On Products of Consecutive Integers

P. ERDÖS

HUNGARIAN ACADEMY OF SCIENCE
BUDAPEST, HUNGARY
E. G. STRAUS \dagger

UNIVERSITY OF CALIFORNIA
LOS ANGELES, CALIFORNIA

1. Introduction

We define $A(n, k)=(n+k)!/ n!$ where n, k are positive integers and we wish to examine divisibility properties of $A(n, k)$.

First observe that the cases $k=1,2$ are special. The relations

$$
t A(n, 1)=A(m, 1) \quad \text { and } \quad t A(n, 2)=A(m, 2)
$$

each have infinitely many solutions n, m-the first for every positive integer t; the second for every positive integer that is not a square, as can be seen from Pell's equation

$$
(2 m+1)^{2}-t(2 n+1)^{2}=1-t .
$$

On the other hand, it is well known from the Thue-Siegel theorem that for given $k \geq 3$ and fixed $t>1$ the equation

$$
\begin{equation*}
t A(n, k)=A(m, k) \tag{1.1}
\end{equation*}
$$

has only a finite number of solutions in integers n, m.

+ Research of the second author was supported in part by Grant MCS 76-06988.

It is possible that (1.1) has only a finite number of solutions for fixed t and variable $k>2$, but we cannot prove this even in the case $t=2$ without additional hypotheses on n. Perhaps the following stronger conjecture holds: $A(n, k)=t A(m, l)$ has only a finite number of solutions $m \geq n+k$ for every rational t if $\min (k, l)>1, \max (k, l)>2$.

Let $f(n, k)$ be the least positive integer $m>n$ so that

$$
\begin{equation*}
A(m, k) \equiv 0(\bmod A(n, k)) . \tag{1.2}
\end{equation*}
$$

We obviously have $f(n, k) \leq A(n, k)-k$ and it is easy to see that for $k>1$ we get several residue classes (in addition to $-k)(\bmod A(n, k))$ for m which ensure that (1.2) holds. The number of these residue classes is always larger than k, in fact exponential in k, so that the above inequality on $f(n, k)$ can always be improved.

The algebraic identities

$$
\begin{aligned}
& x(x+1)(x+2)=\left(x^{2}+2 x\right)(x+1) \\
& \text { which divides }\left(x^{2}+2 x\right)\left(x^{2}+2 x+1\right) \\
& x(x+1)(x+2)(x+3)=\left(x^{2}+3 x\right)\left(x^{2}+3 x+2\right) \\
& x(x+1)(x+2)(x+3)(x+4)=\left(x^{2}+4 x\right)\left(x^{2}+4 x+3\right)(x+2) \\
& \text { which divides }\left(x^{2}+4 x\right)\left(x^{2}+4 x+3\right)\left(x^{2}+4 x+4\right)
\end{aligned}
$$

show that $A(n, 3)$ divides $A\left(n^{2}+4 n+1,3\right) ; A(n, 4)$ divides $A\left(n^{2}+5 n+\right.$ $2,4)$; and $A(n, 5)$ divides $A\left(n^{2}+6 n+4,5\right)$. Thus $f(n, 3) \leq n^{2}+4 n+1$, $f(n, 4) \leq n^{2}+5 n+2, f(n, 5) \leq n^{2}+6 n+4$. It seems likely that these bounds are attained for infinitely many, perhaps for almost all, values of n. One might ask whether we get $f(n, k)<n^{k-\delta}$ for all (almost all) large n and some $\delta>0$ when $k>5$. In the other direction we would like to know whether $f(n, k)>n^{1+\delta}$ for infinitely many (almost all) n for some $\delta>0$ when $k>1$. For $k=2$, we have infinitely many n with $f(n, k) \sim \sqrt{2 n}$. Are there infinitely many n with $f(n, k)<c n$ for fixed $c, k>2$?

