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1 . Introduction

We define A(n, k) = (n + k)!/n! where n, k are positive integers and we
wish to examine divisibility properties of A(n, k) .

First observe that the cases k = 1, 2 are special . The relations
tA(n, 1) = A(m, 1)

	

and

	

tA(n, 2) = A(m, 2)

each have infinitely many solutions n, m-the first for every positive integer
t; the second for every positive integer that is not a square, as can be seen
from Pell's equation

(2m+1) 2 -t(2n+1) 2 =1-t.

On the other hand, it is well known from the Thue-Siegel theorem that
for given k >_ 3 and fixed t > 1 the equation

tA(n, k) = A(m, k)

	

(1.1)

has only a finite number of solutions in integers n, m .

t Research of the second author was supported in part by Grant MCS 76-06988 .
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It is possible that (1 .1) has only a finite number of solutions for fixed t
and variable k > 2, but we cannot prove this even in the case t = 2 without
additional hypotheses on n. Perhaps the following stronger conjecture
holds : A(n, k) = tA(m, I) has only a finite number of solutions m >- n + k for
every rational t if min(k, l) > 1, max(k, l) > 2 .

Letf (n, k) be the least positive integer m > n so that

A(m, k) - 0 (mod A(n, k)) .

	

(1 .2)

We obviously have f (n, k) < A(n, k) - k and it is easy to see that for k > 1
we get several residue classes (in addition to -k) (mod A(n, k)) for m which
ensure that (1 .2) holds. The number of these residue classes is always larger
than k, in fact exponential in k, so that the above inequality on f (n, k) can
always be improved .

The algebraic identities

x(x + 1)(x + 2) _ (x 2 + 2x)(x + 1)

which divides (x 2 + 2x)(x 2 + 2x + 1)

x(x + 1)(x + 2)(x + 3) _ (x 2 + 3x)(X2 + 3x + 2)

x(x+ 1)(x+2)(x+3)(x+4)=(x2+4x)(x2+4x+3)(x+2)

which divides (x 2 + 4x)(X2 + 4x + 3)(x 2 + 4x + 4)

show that A(n, 3) divides A(n2 + 4n + 1, 3); A(n, 4) divides A(n2 + 5n +
2, 4) ; and A(n, 5) divides A(n 2 + 6n + 4, 5). Thus f (n, 3) < n 2 + 4n + 1,
f (n, 4) < n 2 + 5n + 2, f (n, 5) < n 2 + 6n + 4 . It seems likely that these
bounds are attained for infinitely many, perhaps for almost all, values of n .
One might ask whether we get f (n, k) < nk-á for all (almost all) large n and
some S > 0 when k > 5 . In the other direction we would like to know
whether f (n, k) > n i+a for infinitely many (almost all) n for some 5 > 0
when k > 1 . For k = 2, we have infinitely many n with f (n, k) -,/2n. Are
there infinitely many n with f (n, k) < en for fixed c, k > 2?

A function closely related to f (n, k) is g(n, k), the minimal integral value
A(m, k)/A(n, k), m > n . The above discussion shows that g(n, k) -
f (n, k) k/A(n, k) for fixed k and thus g(n, k) < n k for k < 5 . Table 1 gives
values off (n, k), g(n, k) for small n and k .

One may try to estimate the density d(n, k) of integers m for which (1 .2)
holds. Obviously d(n, 1) = 1/(n + 1). For k = 2 we have

d(n, 2) = 2w ( ' (n , 2))/A(n, 2),

	

(1 .3)

where co(x) denotes the number of distinct prime factors of x. Relation (1 .3)
follows from the fact that A(m, 2) is divisible by A(n, 2) if and only if we can
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TABLE 1

factor A(n, 2) into two relatively prime divisors A(n, 2) = dl d2, (d l , d z ) = 1,
and require

m = - 1 (mod dl ),

	

m - -2 (mod d2 ) .

Since there are 2w1"(" • z)) such factorizations of A(n, 2), we get that many
residue classes (mod A(n, 2)) for m .

