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On composition of polynomials

P . ERDŐS and S . FAJTLOWICZ

We shall use the following notation : If A is an algebra then A ( " ) will denote
the set of all n-ary polynomial operations of A, and A (' ) will denote the set of all
polynomial operations of A : by an algebra over a field F we shall mean here a
member of the variety generated by F= (F; +, , (a)acr ), (we shall identify here an
algebra with its universe) .

The following concept of order of enlargeability E was introduced by E .

Marczewski in [4] :

E(A) =min j n : V ([A ( " ) = B'" ) ] ~ [A'°'' = B" ) ])}I

	

r;

where the minimum of an empty set is assumed to be -, (Marczewski first called
E(A) the degree of extendability of A, but later he changed his terminology to the
above) .

The order of enlargeability was studied extensively by Urbanik in [5] and [6] .
Let y(A) be the minimal number of generators of a finitely generated algebraic
structure A. As usual if every element of A is an algebraic constant we put
y(A) = 0, but if A is not finitely generated we put y(A) =oo . For any subalgebra B
of A let y(B, A) = min a(C) where C is any subalgebra of A containing B .
Further, we put yo(A) = sup y(B, A), where the supremum is taken over all
finitely generated subalgebras B of A . This concept was introduced by Urbanik
[5], who showed that in a number of instances it is true that yo(A) = -(A) . We
shall show that this identity holds for algebras A over uncountable fields F, unless
A = F. (If the cardinality of F is N o , then E (F) = 1 but yo(F) = 0 .) For fields of
cardinality different than No we have a stronger result, namely that if f : F" - F is

an operation such that for every i < n and (a,, . . . , a"_,) E F"- ', f(a	a,_,, x,

a;, . . . , a"_,) is a polynomial, then f is a polynomial . J . Jones [3] has recently
published a problem corresponding to a special case of this theorem : F is the field
of real numbers, n = 2 .
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The idea of the proof of Theorem 2, below comes from Wolfgang Schmidt,
who proved that for the ring of integers we have that e = 1 . We are publishing the
theorem with his kind permission .

In the proof of Theorem 1 integers are identified with the set of their
predecessors . For the definition of bicentrality see [ I ] or [2] .

THEOREM 1 . Let F be a field of cardinality h ( , and let f : F" - FV n > 2 . If

for every (a	a„ 1 ) E F" - ' and i < n, we have that f(a,, . . . , a ; ,, x,

a,, . . . , a" 1 ) e F"' then f E F( "'

Proof. If F is finite then the theorem is obvious because every operation on F

can be represented as a polynomial with coefficients from F . For infinite fields we
shall prove the theorem by induction on n . For n = 1 the theorem is obvious . So
suppose the theorem is true for n, and let f : F"'' - F, n >_ 1 . By the inductive
assumption it follows that for every a E F the operation f (x 1,, x,	v,-,, a) E

F'"' . Thus for every a E F there exists an integer ka and functions ft3 : F- F
0 = 0, 1, . . . , ka"- 1, such that

(t)

	

(3(" - I1f(xn, . . . . x"-1, a)=

	

fp(a)xu(3
d11 x R,

	

. . . x"- I

	

(*)
t3Ek ;
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Because the cardinality of F is bigger than X,, there are an integer k and an
infinite subset F„ c F such that for every a c F0i we have k Q < k . Let M be a
k" x k" matrix such that for every a, r3 E k" the (a, 0)-entry of M is the monomial

p(n)

	

R(1)

	

0(n-1)
X0 . , x1,a . . . x„-I . a . Let

Q - a(x0,0, •

	

, xn-1 .0, x0,1, •

	

, xn-1 .1, . . . . x0 .k -1, •

	

, X- 1,k" 1)

be the determinant of the matrix M. Since A is a linear combination of monomials
with coefficients ±1 with no two of these monomials equal, is a nonzero
polynomial and thus there are elements a ;, . E F i c n, a c k" such that

,1 (a,, .0, . . . . an-I,0> a0 .1, . . . . a,, 1	a0,k "--1, . . . . a n . 1 .k"-1)

	

()-

Let us consider the system of k" linear equations in the unknowns x,

f(ao,", a,,,,

	

, a"- 1 .~)

	

xtao,.

