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Abstrac t

This paper deals with the set-theoretical analog to a
problem from coding theory . Let S be a set of r-subset s
of an n-set X . Suppose every (n-j)-subset of X contain s

some binomial number (Y) of members of S, where x

depends on which (n-j)-set is considered . Then it is known
that for n sufficiently large S must be exactly all th e
r-subsets of some k-subset of X . In this paper we
consider some extremal problems of determining the bes t
bounds and extremal configurations achieving them . In
particular, we get bounds for n which depend on r and

= ISI, but essentially not on j . In the r = 2 case ,
we obtain much sharper results, characterizing in som e
cases all the exceptions .

1 . Introduction.

Suppose H is a set of qk points in affine n-space over GF(q) .

Further suppose that every hyperplane contains either 0, q k or

k-
1

q

	

points of H . Then MacWilliams [5] showed that H must be a

k-dimensional subspace . We say that the subspace is characterized by it s
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intersections with hyperplanes . Gleason generalized the problem, an d

asked whether one could characterize a set S of the appropriate number

of r-subspaces by its intersections with (n - j)-subspaces . This was

shown for r = 1 or j = 1 in [7] . In [6] the answer was shown to b e

true in general, for arbitrary r and j if n is sufficiently large ,

depending on k, r and j .

There are a number of related questions concerning simila r

characterizations of, for example, other geometric configurations . But

one can also consider other systems (or more formally combinatorial

geometries) . In [6] such a generalization is made, and includes, in

particular, the set-theoretic analog to the linear question . It is this

question which we are concerned with here . In [6] an upper bound is foun d

on the minimum value of n (depending on r, j and k) which implie s

that the appropriate structure, a clique (see below), is characterized

by intersections. Because of the symmetry and simplicity of the Boolea n

algebra of sets, we are able to improve the bounds on n to be sharp ,

to weaken the conditions by eliminating the restriction on

	

and

to construct extremal examples where S is not characterized . We do

this essentially uniformly in j . However, for particular j bette r

results can be obtained . For r = 2, the case of ordinary graphs, w e

can "almost " completely characterize the exceptions for j very larg e

or very small. (See Section 5 below.) The results are stated below

and in Section 5 .

An r-uniform hypergraph,

((x)

	

r1, is a pair (X,€), when X is a

set and

	

a subset of Ir) .

	

denotes the set of all r-subset s

(subsets of r elements) \of x) .We use the term "hypergraph " through-

out this paper to mean r-uniform hypergraph when r is understood . r

is the rank of the hypergraph . A section subhypergraph, or just subgraph, is a



pair (Y,ey), where Y .c X and ey = g n () . (Y,ey) is said to be

the section by Y. A k-clique is a hypergraph (X,g) with IXI = k and

g =

	

. In this paper we shall extend the terminology and refer to a

hypergraph (X,g) as a k-clique also when X has a subset Y of k

elements with g = (r) . A clique is a hypergraph which is a k-clique

for some k. This terminology is compatible with the usual terminology [2] .

If (X,g) is a k-clique of rank r, then it satisfies th e

following properties for any j > 1, which we denote by P(n,i,r,j) :

(i) 1XI = n

(ii) lei = e

(iii) (X,g) is r-uniform

(iv) For every (n - j)-subset S c X,

n (r)I
E i(

T
) : 0

	

h <n} .

If for some class of hypergraphs those satisfying P(n,i,r,j) ar e

cliques, then we say that P(n,i,r,j) characterizes cliques for that class .

In this case (X,g) would be a k-clique with k determined by i = () .

Following is a special case of a result proved in [6] :

THEOREM 1.1. If n > ri + j - 1 and i _ (r) for some k, then

F(n,i,r,j) characterizes k-cliques of rank r .

The following examples show that P(n,i,r,j) does not alway s

characterize k-cliques, even when i = (k 1 .

Example A . Let G = (X,g), where IXI = n = 2 + r - 1, e = = ( r) ,
for some k, X =

{x1,x2, . .
.,xr-1,yl,

. . .,y2), and g is the set of all

edges [xl, . . ,xr-1'yi}, 1

	

i

	

G satisfies P(n,i,r,j) fo r

(k-1
r-1)'



Example B. Let G = (X,g), where IXI = ir, g consists of 2

disjoint r-subsets of X. Then G satisfies P(n,r,i,j) for n = fir ,

and any j ›n - 2r, 2 arbitrary .

Example C . Let G be as in Example B above, except that we

choose i = (k) + 1 for some k. Then G satisfies P(n,i,r,l) .

The principal result of this paper is the following :

THEOREM 1.2. P(n,i,r,j) characterizes cliques of rank r in

each of the following cases :

(a) j = 1, i = /

	

for some k .

(b) n > + r, 1 /< j

	

r, n - j > 2r, n > r/2 (r 2 2) + 3r - 2 .

(c) n

	

+ r, n - j > 2r, r < j .

	

/

J

The lower bounds given in (c) are best possible, and in fac t

Examples A and B above are extremal cases not satisfying these conditions .

In (a) the requirement that i = (k) is needed in view of Example C .

However, the last inequality on n in (b) is almost surely not necessary .

We do not have best possible results in this case .

	

/
Note that we need not require E to be a binomial value

\r/
in

(b) and (c) . This follows from the theorem . If we do make thi s

assumption then we can prove that P(n,r,e,j) characterizes cliques :

THEOREM 1.3. Let n > i + r, n - j > 2r, and assume i = (k)

T

for

some k. Then P(n,i,r,j) characterizes k-cliques of rank r .

For the case r = 2 there are even stronger results in Section 5 .

There (in Theorem 5 .1) we characterize all exceptions for r = 2, j = 2 ,

and practically all of them for fixed j or for fixed n - j (Theorem s

5.2 and 5 . 3) . The final details of this last result involves some



diophantine alalysis .

2. PRELIMINARY RESULTS

Let G = (X,g) be an r-uniform hypergraph with IXI = n, 181 = 2 > 1 .

Throughout the remainder of the paper we assume G satisfies P(n,2,r,j) .

For any vertex x E X, d(x) is defined to be the number of edges i n

G containing x. d(x) is called the degree of x. If S c X, then

L(S) is the number of edges of G contained in S . For any x e X, Gx

denotes the section of G by X - {x], i .e . the subgraph

obtained by deleting x . We will let d = minx d(x) .

LEMMA 2 .1. If n > i + r, then at least r vertices of G have

degree at most r - 1 .

Proof . If not, more than n - r vertices have degrees at least r .

Hence it = Ex d(x) > Ed(x)>r d(x) > (n - r)r > er, a contradiction .

LEMMA 2.2. If n > i, then d < r .

Proof . If d > r, then it = Ex d(x) > nr, a contradiction .

LEMMA 2 .3 . Let H = (Y,g) be an r-uniform hypergraph such that

( I;)(i)

	

=

	

for some k.

(ii) If y Y, then d(y) = 0 or d(y)

	

( I; : il .
Then H is a clique .

	

The proof is direct by counting (or see [6]) .

LEMMA 2.4. Let S, S' be subsets of X with ISI = IS'l = n - J .



Then if 1D(S) - D(S')l < r, we have ID(S) - D(S')I < 1 . Further ,

ID(S) - D(S')I = 1 implies that (D(S),D(S')3 = (0,1) .

Proof . This follows from P(n,,,r,j) and the fact that distinc t

binomial coefficients of the form
\m/

differ by at least r unles s

they are 1 and 0, respectively .

LEMMA 2 .5 . If there are j vertices of degree 0 in G, then G

is a clique .