Fork > 2, the problem of computing d(n, k) becomes messier, but not
intrinsically difficult . The number of residue classes (mod A(n, k)) to which
m must belong remains O(nE) for every E > 0 and hence

nk < d(n, k) < nk-E

for all values of k .
Another question is that of determining those m > n so that there exists

some k for which (1 .2) holds. Since for k > m - n, we have

A(m, k) A(n + k, m - n)
A(n, k)

	

A(n, m - n)

which is certainly an integer for k = A(n, m - n) - m, the problem becomes
trivial unless we restrict the values of k to k <_ m - n .

For n = 1 and any m we see that

A(m,p-1) - 1 m+p-1
A(l, p- 1)

	

p( p- 1 )

n

t 2 3 4 5 6 7

f 9 i 9 J 9 i 9 Í 9 f 9 Í 9

1 3 2 2 2 3 5 2 3 4 21 2 4 3 15

2 5 2 7 6 3 2 6 14 4 6 3 3 5 22

3 7 2 14 12 7 6 4 2 11 78 6 11 13 646
4 9 2 8 3 12 13 6 3 13 68 22 1794 20 2691

5 11 2 13 5 13 10 52 2915 13 34 6 2 17 437
6 13 2 47 42 25 39 52 1749 17 57 16 969 7 2
7 15 2 62 56 53 231 52 1113 31 476 50 18921 21 345
8 17 2 34 14 42 86 32 119 50 2703 50 10812 20 138
9 19 2 43 18 19 7 51 477 51 1908 20 46 59 68076

10 21 2 31 8 63 160 62 720 51 1272 60 11346 49 11925
11 23 2 38 10 25 9 24 15 60 1891 46 1645 62 33902
12 25 2 76 33 62 96 61 372 47 420 50 1749 50 5247
13 27 2 19 2 47 35 31 22 31 42009 151 695981 169 11865205
14 29 2 79 27 117 413 268 72899 131 30954 284 20233213 149 3346915

15 31 2 254 240 269 4065 302 92415 319 1860516 284 14452295 169 5393275
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is divisible by p unless m - 0 (mod p). Since m cannot be divisible by all
primes < m except when m = 2, we see that for every m > 2 there exists a k,
1 < k < m - 1 so that A(1, k) divides A(m, k) . The question whether there
exists a k, 1 < k < m - 2, so that A(2, k) divides A(m, k), which is equivalent
to ( k z 2) divides (mkk ), seems much more difficult to decide. The general
problem can be stated as follows :

Given n > 1 is it true that for all (almost all) large m there exists a k,
1<k<m-nsothat

(m+k1
?

k

	

(1.4)

If not, what is the density d*(n) of integers m for which (1.4) has a solution
with 1 <k<m-n?

In Section 2 we show that for bounded ratios m/n and any 6 > 0 we get
only a finite number of solutions of (1 .2) with k > Sn .

In Section 3 we treat the special case in which the set {n + 1, . . ., n + k}
contains a prime and m/n is bounded to show that (1 .2) has only a finite
number of solutions 2 < k < m - n in that case . We give an example which
may prove the only one with m < 2n . Finally, we mention some additional
problems and conjectures .

2 . The Case k > ón

In this section we prove the following.

Theorem 2.1 Given positive numbers ó, A so that k >_ bn and n + k <
m < An, then there exists an n o = no(b, A) so that the congruence (1 .2) has no
solution with n >_ n, .

The proof depends on showing that for all large n there exists a prime p
in the interval [n + 1, n + k] that divides A(n, k) to a higher power than it
divides A(m, k) .

