Hamiltonian Cycles in Regular Graphs of Moderate Degree

Paul Erdös
Hungarian Academy of Sclences, Budapest. Hungary
\section*{AND}
Arthur M. Hobbs
Department of Mathematics, Texas $A \& M$ University, College Station, Texas 77843
Received October 25, 1976

In this paper we prove that if k is an integer no less than 3 , and if G is a two-connected graph with $2 n-a$ vertices, $a \in\{0,1\}$, which is regular of degree $n-k$, then G is Hamiltonian if $a=0$ and $n \geqslant k^{2}+k+1$ or if $a=1$ and $n \geqslant 2 k^{2}-3 k+3$.

We use the notation and terminology of [1]. Gordon [4] has proved that there are only a small number of exceptional graphs with $2 n$ vertices which are not Hamiltonian when all vertices have degree $n-1$ or more. The present authors proved [3] that if G is a two-connected graph with $2 n$ vertices which is regular of degree $n-2$ and if $n \geqslant 6$, then G is Hamiltonian. We now partially extend that result to regular graphs of degree $n-k, k \geqslant 3$.

Throughout this paper we suppose that G is a graph with $2 n-a$ vertices, with $a \in\{0,1\}$, which is two connected and regular of degree $n-k$, where k is an integer no less than three. Let P be a longest cycle in G, choose a direction around P, let $R=V(G)-V(P)$, and let $r=|R|$. For the lemmas, suppose $r \geqslant 1$. By a theorem of Dirac [2], $/(P) \geqslant 2 n-2 k$. For $v \in R$, let C_{v}, be the set of vertices of P adjacent to v, let A_{v}, be the set of vertices of P immediately preceding elements of C_{n} in the ordering of P, and let B_{n} be the set of vertices of P immediately following elements of C_{ψ}. The first lemma is trivial.

Lemma 1. Let v and w be in R. Then v is not adjacent to any vertex in $A_{v} \cup B_{e}, A_{v}$ and B_{v} are independent sets of vertices, and w is joined to at most one vertex of A_{v} and to at most one vertex in B_{v}.

Lemma 2. If $n \geqslant 3 k+2-a$, then R is independent.

Proof. Let Q be a longest path in a component of R and suppose $f(Q) \geqslant 1$. Let v and w be the ends of Q and let $d=\max \left\{\operatorname{deg}_{(R)} v, \operatorname{deg}_{\langle R\rangle} w\right\}$. Then $C(Q) \geqslant d$. Thus Q contains at least $d+1$ vertices. Going around P, let there be t occurrences of a vertex y joined to one of v or w and followed (not necessarily immediately) by a vertex z joined to the other of v and w; then there are at least $d+1$ vertices between y and z on P which are joined to neither v nor w, for otherwise P could be extended. Thus $2 n-r-a=$ $C(P) \geqslant$ number of edges from v to $P+$ number of edges from w to $P+$ number of vertices of P joined to v and/or $w+t(d-1) \geqslant 3 n-3 k-3 d+$ $t d-t$. Since v and w are both joined to vertices of $P, t \geqslant 2$. Further, $1 \leqslant d \leqslant r-1$. Thus $1-d \leqslant 0$. It follows that $n \leqslant 3 k+1-a$. But $n \geqslant 3 k+2-a$, so $/(Q)=0$ and R is independent.

Now we fix v and let $A=A_{v}, B=B_{v}$, and $C=C_{v}$, Let $X=V(P)-$ $(A \cup B \cup C)$ and let $s=|A-B|=|B-A|$. It is easy to see that $s \geqslant 1$ when $k \geqslant 3$. By Lemma 2, $|A|=|B|=|C|=n-k$ and $|X|=$ $2 k-(r+s)-a$. Since $|X| \geqslant 0, r+s \leqslant 2 k-a$.