A function closely related to $f(n, k)$ is $g(n, k)$, the minimal integral value $A(m, k) / A(n, k), \quad m>n$. The above discussion shows that $g(n, k) \sim$ $f(n, k)^{k} / A(n, k)$ for fixed k and thus $g(n, k) \ll n^{k}$ for $k \leq 5$. Table 1 gives values of $f(n, k), g(n, k)$ for small n and k.

One may try to estimate the density $d(n, k)$ of integers m for which (1.2) holds. Obviously $d(n, 1)=1 /(n+1)$. For $k=2$ we have

$$
\begin{equation*}
d(n, 2)=2^{\omega(A(n, 2))} / A(n, 2), \tag{1.3}
\end{equation*}
$$

where $\omega(x)$ denotes the number of distinct prime factors of x. Relation (1.3) follows from the fact that $A(m, 2)$ is divisible by $A(n, 2)$ if and only if we can

TABLE 1

			2		3		4		5		6		7	
	f	g	f	9	f	g								
1	3	2	2	2	3	5	2	3	4	21	2	4	3	15
2	5	2	7	6	3	2	6	14	4	6	3	3	5	22
3	7	2	14	12	7	6	4	2	11	78	6	11	13	646
4	9	2	8	3	12	13	6	3	13	68	22	1794	20	2691
5	11	2	13	5	13	10	52	2915	13	34	6	2	17	437
6	13	2	47	42	25	39	52	1749	17	57	16	969	7	2
7	15	2	62	56	53	231	52	1113	31	476	50	18921	21	345
8	17	2	34	14	42	86	32	119	50	2703	50	10812	20	138
9	19	2	43	18	19	7	51	477	51	1908	20	46	59	68076
10	21	2	31	8	63	160	62	720	51	1272	60	11346	49	11925
11	23	2	38	10	25	9	24	15	60	1891	46	1645	62	33902
12	25	2	76	33	62	96	61	372	47	420	50	1749	50	5247
13	27	2	19	2	47	35	31	22	31	42009	151	695981	169	11865205
14	29	2	79	27	117	413	268	72899	131	30954	284	20233213	149	3346915
15	31	2	254	240	269	4065	302	92415	319	1860516	284	14452295	169	5393275

factor $A(n, 2)$ into two relatively prime divisors $A(n, 2)=d_{1} d_{2},\left(d_{1}, d_{2}\right)=1$, and require

$$
m \equiv-1\left(\bmod d_{1}\right), \quad m \equiv-2\left(\bmod d_{2}\right) .
$$

Since there are $2^{\omega(A(n, 2))}$ such factorizations of $A(n, 2)$, we get that many residue classes $(\bmod A(n, 2))$ for m.

For $k>2$, the problem of computing $d(n, k)$ becomes messier, but not intrinsically difficult. The number of residue classes $(\bmod A(n, k))$ to which m must belong remains $O\left(n^{\varepsilon}\right)$ for every $\varepsilon>0$ and hence

$$
\frac{1}{n^{k}} \ll d(n, k) \ll \frac{1}{n^{k-\varepsilon}}
$$

for all values of k.
Another question is that of determining those $m>n$ so that there exists some k for which (1.2) holds. Since for $k>m-n$, we have

$$
\frac{A(m, k)}{A(n, k)}=\frac{A(n+k, m-n)}{A(n, m-n)},
$$

which is certainly an integer for $k=A(n, m-n)-m$, the problem becomes trivial unless we restrict the values of k to $k \leq m-n$.

For $n=1$ and any m we see that

$$
\frac{A(m, p-1)}{A(1, p-1)}=\frac{1}{p}\binom{m+p-1}{p-1}
$$

is divisible by p unless $m \equiv 0(\bmod p)$. Since m cannot be divisible by all primes $\leq m$ except when $m=2$, we see that for every $m>2$ there exists a k, $1 \leq k \leq m-1$ so that $A(1, k)$ divides $A(m, k)$. The question whether there exists a $k, 1 \leq k \leq m-2$, so that $A(2, k)$ divides $A(m, k)$, which is equivalent to $\binom{k+2}{2}$ divides $\binom{m+k}{k}$, seems much more difficult to decide. The general problem can be stated as follows:

Given $n>1$ is it true that for all (almost all) large m there exists a k, $1 \leq k \leq m-n$ so that

$$
\begin{equation*}
\binom{k+n}{n}\binom{m+k}{k} ? \tag{1.4}
\end{equation*}
$$

If not, what is the density $d^{*}(n)$ of integers m for which (1.4) has a solution with $1 \leq k \leq m-n$?

