. A. F. Timan, Theory of Approximation of Functions of a Real Variable, (Macmillan, New York, 1963).

Hungarian Academy of Sciences, Budapest, Hungary

 andYeshiva University, New York, New York 10033 and

Institute for Advanced Study, Princeton, New Jersey 08540.

[^0]: Received 30 July, 1976; revised 23 November, 1976 and 21 December, 1976.