Lemma 2.2 Assume that the hypotheses of Theorem 2 .1 are satisfied and
that every prime p c- [n + 1, n + k] divides A(m, k) . Then for every E > 0 there

Note that it is possible to have every prime that divides A(n, k) also
divide A(m, k) . This always happens when k = In, m = 12n .

exists an n, = n i ( F:) so that for all n > n i there exists an integer 1, 2 <
with

1 < A,

(I - -)n + (1 - 1)k < m < lk + an

and hence

(2 .1)

(1- 2s)n < k (2 .2)
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Proof Let n be so large that there exists a prime in [n + 1, n + k] and let
p be the largest prime in that interval . Let I be the largest integer so that
Ip < m + k . Then I >_ 2 and for large n we have p > n + k - Sn . Hence

l<m+k<--m+k <I+ -- m- n<1+A-1=A .
p

	

n+k-8n

	

(1+6-8)n

Now pick n so large that p > n + k - en/4 . Then

m+k->>lp>ln+lk-en

and hence

(I - e)n + (I - 1)k < m.

Let q be the smallest prime so that m + k < (1 + 1)q . For large n we must
have n < q since otherwise 1 times every prime in [n + 1, n + k] would lie in
[m + 1, m + k], which is impossible . Let n be so large that

m + k

	

m + k

	

en
1+1

<q< l+1 + I(I+1)'

then m < lq and hence

and hence

(1 + 1)m < 1(m + k) + en

or

m<lk+en .

Lemma 2.3 Assume that the hypotheses of Theorem 2 .1 are satisfied and
that s is an integer such that n < k/s and every prime p E [k/t, (n + k)/t], t = 1,
2, . . . , s, satisfies

A(m, k) - 0 (mod p`) .

Assume further that for the integer l in Lemma 2 .2 we have

m+ a k-en<l(n+k)<m+dk+en

	

(2.3)

where alb and c/d are consecutive terms in the Farey series of order s and e is a
given number, 0 < e < s -2 .

Then there exists an n z = nz (e) so that for all n > n z we have

(l-e)n+(1-d)k<m<Il-b)k+en

	

(2.4)

k > bd(1- 2e)n > s(l - 2e)n.

	

(2.5)
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Proof For s = 1, this is Lemma 2.2 . We now proceed by induction on s .
If max{b, d} < s, then the result follows from the induction hypothesis .

If d = s > 1, then b < s and the first inequality in (2 .4) follows directly
from (2 .3) while the second inequality holds by the induction hypothesis .

Now assume that b = s, d < s . Then the first inequality in (2 .4) is still an
immediate consequence of (2 .3). If the second inequality were false, we
would have

sl
k
< m +

a
k - en < sl

n + k
s

	

s

	

s

If 1(n + k) < m + (a/s)k + en and n is sufficiently large, then there exists a
prime p so that

m+ak-2En<slp<m+ak+en

	

and

	

n+k - En
<p<

n+k
S

	

s

	

s

	

sl

	

s

Hence (sl - a)p < m and (sl + s - a)p > m + k and A(m, k) # 0 (mod ps),

contrary to hypothesis .
We may therefore assume that 1(n + k) > m + (a/s)k + en ; then for large

n there exists a prime p with

m+ak<slp<m+ak+ sl

	

and

Thus, again, (sl - a)p < m while (sl + s - a)p > m + k and A(m, k) f
0 (mod p'), contrary to hypothesis .

Proof of Theorem 2.1 If 1 > 2 and every prime p c [k/2, (n + k)/2]
satisfies A(m, k) - 0 (mod p2), then, according to (2 .5), we have k > 3n . Now
let s be the largest integer for which sn < k . If every prime p c [k/t, (n + k)/t],
t = 1, 2, . . ., s satisfies A(m, k) - 0 (mod p`), then, according to (2.5), we have
k > s(2 - 2E)n > (s + 1)n, a contradiction .

Now if I = 2 and 2n < k, then Lemma 2.3 can be applied as before . If
1 = 2 and 2n >- k, then every prime p c [n + 1, (n + k)/2] satisfies A(n, k)
0 (mod p 2 ) . But, according to Lemma 2.2, we have

(4 - 3e)n < m < m + k < (6+e)n .