Lemma 3. If $n \geqslant 3 k+2-a$, then $r \leqslant k-a$.
Proof. Let d be the number of edges from R to B. Then $d \leqslant r-1$ by Lemma 1. Also by Lemma 1, B is independent. Thus there are $(n-k)$ $(n-k+r)-2 d$ edges from $R \cup B$ to the other $n+k-r-a$ vertices of G. Since G has $(2 n-a)(n-k) / 2$ edges, $(n-k)(n-k+r)-2 d+d \leqslant$ $(2 n-a)(n-k) / 2$, from which we get $r \leqslant k-\frac{1}{2} a+\left(k-\frac{1}{2} a-1\right) /(n-k-1)$. Since r is an integer and $n \geqslant 3 k+2-a, r \leqslant k-a$.

Lemma 4. If $n \geqslant k^{2}+k+1$, then $r+s \leqslant k$.
Proof. Suppose $r+s\rangle k$. By Lemmas 1 and 2, $|E(\langle A \cup B \cup R\rangle)| \leqslant$ $s^{2}+2(r-1)$. Since $|A \cup B \cup R|=n-k+r+s$, there are at least $(n-k+r+s)(n-k)-2\left(s^{2}+2 r-2\right)$ edges from $A \cup B \cup R$ to $C \cup X$; further, $|C \cup X|=n+k-r-s-a$. Thus

$$
(n-k+r+s)(n-k)-2\left(s^{2}+2 r-2\right) \leqslant(n+k-r-s-a)(n-k),
$$

whence (using the assumption that $r+s \geqslant k+1$),

$$
n \leqslant k+\left[\left(s^{2}+2 r-2\right) /\left(r+s-k+\frac{1}{2} a\right)\right] .
$$

Denoting this upper bound for n by $f(a, k, r, s)$, holding a, k, and r constant, and recalling that $k+1-r \leqslant s \leqslant 2 k-a-r$, we find that $f(a, k, r$, $k+1-r)$ is a maximum for f except when $a=1$ and the pair (k, r) is in $\{(3,1),(3,2),(4,2),(4,3),(5,3),(5,4)\}$. But in these exceptional cases, $f(1, k, r, s) \leqslant k^{2}+k$. Further, in all other cases as r ranges through $[1, k]$,
treating the cases $a=0$ and $a=1$ separately and holding k constant, we get $f(a, k, r, s) \leqslant k^{2}+k$. The lemma follows.

Lemma 5. Let X_{0} be the subset of X such that the elements of X_{0} are adjacent to no vertices of $A \cap B$. Then
(1) if $a=0,\left|X_{0}\right| \geqslant k-r-s+1$; and
(2) if $a=1,\left|X_{0}\right| \geqslant k-r-s$.

Proof. There are s intervals on P in which vertices of X might be found. Number these intervals as $1,2, \ldots, s$ with m_{i} elements of X in interval i in such a way that $m_{1}, m_{2}, m_{\mathrm{a}}, \ldots, m_{\text {, }}$ are even and $m_{e+1}, m_{\text {en }}, \ldots, m_{,}$are odd, with $e \geqslant 0$. It is easily seen that if two vertices of X which are successive around P are both joined to elements of $A \cap B$, then there is a cycle of G larger than P. Hence at least the smallest number of nonconsecutive elements of the sequence of vertices in X in interval i, or $\left\{\left(m_{i}-1\right) / 2\right\}$, are not joined to any vertex in $A \cap B$. Thus

$$
\begin{aligned}
\left|X_{\mathrm{a}}\right| & \geqslant \sum_{i=1}^{\dot{ }}\left(\frac{m_{i}-1}{2}+\frac{1}{2}\right)+\sum_{i=k+1}^{\infty} \frac{m_{i}-1}{2} \\
& =\frac{1}{2}|X|-\frac{1}{2}(s-e) \geqslant \frac{1}{2}(2 k-r-2 x-a) .
\end{aligned}
$$

If $a=0,\left|X_{\mathrm{o}}\right| \geqslant k-r-s+\frac{1}{2} \geqslant k-r-s+\frac{1}{2}$ since $r \geqslant 1$. But $\left|X_{\mathrm{o}}\right|$, k, r, and s are integers, so $\left|X_{0}\right| \geqslant k-r-s+1$. If $a=1,\left|X_{0}\right| \geqslant$ $k-r-s+\frac{4}{2}-1 \geqslant k-r-s-\frac{1}{2}$, whence $\left|X_{0}\right| \geqslant k-r-s$.

