EULER'S ϕ-FUNCTION AND ITS ITERATES

P. ERDŐS and R. R. HALL

Introduction. In this paper we continue our study of the values taken by Euler's ϕ-function begun in [1]-[3]. Let $\phi_{r}(n)$ be the iterated ϕ-function, that is $\phi_{r}(n)=\phi\left\{\phi_{r-1}(n)\right\}$ where $\phi_{1}=\phi$. Let

$$
V_{r}(x)=\operatorname{card}\left\{m<x: m=\phi_{r}(n) \text { for some } n\right\} .
$$

In [2] and [3] we obtained, respectively

$$
\begin{aligned}
V(x)=V_{1}(x) & \ll \frac{x}{\log x} \exp (B \sqrt{ } \log \log x), \\
V_{1}(x) & \gg \frac{x}{\log x} \exp \left\{C(\log \log \log x)^{2}\right\},
\end{aligned}
$$

and our present aim is to obtain an upper bound for $V_{2}(x)$. Our result is as follows.
Theorem. There exists an absolute constant D such that

$$
V_{2}(x) \ll \frac{x}{\log ^{2} x} \exp \left(D \frac{\log \log x \cdot \log \log \log \log x}{\log \log \log x}\right) .
$$

Remarks. In the case $r=1$ the simple lower bound $V_{1}(x) \geqslant \pi(x)$ is available. When $r=2$, the analogous result is $V_{2}(x) \geqslant \pi_{2}(x)$ where $\pi_{2}(x)$ denotes the number of primes $p<x$ such that $(p-1) / 2$ is prime. Evidently the numbers

$$
\phi_{2}(p)=(p-3) / 2
$$

are distinct. Sieve theory suggests, but of course does not yet prove, that $\pi_{2}(x) \gg x / \log ^{2} x$, so that apart from the second factor on the right our estimate is probably sharp. We hope to return to the lower bound problem: our best result so far is $x / \log ^{k} x$ for some fixed $k>2$.

It may be that for every fixed r and every $\varepsilon>0$ we have

$$
x /(\log x)^{r+\varepsilon} \ll V_{r}(x) \ll x /(\log x)^{r-\varepsilon} .
$$

Notation. $v(n)$ denotes the number of distinct prime factors of n and $\omega(n)$ the total number of prime factors. $P^{+}(n)$ and $P^{-}(n)$ denote respectively the greatest and least prime factors of n. Other notation will be made clear in the proof.

It is convenient to work with the function

$$
W_{2}(x)=\operatorname{card}\left\{m: m=\phi_{2}(n) \text { for some } n<x\right\} .
$$

This is smaller than $V_{2}(x)$, but since $\phi(n) \gg n / \log \log n$ we have

$$
V_{2}(x) \leqslant W_{2}\left(c x(\log \log x)^{2}\right)
$$

and this does not alter the final result.

Lemma 1. For each fixed A, there exists $B=B(A)$ such that

$$
\operatorname{card}\{n<x: \omega(n)>B \log \log x\} \ll x(\log x)^{-A}
$$

Proof. Choose an integer h so that $h \log h-h \geqslant A$, and let $\omega(n, h)$ denote the total number of prime factors of n greater than h. For all y,

$$
(1+y)^{\omega(n, h)}=\sum_{d \mid n}^{\prime} y^{v(d)}(1+y)^{\omega(d)-v(d)}
$$

where the dash denotes the restriction on d that all its prime factors exceed h. This formula is most easily proved by noting that the summand on the right, and therefore the sum, is multiplicative. Hence for $0 \leqslant y<h$,

$$
\begin{aligned}
\sum_{n<x}(1+y)^{\omega(n, h)} & \leqslant x \sum_{d<x}^{\prime} \frac{y^{v(d)}}{d}(1+y)^{\omega(d)-v(d)} \\
& \leqslant x \prod_{h<p<x}\left(1+\frac{y}{p-1-y}\right)
\end{aligned}
$$

since $d<x$ implies that all its prime factors are less than x. This does not exceed

$$
\begin{aligned}
x \exp \left\{\sum_{h<p<x} \frac{y}{p-1-y}\right\}= & x \exp \left\{\sum_{h<p<x}\left(\frac{y}{p}+\frac{y(1+y)}{p(p-1-y)}\right)\right\} \\
& \ll x(\log x)^{y} \exp \left\{\sum_{p>h} \frac{y(1+y)}{p(p-1-y)}\right\} .
\end{aligned}
$$

