Note

On a Problem in Extremal Graph Theory

D. T. Busolini and P. Erdös
Mathematics Group, The Hatfield Polytechnic, P. O. Box 109, Hatfield, Herts AL10 9AB, England and Mathematical Institute, Hungarian Academy of Science, Realtanoda utca 11-13, Budapest 9, Hungary
Communicated by the Editors

Received August 30, 1976

The number $T^{*}(n, k)$ is the least positive integer such that every graph with $n=\binom{k+1}{2}+t$ vertices $(t \geqslant 0)$ and at least $T^{*}(n, k)$ edges contains k mutually vertex-disjoint complete subgraphs $S_{1}, S_{2}, \ldots, S_{k}$ where S_{i} has i vertices, $1 \leqslant i \leqslant k$. Obviously $T^{*}(n, k) \geqslant T(n, k)$, the Turán number of edges for a K_{k}. It is shown that if $n \geqslant \frac{9}{8} k^{2}$ then equality holds and that there is $\epsilon>0$ such that for $\binom{k+1}{2} \leqslant$ $n \leqslant\binom{ k+1}{2}+\epsilon k^{2}$ inequality holds. Further $T^{*}(n, k)$ is evaluated when $k>k_{0}(t)$.

Introduction

Let $G(n, m)$ denote a graph (V, E) with n vertices and m edges, K_{i} a complete graph with i vertices, and $\left\langle V^{\prime}\right\rangle$ the subgraph of (V, E) induced by $V^{\prime} \subseteq V$. The degree of $x \in V$ is denoted by $d(x)$, the minimum degree of the graph G by $\delta(G)$ and, for $V^{\prime} \subseteq V, \varphi\left(V^{\prime}\right)$ denotes the number of edges with one end vertex in V^{\prime} and the other in $V \backslash V^{\prime}$.

In [1] Turán proved that every $G(n, T(n, k))$ contains a K_{k}, where

$$
T(n, k)=\frac{k-2}{2(k-1)}\left(n^{2}-r^{2}\right)+\binom{r}{2}+1,
$$

$r \equiv n(\bmod k-1)$ and $0 \leqslant r \leqslant k-2$. Furthermore he showed that the only $G(n, T(n, k)-1)$ not containing a K_{k} has its vertex set partitioned into $k-1$ subsets of as near equal size as possible with any two vertices in different subsets adjacent. Dirac [2] and Erdös [3], among others, have extended this result.

The Problem

For k a positive integer a graph $G(n, m)$ is said to possess property $P(k)$ if $n \geqslant\binom{ k+1}{2}$ and it contains vertex-disjoint subgraphs $K_{1}, K_{2}, \ldots, K_{k}$. Find the least positive integer $T^{*}(n, k)$ such that every $G\left(n, T^{*}(n, k)\right)$ has $P(k)$. Clearly $T^{*}(n, k) \geqslant T(n, k)$.

Results

Theorem 1. If $n \geqslant \frac{9}{8} k^{2}$ then $T^{*}(n, k)=T(n, k)$.
Theorem 2. There exists $\epsilon>0$ and $k_{0}=k_{0}(\epsilon)$ such that if $k>k_{0}$ and $\binom{k+1}{2} \leqslant n \leqslant\binom{ k+1}{2}+\epsilon k^{2}$ then $T^{*}(n, k)>T(n, k)$.

Put $n=\binom{k_{2}+1}{2}+t$ and let $e(t, k)$ denote the number of edges of the n vertex graph $X(t, k)$ whose complement consists of a K_{k+t+1} together with $n-k-t-1$ isolated vertices.

Theorem 3. There exists $k_{0}=k_{0}(t)$ such that if $k>k_{0}$ then $T^{*}(n, k)=$ $e(t, k)+1$ and the only $G(n, e(t, k))$ without $P(k)$ is $X(t, k)$.