Theorem. Suppase $k \geqslant 3$. Then G is Hamiltonian if
(a) a=0 and $n \geqslant k^{2}+k+1$, or
(b) $a=1$ and $n \geqslant 2 k^{2}-3 k+3$.

Proof. Suppose G is not Hamiltonian. By Lemma $4, r+s \leqslant k$. By Lemma 5 and the definitions, $\left|A \cup B \cup R \cup X_{0}\right| \geqslant n+1-a$. Choose a subset X_{0}^{\prime} of X_{0} such that $\left|A \cup B \cup R \cup X_{0}^{\prime}\right|=n+1-a$. By the definitions and Lemmas I and 2, we have at most

| | edges from to | |
| ---: | :---: | :---: | :---: |
| s^{2} | A | B |
| $r-1$ | A | R |
| $s(k-r-s+1-a)$ | A | X_{0} |
| $r-1$ | B | R |
| $1(k-r-s-a)(k-r-s+1-a)$ | B | X_{0} |
| $(r-1)(k-r-s+1-a)$ | R | X_{0} |
| $1(k-r-s)$ | | |
| X_{0} | X_{0} | |

in G and no other edges in $\left\langle A \cup B \cup R \cup X_{0}\right\rangle^{\prime}$. Thus there are at least

$$
\begin{aligned}
& (n+1-a)(n-k)-2\left\{s^{2}+2 r-2+2 s(k-r-s+1-a)\right. \\
& \left.\quad+(r-1)(k-r-s+1-a)+\frac{1}{2}(k-r-s-a)(k-r-s+1-a)\right\}
\end{aligned}
$$

edges from $A \cup B \cup R \cup X_{0}^{\prime}$ to $(C \cup X)-X_{0}^{\prime}$. Since this number is less than or equal to $(n-1)(n-k)$, we get

$$
\begin{aligned}
n \leqslant & k+\frac{2}{2-a}\left\{(r+s-r-1)^{2}+2(r+s)-3\right. \\
& \left.+(k-(r+s)+1-a)\left(2(r+s)-r-1+\frac{k-(r+s)-a}{2}\right)\right\}
\end{aligned}
$$

Since $r \geqslant 1$, and replacing $r+s$ by t which now ranges in $[2, k]$,

$$
\begin{aligned}
n \leqslant & k+\frac{2}{2-a}\left\{(t-2)^{t}+2 t-3\right. \\
& \left.+(k-t+1-a)\left(2 t-2+\frac{k-t-a}{2}\right)\right\} .
\end{aligned}
$$

Routine manipulation now shows that if $a=0$, then $n \leqslant k^{2}+k-1$, while if $a=1$, then $n \leqslant 2 k^{2}-3 k+2$. Since n exceeds the specified bound in each case, G is Hamiltonian.

Non-Hamiltonian graphs satisfying the conditions of regularity of degree $n-k$ with $2 n$ or $2 n-1$ vertices, and two connectedness, are known. For example, choose graphs $H_{1}^{\prime}, H_{2}^{\prime}{ }^{\prime}$, and $H_{3}{ }^{\prime}$ such that $H_{2}{ }^{\prime}$ is isomorphic to K_{23}. In $V\left(H_{i}^{\prime}\right)$, choose disjoint sets A_{i} and B_{i}, each of cardinality $2 t / 3-[i / 3]$, and form H_{i} from H_{i}^{\prime} by deleting from H_{i}^{\prime} a matching, each of whose edges
 vertex u to every member of every A_{i} and a new vertex v to every member of every B_{6}. Then, letting $k=t+2$ and $n=3 k-5, H$ is non-Hamiltonian, has $2 n$ vertices, and is two connected and regular of degree $n-k$. Many other similar examples can be constructed. Thus the theorem clearly requires some lower bound for n. But this lower bound surely is not as large as the ones used here.

References

1. M. Behzad and G. Chartrand, "Introduction to the Theory of Graphs," Allyn and Bacon, Boston, 1971.
2. G. A. Dirac. Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69-81.
3. P. Erdös and A. M. Hobes, A class of Hamiltonian regular graphs, J. Graph Theory, to appear.
4. L. Gordon, Hamiltonian circuits in graphs with many edges, unpublished.