The sum in the exponential is convergent, and if we set $y=h-1$ we may deduce that

$$
\sum_{n<x} h^{v(n, h)} \ll C(h) x(\log x)^{h-1}
$$

where $C(h)$ is a function of h only. Hence

$$
\operatorname{card}\{n<x: \omega(n, h)>h \log \log x\} \ll C(h) x(\log x)^{h-1-h \log h}
$$

and by the definition of h, the right hand side is $\ll x(\log x)^{-A}$. Next, let

$$
\omega^{\prime}(n, h)=\omega(n)-\omega(n, h)
$$

and suppose $\omega^{\prime}(n, h)>s \log \log x$. Then n has a divisor $d=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \ldots p_{u}{ }^{\alpha_{u}}$ where $p_{1}, p_{2}, \ldots, p_{u}$ are the primes up to h and $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{u}=l=[s \log \log x]$. Hence

$$
\operatorname{card}\left\{n<x: \omega^{\prime}(n, h)>s \log \log x\right\} \leqslant \sum x / p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{u}^{\alpha_{u}} \leqslant \sum x / 2^{l}
$$

where summation is over all choices of the exponents α_{i} such that their sum is l. There are at most $(l+1)^{u}$ such choices, and so if $s>A / \log 2$, the right hand side is $<x(\log x)^{-A}$. Now put $B=h+s$. Then $\omega(n)>B \log \log x$ implies either $\omega(n, h)>h \log \log x$ or $\omega^{\prime}(n, h)>s \log \log x$, and we obtain the result stated.

Lemma 2. Let $A>0$ and $u^{2}>2 v>0$. Then
card $\{n<x: v(n) \geqslant u, \omega\{\phi(n)\} \leqslant v\}$

$$
\ll x(\log x)^{-A}+\frac{u^{2} x \log \log x}{v \log x} \exp \left\{2 u-u \log \left(u^{2} / 2 v\right)\right\} .
$$

Proof. Let $y>1>z>0$. Then the cardinality in question does not exceed

$$
y^{-u} z^{-v} \sum_{\sqrt{x}<n<x}^{\prime} y^{v(n)} z^{o \phi(n)}+O\left(x(\log x)^{-4}\right),
$$

where the dash denotes that $\omega(n) \leqslant B(A) \log \log x$, moreover in the exponential $\omega \phi(n)$ is simply a condensed form of $\omega\{\phi(n)\}$. To see this, notice that integers $n \leqslant \sqrt{ } x$, or such that $\omega(n)>B(A) \log \log x$ are covered by the error term: for the remaining integers the powers of y and z are respectively $\geqslant 0, \leqslant 0$, which gives the inequality as $0<z<1<y$. Next, we deduce that for the integers n counted by Σ^{\prime}, we must have $P^{+}(n)>x^{1 / 2 B \log \log x}$. Hence

$$
\begin{aligned}
\sum_{\sqrt{ }<n<x}^{\prime} y^{v(n)} z^{\omega \phi(n)} & \leqslant \sum_{n<x}^{\prime} y^{v(n)} z^{\omega \phi(n)} \sum_{p \mid n}^{\prime \prime} 1 \\
& \leqslant \sum_{p<x}^{\prime \prime} y \sum_{m<x / p} y^{v(m)} z^{\omega \phi(m)}
\end{aligned}
$$

where " denotes $p>x^{1 / 2 B \log \log x}$, that is, $\log (x / m)>(\log x) / 2 B \log \log x$. Therefore the left hand side does not exceed
$y \sum_{m} y^{v(m)} z^{\omega \phi(m)} \pi(x / m) \ll \frac{y x(\log \log x)}{\log x} \sum_{m} \frac{y^{v(m)} z^{\omega \phi(m)}}{m}$