In Section 2 we show that for bounded ratios m / n and any $\delta>0$ we get only a finite number of solutions of (1.2) with $k>\delta n$.

In Section 3 we treat the special case in which the set $\{n+1, \ldots, n+k\}$ contains a prime and m / n is bounded to show that (1.2) has only a finite number of solutions $2 \leq k \leq m-n$ in that case. We give an example which may prove the only one with $m \leq 2 n$. Finally, we mention some additional problems and conjectures.

2. The Case $k \geq \delta n$

In this section we prove the following.
Theorem 2.1 Given positive numbers δ, Δ so that $k \geq \delta n$ and $n+k \leq$ $m \leq \Delta n$, then there exists an $n_{0}=n_{0}(\delta, \Delta)$ so that the congruence (1.2) has no solution with $n \geq n_{0}$.

The proof depends on showing that for all large n there exists a prime p in the interval $[n+1, n+k]$ that divides $A(n, k)$ to a higher power than it divides $A(m, k)$.

Lemma 2.2 Assume that the hypotheses of Theorem 2.1 are satisfied and that every prime $p \in[n+1, n+k]$ divides $A(m, k)$. Then for every $\varepsilon>0$ there exists an $n_{1}=n_{1}(\varepsilon)$ so that for all $n \geq n_{1}$ there exists an integer $l, 2 \leq l<\Delta$, with

$$
\begin{equation*}
(l-\varepsilon) n+(l-1) k<m<l k+\varepsilon n \tag{2.1}
\end{equation*}
$$

and hence

$$
\begin{equation*}
(l-2 \varepsilon) n<k . \tag{2.2}
\end{equation*}
$$

Note that it is possible to have every prime that divides $A(n, k)$ also divide $A(m, k)$. This always happens when $k=\ln , m=l^{2} n$.

Proof Let n be so large that there exists a prime in $[n+1, n+k]$ and let p be the largest prime in that interval. Let l be the largest integer so that $l p \leq m+k$. Then $l \geq 2$ and for large n we have $p>n+k-\delta n$. Hence

$$
l \leq \frac{m+k}{p}<\frac{m+k}{n+k-\delta n}<1+\frac{m-n}{(1+\delta-\delta) n}<1+\Delta-1=\Delta .
$$

Now pick n so large that $p>n+k-\varepsilon n / \Delta$. Then

$$
m+k \geq l p>l n+l k-\varepsilon n
$$

and hence

$$
(l-\varepsilon) n+(l-1) k<m .
$$

Let q be the smallest prime so that $m+k<(l+1) q$. For large n we must have $n<q$ since otherwise l times every prime in $[n+1, n+k]$ would lie in [$m+1, m+k$], which is impossible. Let n be so large that

$$
\frac{m+k}{l+1}<q<\frac{m+k}{l+1}+\frac{\varepsilon n}{l(l+1)}
$$

then $m<l q$ and hence

$$
(l+1) m<l(m+k)+\varepsilon n
$$

or

$$
m<l k+\varepsilon n .
$$

Lemma 2.3 Assume that the hypotheses of Theorem 2.1 are satisfied and that s is an integer such that $n<k /$ s and every prime $p \in[k / t,(n+k) / t], t=1$, $2, \ldots, s$, satisfies

$$
A(m, k) \equiv 0\left(\bmod p^{t}\right) .
$$

Assume further that for the integer I in Lemma 2.2 we have

$$
\begin{equation*}
m+\frac{a}{b} k-\varepsilon n<l(n+k)<m+\frac{c}{d} k+\varepsilon n \tag{2.3}
\end{equation*}
$$

where a / b and c / d are consecutive terms in the Farey series of order s and ε is a given number, $0<\varepsilon<s^{-2}$.