Proof . Let v be any vertex of positive degree in G, and le t

v = (vl, . . .,vj} be a set of j vertices of degree O . Then

IE = D(X) = D(X - V) = for some k by P(n,i,r,j) . If v has

positive degree, then if V' = (v,v2, . . .,v .), we have d(v) = (I;) - D(X - V

	

OT

	

(i)

	

for some k' < k . Thus d(v)

	

T

_ i

	

Hence by Lemma

2 .3  G is a clique .

LEMMA 2 .6. If i
= (k)

for some k, and j = 1, then G is

a k-clique of rank r .

Proof . If x E X is a vertex of positive degree, then b y

D(X - (v)) is at most (k - 1) . Hence d(x) > (rk - 1)
- 1 ,

and G is a clique by Lemma 2 .3 .

		

LEMMA 2.7 . If d = 0, and if either j = 1 or n - j > 2r, then

G is a clique .

Proof . Let d(v) = 0, v E X. Then if j = 1, DOC' {v}) = i
= (k)

for some k, by P(n,i,r,1), and by Lemma 2 .6 G is a clique .

Recall that we are assuming G satisfies P(n,2,r,j),

	

and

now must prove if d = 0 and n - j > 2r, then G is a clique . The



j = 1 case of this statement is true . Assume, then, by induction tha t

j > 1 and it holds for j - 1 . Let x be a vertex of positive degree

in G, and consider Gx.

Clearly Gx satisfies P(n - 1,1',r,j - 1), where

	

= - d(x) ,

and (n 1) - (j - 1) > 2r . Thus by the induction hypothesis, Gx must

be a clique . Since this statement did not depend on the choice of x,

Gx is a clique for each x of positive degree .

If G has only one edge, there is nothing to prove . So let e l

and e2 be two edges of G . If all vertices of positive degree are

contained in el U e2, then since n - j > 2r, we can find j vertices

of degree 0, and G is a clique by Lemma 2 .5 . So we assume that fo r

every two edges, el, e2 there is a vertex x of positive degree not in

el U e2. Since Gx is a clique, the section by el U e2 is

a clique . This is true for every two edges of G . Thus G is a

clique .

The following development will show that under the assumptions o f

Theorem 1.2, we must have d = 0, thereby establishing Theorem 1 .2, by

the previous lemma. Note that we have part (a) (j = 1) of the theorem

already by Lemma 2 .6 . The remainder of this section is devoted t o

proving that d = 1 implies j = 1 .

LEMMA 2.8 . If n - j > 2r and d = 1, then for any vertex x

either d(x) = 1 or d(x) > r .

Proof . Let v be a vertex with d(v) = 1 . Let x v be any

vertex with d(x) < r - 1. Suppose there are two edges el and e2

containing x but not v. Let S be an (n - j)-set containin g

el U e2 but not v, and let S' = (S

	

{x)) U (v} . As d = 1, we

have 1 < D(S) - D(S') < r - 1. Since D(S) > 2, this contradicts

-87-



Lemma 2 .4 . Thus no such pair el, e2 exist . If d(x) > 1, then ther e

must be exactly one edge, e l, containing x and not v, and we hav e

d(x) = 2. If e is the edge containing x and v, and S is a n

(n - j)-set containing e l U e, then D(S)

	

r + 1 by P(n,i,r,j) an d

the fact that (k > 1 implies I k > r + 1 . Thus there is anothe r

edge e3 not containing x . Let S" contain el U e 3 but not v . Let

S"' = (S " - {x}) U {v} . Then D(S " ) - D(S"') = 1, but D(S " ) > 2 ,

contradicting Lemma 2 .4 . Thus d(x) < 1 and the proof is complete .

LEMMA 2.9 . If d = 1, j > 1, n - j > 2r, then no two vertices of

degree 1 are contained in a common edge .

Proof . Suppose u and v are two vertices of G of degree 1

on a common edge e . The graph Gu satisfies P(n - 1, 2 - 1, r, j - 1) ,

with (n - 1) - (j - 1) > 2r, and has a vertex of degree 0 . By Lemma

2 .7 Gu must be a clique, so 2 = (k) + 1 for some k . If i = 1, then

d would be 0 by n - j > 2r . Soi > 2 . Let S be an (n - j)-set

containing e with D(S) > 2 . Now the section of Gu by

(t
r
)S - {u} must be a clique, hence D(S) =

	

+ 1 for some t > r . This

contradicts P(n,Z,r,j) .

LEMMA 2 .10 . Let d = 1, j > 1, n - j > 2r, and suppose there are

two vertices of degree 1 in G, say a,b, with edges ea and eb

containing them, respectively, ea # eb . Then (ea - eb ) U (eb - ea ) - (a,b} c

for every edge e ea,eb .

Proof . If ((ea - eb ) U (eb - ea)) - {a,b} = 0, we are done . So

assume it isn't empty. Let x E (ea - eb) - {a} . Then Gx satisfie s

P(n - 1,

	

r, j - 1) where i' = i - d(x), (n - i) - (j - 1) > 2r ,

and the degree of a in Gx is 0 . By Lemma 2.7 Gx is a clique, with



d(b) = 1. Thus Gx has only one edge, eb . Hence all edges e in G

other than ea and eb contain x . A similar . argument works for the

vertices y E (eb - ea) - (b} .

LEMMA 2 .11 . If d = 1, j > 1, n - j > 2r, n > Z , + r, and if

-e a , e b contain vertices a,b of degree 1, respectively, then

lea - eb l > 2 .

Proof . First note that a E ea - eb , by Lemma 2 .9 . If l 'ea - eb 1 = 1 ,

then lea n ebl = r - 1 . Let ea fl eb = (cl, . . .,cr-1) . If c is any

other vertex of degree 1, and e c is the edge containing c, then b y

Lemma 2 .9 e b is distinct from ea and eb . By Lemma 2 .10 applied t o

a and c, (e b - ea) - (c} c e b . This can only occur if e b = ( c,cl, . . .,cr-1} .

Let p denote the number of vertices of degree 1, and q the numbe r

of vertices distinct from the c i and of degree at least r . The n

q = n - p - (r - 1) (by Lemma 2 .8 and the remarks above) . Counting

degrees we get ri > qr + p + (r - 1)p = r(p + q) . This gives n < i + r - 1,

a contradiction, completing the proof .

Now consider the hypergraph G, and let n > i + r, n - j > 2r, j > 1

and d = 1. Then i > 2, or there would be vertices of degree 0 . Le t

a1,a2, . . .,ax be all the vertices of degree 1 and let e i be the edge

containing a i for each i, where e i # ej if i i j by Lemma 2 .9 .

By Lemmas 2 .8 and 2 .1, x > r. But by Lemma 2.11 for each i = 2,3, . . .,x ,

there is a vertex ui i al in each e l - ei. By Lemma 2 .10, ui E e j

for every j # i . Thus ui # uj for i i j, and el contains al , ui ,

2 < i < x, and x < r . Then x = r . Replacing el by an arbitrary ei

above, we see that for each i, 1 < i < r, there is a ui contained in

all e j , j # i, and not contained in e i . In fact, then



ei = (ai l U (ul, . .
.,ui-1'ui+1,

. . .,ur} for each i . By Lemma 2 .10, all

the ui are contained in every edge of G other than the e i, the only

possibility for which is therefore (u1, . . .,ur) . But as d = 1, ther e

can be no other vertices than the a . and u . . This contradict s

n - j > 2r . So we have proved the following :

LEMMA 2.12 . If n > 2 + r, n - j > 2r, and d = 1, then j = 1 .

3 . PROOF OF THEOREM 1 . 2

We recall that we are still assuming that G satisfies P(n,i,r,j) .

LEMMA 3.1 . If n > 2 + r, n - j > 2r, then d > 0 implies j < d .

Proof . We prove this by induction on d . For d = 1 the result s

of the last section establish this result . So we assume d > 1 and tha t

the lemma holds for all smaller values of d . Suppose j > d. We will

obtain a contradiction . Let v be a vertex of degree d, and le t

e1 , . . .,ed be the edges containing v .