	

, a,, 1 .a

	

(**)
t3, k '

where a c V . By the choice of a ;_, the determinant of the right side is different
from 0 and thus by Cramer's rule the system (**) has a unique solution, which is a
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linear combination of f(a~,~, . . . , a,-,,,, a). Because for every a o , a,, . . , a"-, E

Fn, f(a,,, . . . , a n _,, x) is a polynomial, for every a E V there is a polynomial arp
such that the solution of (**) is 7rt3 (a) . Again, because (**) has a unique solution,
therefore in view of (*), for every a c Fo , we have 7T,,(a)= fp ( a), R E k" . Let

4'(x0,

	

, X-1, xn)=f(x0,

	

, X-1, xn) - L -'Q(xn)XÓ('),

	

, xn ln 1
Oe k"

Let (a,,, . . . , a,-,)c Fn. Then X(x) _ iP(a o , . . . , a .-,, x) is a polynomial . But now
from (*) it follows that for every a c Fo , X(a) = 0 . Since Fo is infinite X = 0 and so
tP = 0. Thus

f = Z '7rp (xn )xo" )X j " . . . , xn "' i .e ., f is a polynomial .
{3Fk"

THEOREM 2 . If F is a countable field then E(F) =- .

Proof. To prove the theorem we have to show that for every n > I there is an
operation f : Fn F which is not a polynomial such that for every n-tuple of
polynomials 0 1 , IP" . . . , tPn whose variables come from fixed (n--'1) element set of
variable f (C, 02, is a polynomial . Let cp, _ (qr ;, . . . , q1 n), X02 =

(~y ;	)

	

be a sequence of all n-tuples of polynomials of n -1 variables .
Since for every positive integer k the polynomials ~, ~z, . . . , 0„ are algebraically
dependent, there is a nontrivial polynomial Qk such that Q k ( fir ;, 0z, • • • , „) = 0 .
Let 7Tk = 0-,, Qz • • • Qk and let Xk ={x c F" : ark (x) = 0} . Thus for 1<kk we have that
IM ~F1 C Xk . Moreover, each of the sets X k is a subset of Xk+ , and U k-, X k = F"
Without loss of generality we can assume that X k Xk+, . Because each element
of F" belongs to all but finitely many sets Xk , for every sequence E; of zeros and
ones the formula f (x) _ 1;-, e ;,7r; (x) defines an operation on F. Because IM cp k
Xk we have that for every k f(0 ;, . . . , ~y;) = 5-t E;7r;(t(l1, . . . , „) is a polynomial .
However different sequences E; yield different operations f and so some of them
are not polynomials . Thus Theorem 2 is proved .

THEOREM 3 . If A F is an algebra over a field of eardinality 54k ( , then

E(A) = yl(A) .

Proof. If AX F then E(F)-y,,(A), because by Theorem 1 E(F) equals 0 or 1 .
Because every two polynomial operations which are equal on F are equal on A,
by Urbanik's Theorem 4 .1 of [5], we have that E(A) -y o(A) .

Suppose now that k < y o(A) . Let fm be an operation such that
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f„, (x,	x,„) = 0 if and only if the set {XI, x z , . . . , xm} is contained in a sub-
algebra generated by k elements. Because k < y,,(A) there is an integer s such
that fs is not identically equal to zero and hence fs is not a polynomial .
Nevertheless, for every 7T I , . . . , 7, E A Ik ' we have that fs(7r,	7T,) c A (k ' be-
cause it is identically equal to 0 . Thus y(A j < e(A) i .e . Theorem 3 is proved .

COROLLARY. Polynomial rings over fields of eardinality {? ; t, are bicentral.

Proof. Let F be an uncountable field and let R be a polynomial ring ; over F.
Then R is a free algebra in the variety of algebras generated by F. If the number
of variables of R is infinite then the corollary follows from Theorem I of [2] . If
the number of variables is finite and equals n then by Theorem 3 E(R) = n, and
thus R is bicentral by Theorem 2 of [2] .

Using Theorem 2 one may show that polynomial rings in finitely many
variables over countable fields are not bicentral .
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