$$
\ll \frac{y x(\log \log x)}{\log x} \prod_{p<x}\left(1+\frac{y z^{\omega(p-1)}}{p-z}\right) \ll \frac{y x(\log \log x)}{\log x} \exp \left(\frac{2 y z}{1-z}\right),
$$

by virtue of the estimate for $\sum p^{-1} z^{\omega(p-1)}$ in [2].
Hence

$$
y^{-u} z^{-v} \sum_{\sqrt{x}<m<c}^{\prime} y^{v(n)} z^{\omega \phi(n)} \ll \frac{y x \log \log x}{\log x} \exp \left(\frac{2 y z}{1-z}-u \log y+v \frac{1-z}{z}\right),
$$

and we choose $z<1$ such that $z /(1-z)=\sqrt{ }(v / 2 y)$, and $y=u^{2} / 2 v$. This gives the result stated.

Lemma 3. Let $A, B>0$ be arbitrary but fixed. There exists $C=C(A, B)$ such that

$$
\operatorname{card}\left\{n<x: v(n) \geqslant \frac{C \log \log x}{\log \log \log x}, \omega\{\phi(n)\} \leqslant B \log \log x\right\} \ll x(\log x)^{-A} .
$$

This follows immediately from Lemma 2. Notice that for all $n, \omega\{\phi(n)\} \geqslant \omega(n)$ so that we get the same result if we demand that $\omega\left\{\phi_{2}(n)\right\} \leqslant B \log \log x$.

Proof of the theorem. Let us set $A=2, B=B(2), C=C(2, B(2))$ in Lemmas $1-3$. Plainly we may neglect any set of integers of cardinality $\ll x \log ^{-2} x$, hence in view of our lemmas we may restrict our attention to integers n satisfying the following conditions.
(i) $\omega\left\{\phi_{2}(n)\right\} \leqslant B \log \log x$,
(ii) $v(n) \leqslant u=\frac{C \log \log x}{\log \log \log x}$.

Let $m=\phi\left(n^{\prime}\right), \quad n^{\prime}=\phi(n) . \quad$ By condition (i), $\omega(m) \leqslant B \log \log x$, hence $\omega\left(n^{\prime}\right) \leqslant B \log \log x$. Either $n^{\prime} \leqslant \sqrt{ } x$, in which case it may be neglected, or we may deduce
(iii) $P^{+}\left(n^{\prime}\right)>x^{1 / 2 B \log \log x}=t$ say.

Hence we have

$$
W_{2}(x) \leqslant \sum_{k \leqslant u} W(x, k)+O\left(x /(\log x)^{2}\right),
$$

where

$$
W(x, k)=\operatorname{card}\left\{n<x: v(n)=k, \omega\left\{\phi_{2}(n)\right\} \leqslant B \log \log x,\right.
$$

$$
\left.P^{+}\left(n^{\prime}\right)>x^{1 / 2 B \log \log x}\right\}
$$

We write $\psi(n)=\omega\left\{\phi_{2}(n)\right\}$ and

$$
S_{k}(x, z)=\sum z^{\psi(n)} \quad(0<z<1)
$$

where the sum is over the n 's counted by $W(x, k)$. If $p \mid n$ then $\phi_{2}\left(p^{\alpha} n\right)=p^{\alpha} \phi_{2}(n)$ or $\phi\left(p^{\alpha}\right) \phi_{2}(n)$ according as $p \mid \phi(n)$ or not. In either case, $\psi\left(p^{\alpha} n\right) \geqslant \alpha+\psi(n)$. Hence

$$
\sum\left\{z^{\psi(n)}: \prod_{p \mid n} p=n_{0}\right\} \leqslant(1-z)^{-v\left(n_{0}\right)} z^{\psi\left(n_{0}\right)}
$$