Claim: If x e j for some j, and x e
Ua 1 ei , x e e for every

edge e in G, e

	

e j . For consider Gx. It satisfies P(n- 1,2',r,j -1) wher e

= i - d(x) . We have (n - 1) > (i - 1) + r >

	

+ r, (n - 1) -(j - 1) > 2r ,

and minimum degree d'

	

d, as v has degree less than d in Gx. But

j > d implies (j - 1) > (d - 1) > d' . Thus by induction the minimum

degree of Gx must be O. Then Gx is a clique, by Lemma 2.7 . The

degree of each vertex of positive degree in Gx is the same as the degre e

of v in Gx, which is at most d - 1 ‹r - 2 < (r - 1) for k > r .

Hence Gx can contain only one edge, e j , and x is contained in all

other edges, as claimed .



Now let Y = ái-1 e i,

of G other than the e i

S =
-
d

1 e
i . By the Claim above, every edg e

contains Y - S . Since d is minimal, ther e

must be at least one edge other than the e i, or vertices in Y - S

would have smaller degree . So IYI - ISI 'c r, and IYI < r + ISI . On

the other hand, since d > 1, we have IYI > r + 1. If ISI = 1, we

get 1YI = r + 1. But then !Y - e j 1 = 1 for each j . By the Claim

in the previous paragraph, the Y - e j , 1 <j <:d, are disjoint . Thus

Y = S U Ujd_I ( Y (Y - e .), whence 1YI = 1 + d, and d = r . This contradict s

d < r - 1 (Lemma 2 .2) . We conclude then that IS' > 1 .

Let Z = Y - S, and let ISI = s > 1, IZI = z . By the Claim above ,

we certainly have Y = e 1 U e2 , and IYI > r + 1, z > r + 1 - s, and

z + 2s < 2r . Let x E S, x v (recall s > 1) . Gx has the vertex v

of degree 0, and satisfies P(n - 1,2',r,j - 1), i' = i - d(x) . Since

(n - 1) - (j - 1) > 2r, Lemma 2 .7 implies that G x is a clique .

We can use the Claim above to conclude that Z is contained in ever y

edge of Gx. Hence Gx contains at most one edge .

Let f be the number of edges different from the e i and not

contained in Z . (Since Z c Gx which has at most one edge, we hav e

f = i - d or i - d - 1.) By the Claim, all vertices of Z are in al l

of these f edges . On the other hand, for each x E S, x v, at most

one of the f edges does not contain x (as G x has at most one edge) .

Now we count edge-vertex incidences for the f edges . The total i s

rf. The vertices of Z account for zf of them, and the vertices o f

S - (v) for at least (s - 1) (f - 1) of them, by the remarks above . If

there are t vertices not in Y, each has degree d at least, and eac h

is clearly contained only in edges accounted for by f . Thus these vertice s

account for at least td incidences . We get :



rf > zf + (s - 1)(f - 1) + td .

This gives :

n=t+s+z <á((r - z)f - (s -1)(f - 1))+s+z "

=á((r - z - s+l)f+s - 1)+z+s .

Recalling that z > r + 1 - s and z + 2s < 2r, we ge t

n< s d +z+s<2r.

But this contradicts n - j > 2r, and completes the proof of the lemma .

COROLLARY 3 .2 . If n > 2 + r, n - j > 2r, and j > d, then d = 0

and G is a clique . In particular, if j > r, then G is a clique .

This establishes part (c) of Theorem 3 .1. It remains only to prove

(b) . We consider the case 1 < j < d < r, and show that it essentiall y

cannot occur .

LEMMA 3.3. Let 1 < j < d < r, and n - j > 2r. If n > r2 - r + 1 ,

then for every vertex x, either d(x) = d or d(x)

	

r .

Proof . Let v be a vertex with d(v) = d, and x a vertex wit h

d(x) < r - 1 . Let S be an (n - j)-set excluding v, and including x

and all edges of x not containing v. If there is only one such edg e

(d(x) = d + 1), take S to contain it and any other edge not containin g

v . Such a set S exists because the greatest number of vertices x

could determine this way is (r - 1)(r - 1) + 1 = ( r2 - r +1) - (r - 1) < n - j .

(Or 2r if d(x) = d + 1) . Let S' _ (S - {x}) U {v} . Then

0 < D(S) - D(S') < d(x) . By Lemma 2.4, either d(x) = d or D(S) = 1 . But if

d(x) > d, D(S) > 2, as d > j > 1 . Thus d(x) = d, and the proof is complete .



LEMMA 3.4. Let 2 = j	 d r, n > r/2 \r 2 2 I + 2r + 1, n	 2 + r. Then

there are two vertices of degree d not on a common edge .

Proof . Suppose not. Let v be a vertex of degree d . Let t be

the number of vertices of degree d . Then since all of them are adjacen t

to v, we have t < d(r - 1) + 1 < r 2 - 2r + 2 .

Now choose another vertex u with d(u) = d. (It exists by Lemma

2.1 and Lemma 3 .3.) Let S = X - (v,u). Then D(S) = (I;) for some k

, andi = r + 2d - a, where a > 1 is the number of edges u and v

have in common. Since , i and d are independent of the choice of u

and v, a will be also except possibly in case
\k/=

0 or 1 . Then
r

an exception could occur if there is some pair u' and v' incident t o

all edges of G, and another pair incident to all but one edge of G ,

giving i = 1 + 2d - a = 2d - (a - 1), where (a - 1) is the number o f

edges common to u' and v' . But this implies that there are at mos t

2d edges, and 2 < 2d . Since nd Br, we have n 2r, which violate s

the assumptions that n > 1/21 r 3 3) +. 2 and r > 3 . Thus this situation

cannot occur, and a is independent of the choice of u and v .

We claim now that there is some vertex of degree c >d. For if not ,

then every vertex would have degree d, every pair would be in a common

edges, and the edges would form a balanced incomplete block design wit h

standard parameters v,b,k,r,X equal to n,€,r,d,a respectively . But

n > i + r violates Fisher's inequality for such designs . Thus some

vertex must have degree c > d .

Let w be a vertex such that d(w) = c, and let v and u ' have

degree d, as before . Let y be the number of edges common to v an d

. w. If S'= X - {w,v), D(S') =
r

for some h. Then

	

= (h)

r

+ d + c - y .

Recalling from above that i = k + 2d - a, we get



(

r)

+d+c - y = l
r

l+2d-a, or c=(k)

	

(r)+d-a+y .

Fix v and u' of degree d . Then if w has d(w) = c > d, as

above, there are three possibilities :

(i) h > k

(ii) h < k

(iii) h = k .

	

In case (i) we get (III)

	

(TI = d - c - a + y < r - 3,

(r

a\

s

a > 1, y < d < r - 1, and c > d . This only happens when

	

= 0 and

(h) = 1
. But just as we argued above, this implies v and u /' are

incident to all edges, and n < 2r, contradicting the assumptions o f

the lemma. Hence (i) doesn't occur for any w .

Let w satisfy (iii) . Then c = d + y - a, and as c > d an d

a > 1, we get y > 2 . So each w satisfying (iii) has at least tw o

edges in common with v. Let m denote the number of vertices satisfying

(iii) . The number of pairs (w,e) where e is an edge containing v

and w a vertex, distinct from v is d(r - 1) . At least 2m of these

pairs arise from vertices w satisfying (iii) . Thus in
d(r2- 1) .