Proof of Theorems

Proof of Theorem 1. The proof is by induction on k. Let $G=(V, E)$ be any $G(n, \geqslant T(n, k))$ and $n \geqslant \frac{9}{8} k^{2}$. Choose a subgraph $K_{k}=\left(V^{\prime}, E^{\prime}\right)$ of G with the property that $\varphi\left(V^{\prime}\right)$ is minimal and put $V^{*}=V \backslash V^{\prime}$. If $\varphi\left(V^{\prime}\right) \leqslant$ $k(n-k)-\binom{k}{2}$ then by using the induction hypothesis it can be shown that $\left\langle V^{*}\right\rangle$ has $P(k-1)$ and so G has $P(k)$. If, on the other hand, $\left.\varphi\left(V^{\prime}\right)\right\rangle$ $k(n-k)-\binom{k}{2}$ put $A=\left\{x \in V^{*} \mid\{x, y\} \in E\right.$ for all $\left.y \in V^{\prime}\right\}, B=V^{*} \backslash A$, whence $|B|<\binom{k}{2}$ and $|A|>\frac{5}{8} k^{2}-\frac{1}{2} k$. Let p be a vertex of V^{\prime} with maximal degree and $a \in A$. Then $\left\langle\left(V^{\prime} \backslash\{p\}\right) \cup\{a\}\right\rangle=K_{k}$ and from the minimality of $\varphi\left(V^{\prime}\right)$ it follows that the number of edges $d_{V^{*}}(a)$ joining a to vertices of V^{*} satisfies $d_{V^{*}}(a) \geqslant d_{V} \cdot(p)-1 \geqslant(1 / k) \varphi\left(V^{\prime}\right)-1 \geqslant\left|V^{*}\right|-(k / 2)$, whence $\delta(\langle A\rangle) \geqslant$ $|A|-[k / 2]$. It is easy to show that any graph H with q vertices satisfying $\delta(H) \geqslant q-r$ has $P(k-1)$ if $q \geqslant\binom{ k}{2}+\binom{r-1}{2}$ by picking a K_{k-1}, a K_{k-2} disjoint from it, a K_{k-3} disjoint from both of them etc. Putting $H=\langle A\rangle$, $r=[k / 2]$ gives the result.
Proof of Theorem 2. The graph $G=(V, E)$ defined below has $n=\binom{k+1}{2}$ $+t$ vertices, where $0 \leqslant t \leqslant \epsilon k^{2}$. Put $q=[k / 10], V=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}$ $=\varnothing$. The subgraph $\left\langle V_{1}\right\rangle$ is complete with $\frac{1}{2}(k-q)(k-q+3)$ vertices, $\left\langle V_{2}\right\rangle$ has the maximum number of edges without containing a K_{q} (and is
determined by Turán's theorem) and $\{x, y\} \in E$ whenever $x \in V_{1}$ and $y \in V_{2}$. It is left to the reader to verify that G does not have $P(k)$ and that $|E|>$ $T(n, k)$ if ϵ is sufficiently small and k is sufficiently large.

Lemma. Let $k \geqslant 5$ and $G=(V, E)$ a graph without $P(k)$ having $n=$ $\binom{k+1}{2}+t$ vertices, where $0 \leqslant t<k$. If G contains K_{k} then it is possible to find $Y \subseteq V$ such that $\langle Y\rangle=K_{k}$ and $\varphi(Y) \leqslant k(n-k)-(k+t+1)$ unless $G=X(t, k)$.