Thus for large n there exists a prime p,

(4 - e)n < p < ( 4 + -) n,

so that for sufficiently small e we have 3p < m while 5p > m + k and
A(m, k) f 0 (mod p2 ) .

k en

	

n + k
-+--<p<
s

	

sl

	

s
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3. The Case A(m, k) - 0 (mod A(n, k)); n + k < m < An and
{n + 1, . . . , n + k} Contains a Prime

We first mention the interesting example

A(32, 6) = 37 - A(16, 6) .

	

(3.1)

Here two of the integers 17, 18, 19, 20, 21, 22 are primes and 17 may well be
the largest n which solves our problem in case A = 2 . In the following we
show that we can find an effective bound for all solutions k, n, m .

From Theorem 2.1 we know that we can restrict attention to cases
k < bn where 6 is any fixed positive number . Since there exists a prime p with

n+I<p<n+k<m<An

	

(3.2)

and A(m, k)/A(n, k) is an integer, there must exist an integer l so that

in +1<lp<m+k

	

(3.3)

Thus

In +l-k<m<In+(l-1)k .

	

(3 .4)

Lemma 3.1 Every integer

x c [n + l, n +
k]fmlI+1 m+kl

-	

has all prime divisors less than (l + 1)k.
Proof Assume that x has a prime divisor q > ( I + 1)k. Now, either

lx < m + 1 and lx + q > In + lk >- m + k so that q does not divide A(m, k),
or lx > m + k and lx - q < In + lk - (l + 1)k < m and again q does not
divide A(m, k) .

The set of integers in [n + 1, n + k]~[(m + 1)/1, (m + k)/1] contains an
interval of length > k(l - 1)/2l = ks .

Lemma 3.2 There exists a ko so that A(n, [ks]) has prime divisors greater
than (l + 1)k for all k _> ka , k < 6n .

Proof Set [ks] = t and consider the binomial coefficient

(n + t)

	

A(n, t)
t

	

tI

Every prime power qa that divides a binormal coefficient (" ',`) satisfies
q" < n + t . Thus the hypothesis that all prime divisors are < (l + 1)k yields

(n + t) < (n + t)rz((l+1)k) < (n + t )c(!+L)k/logk

	

(3.5)
t
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> (n
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Now set (n + t)/t = C > 1/6 and compare (3.5) and (3.6) to get

C` < C`(t+1)knogk(sk)`u+1)k/1ogk

	

(3.7)

which is false for k > k o provided 6 is small enough .

Theorem 3.3 For each A > 1 there exists only a finite number of integers
k, n, m such that k > 1, n + k < m < An and A(m, k) - 0 (mod A(n, k)) where
the interval [n + 1, n + k] contains a prime .

Proof We first pick 6 in Theorem 2.1 sufficiently small and then can
restrict attention to a fixed integer l, 2 < I < A + b . By Lemma 3.2 we have
k < k, . Now pick one of the integers x e [n + 1, n + k] so that
Ix 0 [m + 1, m + k] . Then, by the same argument that we used in the proof
of Lemma 3 .1 we have (x, y) < (I + 1)k for every y c [m + 1, m + k] and
hence, if x I A(m, k) we must have n < x < ((l + 1)k )k < ((I + 1)ko )k o

We have not carried out the detailed estimates needed to show, for
example, that the example stated at the beginning of this section is the
unique solution for A = 2, except for A(4, 2) and A(8, 2), but it would not be
difficult to do so .

4. Open Questions

4.1 . In view of Lemma 2 .2, it would be interesting to know the smallest
m > 2k so that every prime in the interval [k + 1, 2k] divides A(m, k). In
particular, is it true that m > k` for every c?

4.2 . We know of no example with n > 16, k > 2, where A(n, k) divides
A(m, k) and n + k < m < 2n . It would be interesting to find a bound for such
n without the hypothesis that there exists a prime in the interval
[n + 1, n + k] .

4 .3. A question related to those discussed in this paper is to find solu-
tions for A(n, k) I A(n + k, n + 2k) . Charles Grinstead has found the follow-
ing examples :

AMS (MOS) 1970 subject classification : I0A05 .

n : 2 3 4 5 6 7 8 9

k : 4 3 206 1886 3472 3471 8170 8169
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