In case (ii) we have c = (r) )

	

+ d - a + y > ( r k _ i) + 1

(as d > a) . Then counting edge-vertex incidences we ge t

rB > [td] + [(n - m -

	

((k -
_

i

I + 11] + [m(d + 1) ]

(the three terms come from the three kinds of verices, namely degree d ,

case (ii) and case (iii), respectively . )

This gives :

m(d + 1) + (n - m) (( k , 1) + 1) - r Z

(k	
l

+ 1 - d

	 /

r 1

t >



Together with t < r2 - 2r + 2 this gives r3 - 3r2 + 23r - 45 < 0, a

contradiction as r > 3 .

This contradiction finally confutes the original supposition tha t

the lemma was false, and thus completes the proof of Lemma 3 .4 .

To simplify this we wish to use the inequality k r + 3 . We
k +2d - a

obtain this by observing again nd < 2r, or n <

/

r	 d

\

	 r <

r (r 2 2) + 2r if k < r + 2, contradicting n > ;(r 2 2) + 2r + 1 .

	

We also recall

m d(r	 2	 1) and t < r2 - 2r + 2 from above . Then our expression

gives



LEMMA 3 .5. If 2 = j d <r, n>2+r, and n>r/2(r 2

	

+ 2r + 1 ,

then E = \r/ + 2d for some k .

	

\\

Proof . This follows directly from Lemma 3 .4 .

LEMMA 3 .6 . If 2 = j < d e r, n > + r, and n .> r/21r 2 2' + 2r + 1, ,

then no two vertices of degree d have a common edge .

Proof . Suppose d(x) = d(y) = d, and they have a edges in common .

Then if S = X - (x,y), we have D(S) =

	

\ for some h, and

= (h/ +

	

2d - a . By Lemma 3 .5, a = (h) \\ //Ir I,

	

an impossibility unless

h = k, since k > r . Thus a = 0, and the lemma is proved .

,

	

,

	

(r

	

21
LEMMA 3.7. Let 2 = j <d <r n > + r, n > 2—` 2 2) + 2r + 1 . If

t is the number of vertices of degree t, we have t < d'

Proof . This follows directly from the previous Lemma .

Let 2 = j d r, n > + r, n > r~ ` ~2 (
r+21

< <

	

~

	

2 J + 2r + 1. We consider

any vertex u with d(u) > d . There are two possibilities :

(a) Some vertex v exists with d(v) = d and no common edg e

with u .

(b) u has an edge in common with every vertex v of degree d .

In case (a), by considering
/S`=

X - (u,v}, P(n,2,r,2), and Lemm a

3.5, we have for some h, \r/ = fir)
+ 2d - d - d(u), where k come s

from Lemma 3 .5 . Thus w e have	

d(u) = \
r)

-
r/

+ d > i r - 1)
+ d .

Since all vertices of type (b) must be on an edge common to v, w e

have at most d(r - 1) of these vertices . Further, d(u) >t in thi s

case, by Lemma 3 .6. Now let a and b denote the numbers of vertices



of types (a) and (b) respectively . We have :

n = a + b + t .

Counting incidences we have :

td + bt + a((r

	

+ d) < ri .

Using a= n- t- b> n - d - d(r - 1)

	

E	 -	 1 + r - (r we get :

ri

		

1)2 + r) ((k -
1)

+ d) + t(d + b )

> (r - 1 (2 - (r - 1)2) + t(d + b) .

(172 (k - 1/ -
r) 2

< (r - 1) (r -
1)2

- t(d + b )

_ (2 k2d)r(r
- 1 ) 2 - t(d + b)

<
ir(r	

k	 1)2 - t(d + b )

<
2r(r

-	
1) 2

k

So

1/2(r)r - kr < r(r - 1) 2

(k/ < 2(r - 1 )2 + 2r .
r /

This gives a contradiction for k > r + 3, and hence for

as assumed . Thus we have proved the next lemma .

Then

n>(r22) +2r+1,

LEMMA 3.8 . If n i + r, n > r/2(r 2 2) + 2r + 1 , and 2 d < r, then



P(n,e,r,2) cannot be satisfied .

LEMMA 3 .9. If n

	

2 + r, n > r/2 (r 2
2

+ 2r + j - 1, and

2 <j < d < r, then P(n,l,r,j) cannot be satisfied .

Proof . We use induction on j . For j = 2 this is Lemma 3 .8 .

Assume that it holds for j - 1 and consider the j case . Suppos e

G is a hypergraph with the minimum n such that G satisfie s

P(n,e,r,j) and n > i + r, n

	

r/2
(r

2 2) + 2r + j - 1 and

2 < j < d < r . Let x have degree d. Then G
x

satisfie s
—

P(n - 1,1 - d,r,j - 1), and we still have (n - 1) �-(i - d) + r and

(n - 1) > r/2(r 2 2) + 2r + (j - 2) . Then by induction we must have the minimu m

degree d' in Gx

2)

satisfying d' <j . But by Corollary 3 .2, Gx i s

a clique, and d' = 0 . This means that all vertices of degree d in G

must have all their edges in common . But by Lemma 2 .1, there are at

least r such vertices, and hence d = 1, a contradiction . This

proves the lemma .

COROLLARY 3 .10. If n

	

+ r, n>r/2(r
2

2)+3r-2, 2<j <d r,

This completes the proof of Theorem 1 .2 .

4 . PROOF OF THEOREM 1 : 3

With the assumptions of the theorem we can conclude that G i s

a clique by Corollary 3.2 if j > d . By Lemma 2 .2 and Lemma 2 .6, w e

see that it suffices to consider only the case 1 < j d < r . Thus

let i = (r) for some k. By Lemma 2 .1 we can find some set of j

vertices of degree at most r - 1 . By P(n,e,r,j), the number of edge s

not containing any of these is at most I k - l l, while the numbe r
r //



containing at least one is at most j(r - 1) _< (r - 1) 2 . Thus

(r - 1) 2 + (k 111

	

(r)•
This is impossible for k > r + 3 . Hence

the only cases of the theorem to prove are i = 1, 2 = r + 1, and

i
_ (r+2)

2

In the first case, 2 = 1, there is nothing to prove, as G is a

clique . If 2 = r + 1, let S be an (n - j)-set containing a verte x

v of degree d > 2 and at least two edges to which v belongs . (We

can do this as n - j > 2r .) By P(n,i,r,j) S must contain al l

r + 1 edges . Thus the j vertices not in S have degree 0, con-

tradicting d > 2 . So this case is also impossible .

The only remaining case is 2 = (r
r

2) = (r + á)2r + 1) . In this

case the equation (r - 1)2 + (k - ) > (k) r from above implies r > 5 .

In this case consider any j vertices . By P(n,€,r,j) they must mee t

/r + 2

	

r+ 1

	

r+ 1

	

r +
at least I r

	

- ( r

	

= (r - 1) = ( 2

	

edges . The total

number of incidences of edges and j-sets is thus at least (II) (r 2 1)

On the other hand, each edge meets exactly (n-
(11 - r) j-sets .

J

Hence there are exactly (r
r
2) ((J) - (n rl) such indicences, an d

(r r 2) ((j )

	

(n J r))

	

(r 2 1) ( )

Simplifying this gives :

r + 2	 n(n- 1)• • •(n- j+1)	
2

	

- (n _ r) . . . (n - r _ j + 1)

n- - +1 J
- (n - r - j

	

1)

(' - j+l+r)J (as n>+r )
2 - j + 1

B + 2

7+ 2 - r
(as j < r - 1)



I1 +I1
±
	 r

\\

	

+ 2 - r

)r_1

r2+r +

2r

(l±__T_)
r-1

=

	

2 < Il+ r	
2

	

r-1

e
2

.

This implies that r < 2e 2 - 2 < 13. But in fact considering th e

intermediate inequalit y

r+2 <
1 +	

2r	 r-
1

2

	

2r+r+ 6

we can check that this fails for r < 12 as well . Thus we get a

contradiction when k = r + 2 also. This completes the proof of

Theorem 1 .3 .