Proof of Lemma. Suppose the Lemma is false. Choose $Y \subseteq V$ such that $\langle Y\rangle=K_{k}$ and $\varphi(Y) \geqslant k(n-k)-(k+t)$ minimal. Put $Z=V \backslash Y, A=$ $\{z \in Z \mid\{y, z\} \in E$ for all $y \in Y\}, B=Z \backslash A$, whence $|B| \leqslant t+k$ and $|A| \geqslant$ $\left({ }_{2}^{k-1}\right)-1$. Let $p \in Y$ satisfy $d(p) \geqslant d(q)$ for all $q \in Y$ and let $a \in A$. Then $\langle(Y \backslash\{p\}) \cup\{a\}\rangle=K_{k}$ and, by the minimality of $\varphi(Y), d_{z}(a) \geqslant d_{z}(p)-1 \geqslant$ $(1 / k) \varphi(Y)-1>|Z|-3$. Thus $\delta(\langle A\rangle) \geqslant|A|-2$. If $|A| \geqslant\binom{ k-1}{2}$ then $\langle A\rangle$ has $P(k-2)$ and, for $1 \leqslant i \leqslant k-2$, it is possible to adjoin a vertex $z_{i} \in Z$ to the subgraph K_{i} of $\langle A\rangle$ to produce disjoint subgraphs K_{2}, K_{3}, \ldots, K_{k-1} of $\langle\boldsymbol{Z}\rangle$, whence G has $P(k)$. Thus $|A|=\binom{k-1}{2}-1,|B|=t+k$, $\varphi(Y)=k(n-k)-(k+t)$ and each $b \in B$ satisfies $d_{Y}(b)=k-1$. Vertexdisjoint subgraphs $K_{2}, K_{3}, \ldots, K_{k-2}$ of $\langle A\rangle$ may be shown to exist. If there are k independent edges $\left\{p_{i}, q_{i}\right\}$ where $p_{i} \in Y, q_{i} \in B$, and $1 \leqslant i \leqslant k$ then it is possible to adjoint one of these, say $\left\{p_{k-2}, q_{k-2}\right\}$, to K_{k-2} to give a K_{k}, another, say $\left\{p_{k-3}, q_{k-3}\right\}$, to K_{k-3} to give a K_{k-1}, \ldots, showing that G has $P(k)$. Otherwise there is $y \in Y$ not adjacent to any vertex of B. Let $x \in Y \backslash\{y\}$ and $a \in A$. Then x is adjacent to every vertex of $Z,\langle(Y \backslash\{x\}) \cup\{a\}\rangle=K_{k}$ and, by the minimality of $\varphi(Y), a$ is adjacent to every other vertex of Z. If $\langle B\rangle$ contains an edge $\left\{b_{1}, b_{2}\right\}$ then, for $2 \leqslant i \leqslant k-2$, adjoining $b_{i+1} \in$ $B \backslash\left\{b_{1}, b_{2}\right\}$ to K_{i} shows that G has $P(k)$. If $\langle B\rangle$ contains no edge then $G=$ $X(t, k)$.

Proof of Theorem 3. Let $G=(V, E)$ be a $G(n, \geqslant e(t, k))$ and

$$
\left.k>k_{0}=\binom{t+20}{2}+t\right)+t+19
$$

By elementary algebra it can be shown that $e(t, k) \geqslant T(n, k)$ when $k>t$ and $k \geqslant 20$, so that G contains K_{k}. By the Lemma if $G \neq X(t, k)$ and G does not have $P(k)$ then $\langle\boldsymbol{Z}\rangle$ is a $\left.G\binom{k}{2}+t, \geqslant e(t, k-1)+1\right)$. Applying the same argument to $\langle Z\rangle$ yields a subgraph $\left\langle Z^{\prime}\right\rangle$ which is a $G\left(\left(\begin{array}{c}k_{2}^{-1}\end{array}\right)+t, \geqslant e(t\right.$, $k-2)+2$). Repeated application yields a $G\binom{t+20}{2}+t, \geqslant e(t, t+19)+$ $k-t-19$) which has more edges than the complete graph, a contradiction.

An Unsolved Problem

In view of Theorems 1 and 2 the following problem remains to be solved. Evaluate $f(k)$, the smallest integer such that whenever $n \geqslant f(k)$ then $T^{*}(n, k)=T(n, k)$. In terms of $f(k)$ Theorem 1 becomes $f(k) \leqslant \frac{9}{8} k^{2}$.

References

1. P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436-452.
2. G. Dirac, Extensions of Turán's theorem on graphs, Acta Math. Acad. Sci. Hungar. 14 (1963), 417-422.
3. P. Erdös, in "A Seminar on Graph Theory" (F. Harary, Ed.), Chap. 8, pp. 54-59, Holt Rinehart and Winston, New York, 1967.
