NONBASES OF DENSITY ZERO NOT CONTAINED IN MAXIMAL NONBASES

PAUL ERDŌS AND MELVYN B. NATHANSON

Abstract

A sequence $A=\left\{a_{i}\right\}$ of non-negative integers is a basis if every sufficiently large integer n can be written in the form $n=a_{i}+a_{j}$ with $a_{i}, a_{j} \in A$. If A is not a basis, then A is called a nonbasis. The nonbasis A is maximal if $A \cup\{b)$ is a basis for every $b \notin A$. We construct a nonbasis A of density zero, in particular, with $A(x)=O(\sqrt{ } x)$, such that A cannot be imbedded as a subset of any maximal nonbasis.

A set A of non-negative integers is a basis if every sufficiently large integer n can be written in the form $n=a_{i}+a_{j}$ with $a_{i}, a_{j} \in A$. If infinitely many integers n cannot be represented in the form $n=a_{i}+a_{j}$, then A is a nonbasis. The set A is a maximal nonbasis if A is a nonbasis, but $A \cup\{b\}$ is a basis for every non-negative integer $b \notin A$.

Nathanson [3] asked if every nonbasis is a subset of a maximal nonbasis. Recently, Hennefeld [2] observed that the set A consisting of $\{1\}$ together with all non-negative even integers except those of the form 2^{k} with $k \geqslant 1$ is a nonbasis that is not a subset of any maximal nonbasis. This set A has density $1 / 2$. On the other hand, Erdős and Nathanson [1] proved that if A is a nonbasis such that $A \cup F$ is a nonbasis for every finite set F of non-negative integers, then A is a subset of some maximal nonbasis. In particular, if A has density 0 and $2 A=\left\{a_{i}+a_{j} \mid a_{i}, a_{j} \in A\right\}$ has density strictly less then 1 , then A is a subset of a maximal nonbasis. The question remains whether every nonbasis of density 0 is a subset of a maximal nonbasis. If A is a set of non-negative integers, let $A(x)$ denote the number of elements of A not exceeding x. In this note we prove the following best possible result: There exists a nonbasis A with

$$
A(x)=O(\sqrt{x})
$$

which is not a subset of any maximal nonbasis.
Lemma. Let $\left\{Q_{k}\right\}_{k=1}^{\infty}$ be a strictly increasing sequence of odd positive integers $Q_{k}=2 q_{k}+1$ such that

$$
Q_{k}>2\left(\sum_{j=1}^{k-1} Q_{j}\right)^{2}
$$

Let $A^{\prime} \subset\left[0, q_{1}\right] \cup \bigcup_{k=2}^{\infty}\left[Q_{k-1}+1, q_{k}\right]$ be a set of integers such that $2 A^{\prime}=\mathbb{N} \backslash\left\{Q_{k}\right\}_{k=1}^{\infty}$
and

$$
A^{\prime} \cap\left[Q_{k-1}+1, q_{k}\right] \sqsubseteq\left[Q_{k-1}+1, q_{k}\right]
$$

for all sufficiently large k. Then there exists a nonbasis A with $A^{\prime} \subset A$ such that $A(x)=A^{\prime}(x)+O(\sqrt{ } x)$ and A is not a subset of a maximal nonbasis.

Proof. Let $Q_{0}=-1$, and let $A_{k}^{\prime}=A^{\prime} \cap\left[Q_{k-1}+1, q_{k}\right]$ for all $k \geqslant 1$. Then $A^{\prime}=\bigcup_{k=1}^{\infty} A_{k}{ }^{\prime}$, and $A_{k}^{\prime} \subsetneq\left[Q_{k-1}+1, q_{k}\right]$ for all $k>k_{0} \geqslant 1$.

[^0]We shall construct sets A_{k} such that $A_{k}^{\prime} \subset A_{k} \subset\left[Q_{k-1}+1, Q_{k}\right]$. Let $A_{k}=A_{k}{ }^{\prime}$ for $k \leqslant k_{0}$. Suppose A_{j} has been determined for $j<k$. Choose $b_{k} \in\left[Q_{k-1}+1, q_{k}\right] \backslash A_{k}$. Define $M_{k} \subset\left[q_{k}+1, Q_{k}\right]$ by

$$
M_{k}=\left\{Q_{k}-b_{k}\right\} \cup\left\{Q_{k}-x \mid x \in\left[0, Q_{k-1}\right] \text { and } x \notin\left\{b_{j}\right\}_{j<k} \cup \bigcup_{j<k} A_{j}\right\} \text {. }
$$

Let $A_{k}=A_{k} \cup \cup M_{k}$, and let $A=\bigcup_{k=1}^{\infty} A_{k}$.
Clearly, if $Q_{k}-x \in\left[q_{k}+1, Q_{k}\right] \cap A$, then $x \notin A$, and so $Q_{k} \notin 2 A$. Therefore, $2 A=2 A^{\prime}=\mathbb{N} \backslash\left\{Q_{k}\right\}_{k=1}^{\infty}$, and A is a nonbasis.