5 . THE CASE r = 2, ORDINARY GRAPHS

In Theorem 1.2 we found a bound sufficient to guarantee tha t

P(n,I,r,j) characterizes cliques . Examples A, B and C showed th e

necessity of the two bounds n > Z + r and n - j

	

2r, if the

conditions must be uniform for all j,r . However, for any fixed r

or j, the conditions may not be necessary. This also applies to the

case where we require i _
\ r/\ (Theorem 1 .3) . For example, or j = 1 ,

we have from Theorem 1 .2 that no bounds are needed if E = I k 1 . In

this section we investigate the case r = 2 . As usual, the r > 3

cases seem to be much more difficult .

In particular, we consider two cases : First, we assume j i s

fixed, 2 = O for some k, and show that for k sufficiently large ,

P(n, N ,j,2) characterizes cliques . This means that P(n,

/

121,j,2 )

always characterizes cliques except for a finite number of graphs for



each j . Characterizing these exceptions can be done in the smalles t

cases, as we illustrate below. Otherwise, obtaining good lower bound s

on k to guarantee that P(n,() ,2,j)

	

characterizes cliques seems

' extremely hard . The second situation we consider is where n - j i s

fixed. In this case we show that P(n,Z,2,j) characterizes cliques in

all but a finite number of "types " of cases, which are more or les s

classified .

We now consider the case r = 2, j = 2 . Example A above for k = 3 ,

n = 4 is the "star " , K1 3 , which satisfies P(4,3,2,2) but is not a

clique . Similarly, the path, P 3, consisting of vertices v i, 1 < i < 4,

and edges (vi,vi+1 ), 1 < j < 3, is not a clique but satisfies P(4,3,2,2) .

We note first that for n < 5, these are the only exceptions fo r

2 = \2/ for some k. Hence we will only need to consider the n > 6

case .

THEOREM 5.1 . P(n,O ,2,2) characterizes cliques except when G

is one of the examples \\K//1,3 or P3 above .

Proof . We prove this in several steps . Assume that G is not a

clique, that it satisfies P(n,() ,2,2), and therefore that k > 2 .

1. n>k>2 .

	

\//

This is clear since n k is impossible by counting edges and

degrees, and n = k implies G is a clique .

2. If n > 6, then the minimum degree d > O .

This follows from Lemma 2 .7 . We note that this implies k >4 ,

for otherwise with n > 6 we would have only three disjoint edges ,

which doesn't satisfy P(6,3,2,2) .

3. Some pair of vertices meets exactly k - 1

/

edges .

If this were not true, then P(n,i,2,2) (E = ()) would imply that



each pair must meet at least (2k - 3) edges . Counting edge-pai r

incidences we get (2k - 3)()

	

()(2n - 3), which contradicts step 1 .

4 . The minimum degree d satisfies d c
k

2	 1 if n> 6 .

Let v be a vertex of minimum degree and let v' be a vertex o f

minimum degree among the remaining vertices . By step 3, d + d' = k - 1

or k, and the latter only if v and v' are joined by an edge . Thus

d > (k - 1)/2 only if d = d' = k/2 and v and v' are joined. Then

suppose u is another vertex adjacent to v' but not to v . {u,v)

meets one more edge than (u,v'), violating P(n,f,2,2), unless u i s

contained in every edge except (v,v') and (v,u') ,for some othe r

vertex u', by Lemma 2 .4 . But then d > 2, and there can be no othe r

vertices than these four, for they would have degree 1 . Since

d(u) > d > 2, we must have at least 4 edges, namely {v,v'}, (u',v) ,

(u,v') and (u,v) or (u,u') . But then k = 4 and G must be a

clique, a contradiction .

So no such vertex u exists . This means either d = 1, contradicting

k > 2, or every vertex joined to either v or v' is joined to both .

There must be 2 - 1 of these . Now since d = k42, there can't be any

vertex of degree d not adjacent to v and v' . There are at leas t

(k+ 1) - (42+ 1) vertices w which are not adjacent to v and v' and not o f

minimum degree . By P(n,E,2,2) these must have degree at least (2k- 3) k/2 ,

by considering {w,v) . .This gives for the sum of the degrees at leas t

(2k - 3)(k/2) + (k42 + 1)(k/2) = k2 - k = 2() . This forces the vertice s

adjacent to v to be of degree k/2, other vertices to be of degree

3k/2 - 3, and these other vertices to be only k/2 in number . But

then there are only (k42 + 1) vertices of degree 42, and 42 of

degree (_3)

	

giving a total of k + 1 vertices, a contradiction .

Hence d <

	

1



5 . d=k21 if n>6.

By step 3, d <
k

2
1 . Suppose d(v) = d < k 2

1
. If u is any

other vertex, d(u) >k/2 . We claim we can ' t have d(u) = k/2 . For if

so, then by P(n,e,2,2) we must have d = k/2 - 1, k must be even ,

and by step 2, k > 4 . Let w be any other vertex which is not adjacent

to u. There must be at least n - 2 - k/2 >k/2 - 1 > 1 of these .

Recalling that X denotes the vertex set of G, we let S = X - {u,w) ;

S' = X - {v,w) . We have 1 < D(S') - D(S) <2 . This can only happen

if D(S) = 0, D(S') = 1, or D(S) = 1, D(S') = 3 . It can easily

be checked that neither of these cases can occur for d(u) = k/r ,

d(v) = k/2 - 1, and w and u not joined. Hence d(u) > k/2 .

Now consider two vertices u and u' distinct from v . By

P(n,E,2,2) and the remarks above we must have d(u) + d(u') > 2k - 3 .

Suppose d(u) < k - 2. Then d(u') 2.k - 1 for all choices of u ' ,

and taking any two such choices, we get d(u " ) + d(u') > 3k - 6 . Thus

the sum of the degrees for vertices distinct from u and v is a t

least In 2 2)(3k - 6)n	 13 . Hence
(n-2\3k- 6

2 J n - 3 < k(k - 1), which

gives a contradiction for n > k and n > 6 . Hence d(u) > k - 1 fo r

all vertices distinct from v . The sum of the degrees is then at leas t

k(k - 1) + 1, a contradiction . This completes the proof of step 5 .

6 . n <2k if n > 6 .

This follows from nd < k(k - 1) .



7. If M is the maximum degree, then M < 2k - 3, if n > 6 .

Let d(v) = M. Adding the degrees of v and all adjacent vertice s

we get M + Md k(k - 1), which gives the result .

8. No two vertices of degree d =
k

2
	 1

are adjacent .

This follows from P(n,e,2,2) .

9. Let u be any vertex, v and v' vertices of degree d and

n > 6 . Then u is adjacent either to both v and v' or to

neither .

Suppose to the contrary that u and v are adjacent but not u

and v' . Then D(X - (u,v}) - D(X - (u,v')) = 1 . By Lemma 2.4 we get

exactly one edge in X - (u,v}, and this must contain v' and som e

other vertex x. Now d = k
-

1 > 1, as k > 4, and thus there must

be another edge containing v' . The only choice is (v,v'}, violating

step 8 . Thus step 9 is proved .

10. Any vertex u with d(u) > d has d(u) > 3k	 5 , if n > 6 .

We consider a vertex v with d(v) = d, and apply P(n,e,2,2) t o

X - (u,v} .

11. If n > 6 and d(u)

	

d, then u is adjacent to all vertice s

of degree d, and d(u) = 3k-	 3 .

If u is not adjacent to some vertex of degree d, then it i s

adjacent to none by step 9, and summing the degrees of u and the vertice s

adjacent to it we get by step 10, at least (3k -,-5) + (3k	 5) 2 . This

is larger than k(k - 1) for k > 4, a contradiction .

Let d(v) = d, d(u) > d, where we now know u and v must b e

adjacent . Then d(u) = 3k	 3 by step 11 .