and so

$$
S_{k}(x, z) \leqslant(1-z)^{-k} \sum|\mu(n)| z^{\psi(n)}
$$

(where we have replaced n_{0} by n in the sum on the right). Suppose that

$$
n=p_{1} p_{2} \ldots p_{k}, p_{1}<p_{2}<\ldots<p_{k}
$$

By (iii) above we may write $\phi(n)=n^{\prime}=q r$ where r is a prime exceeding t. We drop the condition that $p_{1}, p_{2}, \ldots, p_{k}$ should be ordered, and assume further that $r \mid\left(p_{1}-1\right)$. Then we have

$$
S_{k}(x, z) \leqslant \frac{(1-z)^{-k}}{(k-1)!} \sum_{q r<x} z^{\omega \phi(q r)}
$$

where $q r=\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{k}-1\right), p_{1}-1=r d, d \mid q$, and as before $\omega \phi$ in the exponent means $\omega\{\phi\}$. The sum on the right does not exceed

$$
\sum_{q<x / t} z^{\omega \phi(q)} \sum_{d \mid q}^{\prime} \sum_{r<x / q}^{\prime \prime} 1,
$$

where Σ^{\prime} denotes that q / d is of the form $\left(p_{2}-1\right)\left(p_{3}-1\right) \ldots\left(p_{k}-1\right)$, and $\Sigma^{\prime \prime}$ that both r, and $r d+1$, should be prime. This is

$$
\begin{aligned}
& \ll \sum_{q<x / t} z^{\omega \phi(q)} \sum_{d \mid q}^{\prime} \frac{d x / q}{\phi(d) \log x / q} \\
& \ll \frac{x}{\log ^{2} t} \sum_{q<x} \frac{z^{\omega \phi(q)}}{\phi(q)} \sum_{a \mid q} 1
\end{aligned}
$$

where $a(=q / d)=\left(p_{2}-1\right)\left(p_{3}-1\right) \ldots\left(p_{k}-1\right)$. Since $\phi(q) \gg q / \log \log q$, and in
view of the definition of t, this is

$$
\begin{aligned}
& \ll \frac{x(\log \log x)^{3}}{\log ^{2} x} \sum_{a<x} \sum_{m} \frac{z^{\omega \phi(m a)}}{m a} \quad(m a=q) \\
& \ll \frac{x(\log \log x)^{3}}{\log ^{2} x}\left(\sum_{a<x} \frac{1}{a}\right) \sum_{m=1}^{\infty} \frac{z^{\omega \phi(m)}}{m} .
\end{aligned}
$$

The sum over m (with no restriction) was estimated in [2], and that over a does not exceed

$$
\left(\sum_{p<x} \frac{1}{p-1}\right)^{k-1}
$$

Hence $W(x, k) \leqslant z^{-B \log \log x} S_{k}(x, z)$ and

$$
S_{k}(x, z) \ll \frac{x(1-z)^{-k}(\log \log x+O(1))^{k+2}}{(k-1)!\log ^{2} x} \exp \left(\frac{2 z}{1-z}\right)
$$

We choose z so that $z /(1-z)=\log \log \log x$. Since $k \leqslant u$, we deduce from Stirling's formula that

$$
S_{k}(x, z) \ll \frac{x}{\log ^{2} x} \exp \left(o\left(\frac{\log \log x \cdot \log \log \log \log x}{\log \log \log x}\right)\right),
$$

and hence this estimate is true of $W_{2}(x)$, and $V_{2}(x)$, as required.

References

1. P. Erdốs. "On the normal number of prime factors of $p-1$ and some related problems concerning Euler's ϕ-function ", Quart. J. Math., 6 (1935), 205-213.
2. P. Erdős and R. R. Hall. "On the values of Euler's ϕ-function ", Acta Arith. XXII (1973), 201-206.
3. P. Erdôs and R. R. Hall. "Distinct values of Euler's ϕ-function". Mathematika, 23 (1976), 1-3.

Department of Mathematics, University of York, England.

10A20: NUMBER THEORY; Elementary number theory; Number theoretic functions

Received on the 19th of May, 1977.