We shall determine all sets W such that $A \cup W$ is a nonbasis. Let $B=\left\{b_{k}\right\}_{k>*_{0}}$. Then $A \cap B=\varnothing$. If $c \notin A \cup B$, then $Q_{k}-c \in M_{k} \subset A$ for all sufficiently large k, and so $Q_{k} \in 2(A \cup\{c\})$. Therefore, if $A \cap W=\varnothing$ and $A \cup W$ is a nonbasis, then $W \subset B$, and so $W=B_{I}=\left\{b_{k}\right\}_{k \in I}$, where I is a subset of $\{k\}_{k>k_{0}}$.

If $Q_{k} \in 2(A \cup B)$, then $k>k_{0}$ and $Q_{k}=x+y$ for some $x, y \in A \cup B$ with $x<y$. Then $y \in\left[q_{k}+1, Q_{k}\right]$. But $B \cap\left[q_{k}+1, Q_{k}\right]=\varnothing$ and

$$
A \cap\left[q_{k}+1, Q_{k}\right]=M_{k}=\left\{Q_{k}-b_{k}\right\} \cup\left\{Q_{k}-x \mid x \in\left[0, Q_{k-1}\right] \backslash(A \cup B)\right\} .
$$

Since $x \in A \cup B$, it follows that $y=Q_{k}-b_{k}$ and $x=b_{k}$. Therefore, if $B_{i} \subset B$, then $Q_{k} \in 2\left(A \cup B_{I}\right)$ if and only if $k \in I$. Therefore, $A \cup B_{I}$ is a nonbasis if and only if I is a subset of $\{k\}_{k>k_{0}}$ whose complement in $\{k\}_{k>k_{0}}$ is infinite. Since there is no such maximal set I, there is no maximal subset B_{I} of B such that $A \cup B_{I}$ is a maximal nonbasis. Therefore, A is not contained in a maximal nonbasis.

Finally, we compute $A(x)-A^{\prime}(x)$. Clearly, $\left|M_{k}\right| \leqslant Q_{k-1}$ and $\left|A_{k}\right| \leqslant\left|A_{k}^{\prime}\right|+Q_{k-1}$ for all k. Let $Q_{k-1}<x \leqslant Q_{k} / 2$. Then

$$
\begin{aligned}
A(x) & \leqslant A^{\prime}(x)+\sum_{j=k_{0}+1}^{k-1}\left|M_{j}\right| \\
& \leqslant A^{\prime}(x)+\sum_{j=1}^{k-2} Q_{j} \\
& <A^{\prime}(x)+\sqrt{ } Q_{k-1} \\
& <A^{\prime}(x)+\sqrt{ } x .
\end{aligned}
$$

Let $Q_{k} / 2<x \leqslant Q_{k}$. Then

$$
\begin{aligned}
A(x) & \leqslant A^{\prime}(x)+\sum_{j=k_{0}+1}^{k}\left|M_{j}\right| \\
& \leqslant A^{\prime}(x)+\sum_{j=1}^{k-1} Q_{j} \\
& <A^{\prime}(x)+\sqrt{ }\left(Q_{k} / 2\right) \\
& <A^{\prime}(x)+\sqrt{ } x .
\end{aligned}
$$

Therefore, $A(x)=A^{\prime}(x)+O(\sqrt{ } x)$.
Theorem. There exists a nonbasis A with $A(x)=O(\sqrt{ } x)$ which is not a subset of a maximal nonbasis.

Proof. In [4], Nathanson constructed a set A^{\prime} satisfying the conditions of the Lemma, and also $A^{\prime}(x)=O(\sqrt{ } x)$. Applying the Lemma to this set A^{\prime}, we obtain a nonbasis A that is not contained in a maximal nonbasis and that satisfies

$$
A(x)=A^{\prime}(x)+O(\sqrt{ } x)=O(\sqrt{ } x) .
$$

Remark. Hennefeld [2] has proved that the set consisting of $\{1\}$ together with all non-negative multiples of h except the powers h^{n} with $n \geqslant 1$ is a nonbasis of order h which is not a subset of a maximal nonbasis of order h. It would be of interest to construct a nonbasis A of order h with $A(x)=O\left(x^{1 / h}\right)$ such that A is not a subset of a maximal nonbasis of order h.

References

1. P. Erdōs and M. B. Nathanson, " Maximal asymptotic nonbases ", Proc. Amer, Math. Soc., 48 (1975), 57-60.
2. J. Hennefeld, "Asymptotic nonbases which are not subsets of maximal asymptotic nonbases", preprint.
3. M. B. Nathanson, "Minimal bases and maximal nonbases in additive number theory ", J. Number Theory, 6 (1974), 324-333.
4. M. B. Nathanson, "s-maximal nonbases of density zero ", J. London Math. Soc., (2), 15 (1977), 29-34.
Mathematical Institute,
Hungarian Academy of Sciences,
Budapest,
Hungary.

Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901, U.S.A.

[^0]: Received 29 July, 1976.