12. For n > 6 we get a contradiction .

If we have two vertices u, u' of degree 3k23 , then together

they meet 3k - 3 or 3k - 2 edges, violating P(n,2,2,2) . Thus we



have exactly one large vertex, and from step g we get d = 1, contradicting

k>4 .

By the remarks preceeding this theorem, this completes the proof .

We next consider the case of arbitrary j . We can't describe exactl y

. what the examples are which satisfy P(n,() ,2,j) and are not cliques ,

as we did with j = 2 above, but we do show that there are only a finit e

number of them .

THEOREM 5 .2 . For each j

	

P(n,( ,2,j) characterizes cliques for

all but a finite number of values of \n and k .

Proof . For j = 1 and j = 2 this follows from Theorems 1 .2 and

5 .1. For the general case we prove that for each j there is an f(j) ,

depending only on j, such that if G satisfies P(n,( ,2,j) an d

k f(j), then G is a clique . By Theorem 1 .3 we know that if G is

not a clique, we must have n < () + 2, or n < 4 + J . Thus th e

existence of f(j) is sufficient to establish the result . We do thi s

in steps also . Let G be a graph satisfying P(n,O ,2,j) which is no t

a clique . We can assume j > 3, and that the theorem is true for al l

j' <j .

1 . n <jk.

Consider j vertices of smallest degree, d(v 1) < ••• < d(vj ) . If

n > kj, then the average degree of vertices in X -

	

i s
—

	

1

	

~- 1

at most
k(k - 1)	 < k . Thus it is at most

k	
1

jk - j + 1 j

	

as it must be an
j

integer . We have d(v .) < k 1 for all i. By P(n,12j,2,j) ther e

are only two possibilities, d(vi) = 0 for all i or \\d//(vi) =
k - 1

for all i . The first is impossible by Lemma 2 .5 . The second implie s

that the average degree is
k	

1 and that d(v) =
k	

1 for all



vertices v. But then consider any j of them . These must meet at

least k - 1 edges . Thus no two of the vertices can be joined . As the

j vertices were chosen arbitrarily, there can be no edges in G at all ,

a contradiction .

2. For some E > 0 and all k sufficiently large, n > (1 + E)k .

Suppose this is false . For each E > 0 and k we let G = G(k,E )

have n (1 + E)k . Then for k sufficiently large there are at leas t

j vertices of degree at least k - 2Ek . Call these large vertices . Any

set of j large vertices must meet at least (j -1)k - \ \~1 edges if e

is small, and any set of j vertices at all must meet at mos t

j(l + E)k < (j + 1)k -/ (
2 2)

edges if k is large . Thus every j

meet precisely jk - \0 \2 1) / edges .

Let vl and v2 be large vertices . Since n e (1 + E)k, there

are some j - 1 vertices u , . . .,u .

	

joined to both . Let the two set s
1

	

~- 1

{u1, . . .,uj-1,v1} and {u1, . . .,uj-1,v2} meet e
1

and e2 edges ,

respectively. Then el - e2 = d(v1) - d(v2 ) . Since vl and v2 are

large, this difference is at most 4Ek. Hut both el and e2 are

less than (j + 1)k - \J 2 2 1, as we observe above . Thus el and e2

must differ. by 0 or by at least k - j, by P(n,121,2,j) . Hence

d(vl) = d(v2), and all large vertices have the same degree .

Let v1, v2 and v3 be large vertices with v1 and v2 joined

by an edge, but v1 and v3 not joined. Take any j - 2 vertice s

joined to all three, say

	

Then

	

(ul, . . .,uj-2,v1,v2)

	

and

differ by one in the number of edges they meet, a

contradiction of P(n,121,2,j) unless {u1, . . .,uj-2,v1,v3} meets al l

edges . But by step 1 d(u i ) and d(v i ) are less than jk. Hence no

j-set can meet more than j 2k edges . If k is large, then the j-se t

{u1, . . .,uj-2,v1,v3} can't meet 121 edges . Thus either all large



vertices are joined, or all are independent . They have degree eithe r

k - 1 or k- J 2 1 , respectively .

Let u be a vertex with d(u)

	

k - 2 ek. Let vl , . . .,v . be

large vertices . Then {vl , . . .,v, l,u} meets y = jk -

	

2 11 - x + d(u) - a ,
J-

	

\

	

/
J

where x is the number of ed es not joining v . to other v i , and a

is the number of edges joining u to {v1, . . .,vj-1}, We hav e

x=k - J . 2 1 or x=k - j, and 0<a<j -l . Thus y is at most

jk- IJ 21) -( k -j)+ k - 2 E k

= (j - 2e)k - N .
Hence y is at most

(j - 1)k - 12
/
I •

But

	

themselves meet at least (j - 1.)k - 121 - 2 . Thus

d(u) can be at most (3/2)j . This means that there can't be j of thes e

" small " vertices, unless they all have degree 0 . This means that th e

large vertices form a clique, as they can' tt be joined only to smal l

vertices. But then, since they have degree k - 1, they form a complet e

graph on k vertices, a contradiction . This completes step 2 .

3. For any

	

> 0, and some integer i, 1 < i < j - 1, the

minimum degree d satisfies (1 -

	

d < (1 + P)3k if k is large

enough .

For any M, and any sufficiently small 5 > 0, we can find a t

least M vertices of degree at most (1 - 5)k, if k is sufficiently

large . For the average degree of any n - m vertices, by step 2, mus t

be at most k(1
(+ e) 1) M kk(k+ E

~~) < (k - 1)(1 - 3 for k sufficientl y

large . Thus if we consider the M vertices of smallest degree, we see



their degrees must be at most k(l - E/3) < k(l - b) for b sufficientl y

small .

Let

	

> 0 be arbitrary, and M sufficiently large that there i s

some c, 0 < c < 1 - e/3 such that there are at least j + 1 vertices wit h

degrees in the interval [c(l - r))k, c(l + ri)k] . The total number of edge s

any j of these vertices meet is at most j c k(l + r1), and at least

j c k(l - r)) - \
2/ >

j c k(l - T1/2) for k sufficiently large . By

p(n,(k ,2,j), they must meet exactly ik -
(i 2 1) for some

\

i ,

0 < i < j - 1 . Thus j c k must be in an interval [ik - (i 2 1 1 - 2r}k ,

ik . - \112 1 + 2,k] for some i, for k sufficiently large. By

considering all different j-subsets of the vertices with degrees i n

(c(1 -/ T1)k,

\

c(1 + í)k], we see that each j-set must meet exactly

ik -
rl 2

l l edges, and thus no two such vertices have degrees differin g

by more than j . Thus the degrees of these vertices must all be in th e

on a, which is arbitrary .

Let d(v) < k(l - 0), and let u , . . .,u .

	

have degrees in
—

	

1

	

~-1

k(1 + a) . Then the j-set they form meets x

/

edges, wher e

x 0	
.
	 1 ik + ( j - 1)ak + k

/

- 8k < (i + 1)k - (i 2 2`1 and

x > l k - (j

	

1)ak - 1 0

	

> (i - 1)k -()' / for k sufficiently

large, and a and ő small. This forces x to be exactly ik - (i
+ 2

1
,

and the degree of v to be in the interval
ik + jak . If a is small ,

this means d(v) is in L k(] . - (3 ), 1(1 + P)I . This completes the proof ,

as we could take v to have minimum degree. This completes step 3, and

in fact proves step 14 :

4 . If

	

> 0, 0 > 0, then there is some i, 0 < i < j - 1 such

interval

	

k(l - a),

	

(1 + CO

	

for k sufficiently large, depending

that if d(v) < k(l - 0), then d(v) is in the interval gk(l - 3), ik(l +



if k is sufficiently large .

Call vertices with degree d(v) < k(l - b) " small" vertices . From
the proof of step 3 we know that every j of them meet exactly

ik

	

ri

	

11 edges, for some fixed i < j - 1 and k large . If u
J

	

`

	

J

is a vertex with d(u) > k(1 - ö), J a set of j small vertices (whic h

exist for k large, as we saw in the proof of step 3), and v a vertex

of J, then d(u) - d(v) > J	
J
	 i k - (b +

	

)k > j for k large . The

set

	

+h + 1
(J - {v}) U {u} must meet (i + h)k - ( Ii

	

2

	

I edges then, an d

thus d(u) - d(v) > hk - (i + 2 +
1) . Then for any y > 0, and k

sufficiently large, depending on h, we have d(v) in the interva l

~ + h
J
k(1 - ~y), I + hl k(l + y)~ , Since h < j, by step 1, we have th e

following :

5. Let y > 0 . Then for some i, 0 < i < j - 1 and every verte x

v, d(v) e [(i/j + h)k(l - T),

	

+ h)k(l + fly)], where h depends on v ,

but 0 < h < j - 1, for k large enough .

Next let b > 0, and recall that v is " small " if d(v) < k(l - b) .

6. All small vertices have the same degree if k is sufficiently

large .

In step 3 we showed there have to be M small vertices if k i s

large . Now if M is large enough, then by Ramsey's Theorem there mus t

be either a clique or an independent set of size j + 1. Let J be a

subset of j of them. In step 3 we saw that this set meets exactl y

ik -
\1

2 li for some i < j - 1. We claim any other small vertex v

either is joined to all vertices in J, or is joined to none of them .

For suppose v and u are joined, v and w are not, and u, w E J .

Then (J- {u}) U {v} and (J - {w}) U {v} meet numbers of edge s

differing by 1 . This is a contradiction, as it implies by Lemma 2 . 4

that one of these sets meets all the edges, making the degrees too large .



Thus every small vertex is joined completely to J or not at all .

Let K be a maximum clique of small vertices if J is a clique, o r

a maximum independent set if J is independent . We have at least j + 1

vertices in K. Since each j-subset meets exactly ik -
\1 2 1 1, every

two vertices of K have the same degree, Every other small vertex i s

joined to no vertex if K is a clique, or to every vertex of K if K

is independent, by maximality of K and the remarks above . Hence the

small vertices not in K must all have the same degree (by considerin g

j

	

1 vertices of K together with one outside K . )

If K is a clique, the degrees of vertices of K must b e

j - J (i + 1) +	
2
	 1 . If K is independent, then the degrees o f

vertices of K will be Jk J \i 2 1 1 . The small vertices not in K wil l

ik

	

1 i + 1 _ j -\ 1

	

/ ik

	

] . i + l
have degree

	

-

	

l

	

or

	

-

	

+ j -

	

resp -
j

	

2

	

2

	

j

	

2

ectively . In either case, if we form a j-set from j - 2 vertices o f

K and two not in K, then by counting- degrees and edges contained i n

the j

/

-set, we see that the j-set meets a number of edges differing fro m

ik -
\1

2 1)
by x, where 1 < x < 5 . This is a contradiction . Thus

all but at most one small vertex is in K .

Now if K is a clique, there can be at most ~(1 + -y)k + 1 smal l

vertices, by step 5 . Then considering any vertex v which is not small ,

its degree must be at least
(~

+ 1(1 - ^~)k . For k sufficiently large ,

we can take y so small that v must be adjacent to k(l - a) " large "

(i.e . not small) vertices for any given a > O . But if y and a ar e

small enough, the sum of the degrees of these points must be at leas t

k(l - a)(2 + l)k(l - ry) > 2(2), a contradiction .

Thus K //must be an independent set . If there is a small vertex not

in K, then since it is adjacent to all vertices of K, there can be at

most 27-k(l + y) + 1 small vertices, and the same argument as in the



9 . All large vertice s

large .

1 iBy step 8 there are exactly Mk

	

42"

they all are joined to all small vertices, they

previous paragraph leads to a contradiction . This shows that all small

vertices form an independent set, and all have degree ~k - J\i 2 l l

This proves step 6 and also the next step :

	

/
7. The small vertices all have degree ~k -

J
(i 2 11 .and form an

independent set, for k large enough .

Let K denote the set of small vertices .

8. All large vertices are joined to all vertices of K, for k

sufficiently large .

Let v be joined to x but not to y, x,y E K . Taking

vertices from K different from x and y, and considering

{ul, . . .,uj-2,x,v) and {ul, . . .,uj-2,y,v), we see that {ul, . . .,uj-2,y,v )

must meet all edges of G, by Lemma 2 .h . This is impossible for k

large, since the sum of the degrees of these j vertices is certainl y

less than jn

	

j2k

	

i21 .

So we see that if a large vertex is joined . to any vertex of K, i t

is joined to all . But it can't be joined to none of them, or by addin g

the degrees of the vertices adjacent to it (which would be large) we

would get at least ((1 + 0)( 1 - ,y)k)2 > 2 \2 l
for k sufficientl y

large and y small . This completes step 8 .

large vertices they are joined to . Thus if

- d(v)) < i/j k - 1 1 + 12 1 . By step 5

such that all large vertices have degrees i n

(h + i/j)k(l + T)] . Combining v with

/

j - 1 small vertices yields a

j-set meeting d(v) - (j - 1) f (j - 1)( k - J/
\1

2 1)1 edges . But this

have the same degree if k sufficiently

Sincelarge vertices .

can only differ in the

(d(u)

v are large, we hav e

there is some h, 1 < h < j

[(h + i/j)k(l - T),

1

u and



number must be in the interval (h - i)k + 2yk for k large. Hence ,

by P(n,O,2,j) it must be exactly (h + i)k - rh + 2 + 1

J

1 . This give s

d(v) = (h / + i/j )k - Ih + 2 + 1 ) + j ~ l (i 2 1) + j - 1, and complete s

step y .

10 . This situation is impossible .

For consider a j-set with j - 2 small vertices and two large ones .

Then this . set meets exactly

(h + i)k -
(

+ i + l) - (
jk

	

(i±2)
- 1)

+(h+j)k- (h+2+1)

+

	

j 1)(i+1) +~
-1- (j - 2) - x

where x is 0 or 1 . But this number is in the interval (2h + i) k

(2h +// i)k - (2h + 2 + 1) + i/j k + I~jk if k is large . This violate s

P(n,() ,2,j) unless i = 0 . But this means there are no large vertices ,

and \G has no edges . This, then completes step 10 and the proof o f

Theorem 5 .2 .

Theorem 5 .2 is concerned with the case of fixed j . We now tur n

our attention to the case of fixed

N

t= n j, and let i and n b e

arbitrary. We do not require i =

	

here . This case has a differen t

spirit to it, as the examples below illustrate . In particular there ma y

be infinitely many graphs G which are not cliques . However, when thi s

is true, all but a finite number will be seen to fall into two or three

easily described classes . The result is thus almost as satisfactory a s

the previous one .

First, then, we consider small cases . For t = 1,2 clearly ever y

G satisfies P(n,i,2,n - t) . For t = 3 Example B can be generalized

to the union of disjoint cliques . It is also easy to see that these ar e

the only examples other than cliques . For t = 4 the only examples



besides cliques are the stars (a set of 2 edges all joined to a common

vertex) and the pentagon (or cycle of length five) . Finally, for t = 5 ,

we see by examining the cases systematically that the only examples other

than cliques are the two 3-regular graphs with 6 vertices . For t = 5

the stars are not examples . However for any x, and t = (2) + 1, th e

stars are examples . There are cases where the complete bipartite graph s

K2,m work, for instance t = 16 or t = 659988946 and all m > t - 2 .

Whether this (or similar examples) works depends on the solutions to

diophantine equations . Finally, consider the graphs K'ab consisting of

a clique of a vertices, an independent set of size b, and all ab

edges joining them . Then K ,m is an example for all m > t - 2 and

t = 29 or 947 but not for all t .

THEOREM 5 .3. For t > 4, and n sufficiently large, depending on

t let G satisfy P(n, .g ,2,n - t), but assume G is not a clique . Then G

must be one of the following types of graphs : Kl m, K 2 m, K'2 m or K . m.
>

	

>

	

,

	

J l

The last type can only satisfy P(n,,2,n - t) for finitely many t ,

while the other three types can occur infinitely often .

Proof . Suppose G is not a clique, and G satisfies P(n,2,2,n - t) .

For n sufficiently large, by Ramsey's Theorem, there is a set S of t

vertices forming either a clique or an independent set .

First let S be a clique, and let K be a maximum clique . If

v K, u E K, and {u,v) an edge, then some vertex w E K must not b e

joined to v, by maximality of K . Let T be a set of t - 2 other

vertices of K . Then D(T U {v) U {u}) - D(T U {v) U {w)) = 1, contra-

dicting Lemma 2 .4 . Thus no vertex v K can be joined to any vertex o f

K. But some edge, say {vl ,v2 ) must occur outside K, as G isn ' t a

clique . Then taking T as above, T U {v 1) U {v2) violates P(n,i,2,n - t),



as t > 4 . Thus S is independent .

Let K denote a maximum independent set . We have from the previou s

paragraph that the largest clique in G must have at most t - 1

vertices. Let v K, u,w e K, and let v be joined to u but not t o

w. If T is any t - 2 other vertices of K, we see, as above, tha t

D(T U (v) U (w)) = 0, which is a contradiction unless v is joined t o

only a single vertex of K . So each vertex in X - K, which we call

A = X - K from now on, is joined either to one vertex of K or to al l

of them. Suppose v l is joined to one vertex, w, in K, and v2 E A

is, joined to all K . Letting (u1, . . .,ut-2) be any other t - 2

vertices of K, we get D((ul, . . .,ut-2,v1,v2)) = t - 2, whil e

D(ul, . . .,ut-1,v2) = t - 1 . This contradicts Lemma 2 .4. Thus either al l

vertices of A are completely joined to K, or they are all joined b y

single edges .

Consider the case where all are joined by single edges to K . Then

there must be a single u e K to which all are joined . For let

vl,v2 EA be joined respectively to u l and u2 in K. If vl and

v2 are not joined, and if u3, . . .,ut-1 are other vertices of K, w e

have D((vl,v2,ul,u2,u3, . . .,ut-2)) = 2, a contradiction. Similarly, if

III and v2 are joined, then D((vl,v2,u2,u3, . . .,ut-1)) = 2, a contra -

diction. Thus all vertices of A are joined to some vertex u E K .

Further, A must be a clique . For if vl and v2 are in A, then

D((vl,v2,u,u4, . . .,ut)) > 2, where u4, . . .,ut are other vertices of K .

Hence vl and v2 must be joined so that D((vl,v2,u,u4, . . .,ut)) = 3 ,

a binomial coefficient . But this means G is a clique, a contradiction .

Thus the assumption that vertices in A are joined to single vertices of

K is wrong .

This means that each vertex of A is joined to all vertices of K .



Now A must be either a clique or an independent set . For suppose (w,v }

is an edge in A, and y,z EA but not joined. Then if ul, . . .,ut-2

are vertices of A, we have D((ul, . . .,ut-2,u,v}) and D((ul, . . .,ut-2,y,z} )

differing by one, a violation of Lemma 2 .4, as t > 4 .

Since the maximum clique can be at most of size t - 1, this implie s

that G must be either Ka b or K1,m , 2 i < t - 1 . It remains t o
— —

show that the cases a > 2 and i > 3 are impossible . To do this le t

G consist of two "parts " , an independent set B with m > t elements ,

and a set A of a elements, forming either a clique or an independen t

set, and assume G contains all am edges joining

	

and B . For

integers x, let S x denote a t-set with x vertices in A and

t - x vertices in B. Then we must have D(S1) = (2)' D(S2) = (2 '
D(S3) = (2) and D(S4 ) _ M . This is clearly equivalent t o

P(n, g ,2,n - t) for such G .

First let G = Kam, a bipartite graph, and let a > 3 . Then we

have D(S 1) = t - 1, D(S2 ) = 2t - 4, D(S 3) = 3t - 9 . These lead to the

equations 2(2e - 1) 2 - (2f - 1) 2 = 17, and 3(2e - 1)2 _ (2c - 1) 2 = 50 .

Looking at the first equation modulo 10 shows that (2e - 1) 2 1 (mod 10) .

The second equation gives (2c - 1)2 e 3 (mod 10), an impossibility .

Hence a < 2 if G is K
—

	

a, m

Now suppose G = Ká m and let a > 4 . Then D(S1) = t - 1 ,

D(S2) = 2t - 3, D(S 3) = 3t - 6, and D(S4) = I t - 10 . These yield the

three simultaneous equations 2(2e - 1)2 - (2f - 1) 2 = 9 ,

3(2e - 1) 2 - (2c - 1) 2 = 26, and 4(2e - i)2 - (2d - 1) 2 = 51 . The last

equation is (2(2e - 1) - (2d - 1))(2(2e - 1) + (2d - 1)) = 51, which

implies e = 3, t = 4, and D(S 2) = 5, an impossibility. Thus a < 4 ,

and the first statement of the theorem is proved .

Now Kim is an example for exactly those t with t = (
2
) + 1 ,

,



as we observed above . We also saw examples of t for which K 2ym works ,

and t for which K2 m. As we saw above, these will be examples if and

only if t = (
2
) + 1, and 2(2e - 1) 2 - (2f - 1) 2 = 17 or

2(2e - 1) 2 - (2f - 1) 2 = 9, respectively, has a solution for some

integer f. These are Pell's equations, and since there is one solutio n

to each, there are infinitely many, and these can in fact be explicitl y

determined [4] . Thus there are infinitely many t for which the clas s

K2 m is an example, and infinitely many for which K2 m
is an example .

>

	

>

The only remaining thing to prove is that K3 m is an example for

only finitely many t . But this also follows from number theory, and in . ,

particular, by using the method of Baker and Davenport [1], it can b e

shown that K'

	

works for no t greater than a specific bound (whic h
3,m 500

turns out to be about 10 10 )* . There are no examples for t > 4

less than t about 106, and we suspect that there are in fact none .

C . Grinstead [3] has developed a method which could check this on a larg e

computer in several hours .

6. A FEW FURTHER REMARKS AND QUESTION S

Although for Theorem 5 .2 we required 2 = (
2
1, it may be that thi s

condition can be removed and replaced by some easily described list o f

exceptions, as in the case of Theorem 5 .2. So far, however, we have no t

been able to do this, even in the j

= 1,()2
\

r = 2 case . In this case we

observe that any

M

s-regular graph with

	

1 + s edges satisfie s

P(x(x	
s
	 1) + 2,

	

+ s, 2, 1) . This suggests that possibly som e

constraint on the regularity of G might be sufficient . However example s

*We thank C . Grinstead for showing this .



on the following type show that we can have many degrees . Let G consist

of a 5 regular graph H on 272 vertices, and three vertices connecte d

respectively to ) 9, 91, and 132 vertices of H, all distinct . G

satisfies P(275, 952, 2, 1) and has four distinct degrees . Such

examples can be proliferated .

It might be possible to fill in some of the space between the larg e

values of j (Theorem 5 .3) and the small values (Theorem 5 .2) in th e

r = 2 case .

Finally, of course, the sharper results of Section 5 might be

extendable to r > 3 . This may be difficult .
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