Then there exists an $n_{2}=n_{2}(\varepsilon)$ so that for all $n \geq n_{2}$ we have

$$
\begin{equation*}
(l-\varepsilon) n+\left(l-\frac{c}{d}\right) k<m<\left(l-\frac{a}{b}\right) k+\varepsilon n \tag{2.4}
\end{equation*}
$$

and hence

$$
\begin{equation*}
k>b d(l-2 \varepsilon) n \geq s(l-2 \varepsilon) n \tag{2.5}
\end{equation*}
$$

Proof For $s=1$, this is Lemma 2.2. We now proceed by induction on s. If $\max \{b, d\}<s$, then the result follows from the induction hypothesis.

If $d=s>1$, then $b<s$ and the first inequality in (2.4) follows directly from (2.3) while the second inequality holds by the induction hypothesis.

Now assume that $b=s, d<s$. Then the first inequality in (2.4) is still an immediate consequence of (2.3). If the second inequality were false, we would have

$$
s l \frac{k}{s}<m+\frac{a}{s} k-\varepsilon n<s l \frac{n+k}{s} .
$$

If $l(n+k) \leq m+(a / s) k+\varepsilon n$ and n is sufficiently large, then there exists a prime p so that

$$
m+\frac{a}{s} k-2 \varepsilon n<s l p<m+\frac{a}{s} k+\varepsilon n \quad \text { and } \quad \frac{n+k}{s}-\frac{\varepsilon n}{s l}<p<\frac{n+k}{s} .
$$

Hence $(s l-a) p \leq m$ and $(s l+s-a) p>m+k$ and $A(m, k) \not \equiv 0\left(\bmod p^{s}\right)$, contrary to hypothesis.

We may therefore assume that $l(n+k)>m+(a / s) k+\varepsilon n$; then for large n there exists a prime p with

$$
m+\frac{a}{s} k<s l p<m+\frac{a}{s} k+\frac{\varepsilon n}{s l} \quad \text { and } \quad \frac{k}{s}+\frac{\varepsilon n}{s l}<p<\frac{n+k}{s}
$$

Thus, again, $(s l-a) p \leq m$ while $(s l+s-a) p>m+k$ and $A(m, k) \not \equiv$ $0\left(\bmod p^{s}\right)$, contrary to hypothesis.

Proof of Theorem 2.1 If $l>2$ and every prime $p \in[k / 2,(n+k) / 2]$ satisfies $A(m, k) \equiv 0\left(\bmod p^{2}\right)$, then, according to (2.5), we have $k>3 n$. Now let s be the largest integer for which $s n<k$. If every prime $p \in[k / t,(n+k) / t]$, $t=1,2, \ldots, s$ satisfies $A(m, k) \equiv 0\left(\bmod p^{t}\right)$, then, according to (2.5), we have $k>s(2-\boldsymbol{2} \varepsilon) n>(s+1) n$, a contradiction.

Now if $l=2$ and $2 n<k$, then Lemma 2.3 can be applied as before. If $l=2$ and $2 n \geq k$, then every prime $p \in[n+1,(n+k) / 2]$ satisfies $A(n, k) \equiv$ $0\left(\bmod p^{2}\right)$. But, according to Lemma 2.2 , we have

$$
(4-3 \varepsilon) n<m<m+k<(6+\varepsilon) n .
$$

Thus for large n there exists a prime p,

$$
\left(\frac{5}{4}-\varepsilon\right) n<p<\left(\frac{5}{4}+\varepsilon\right) n,
$$

so that for sufficiently small ε we have $3 p<m$ while $5 p>m+k$ and $A(m, k) \not \equiv 0\left(\bmod p^{2}\right)$.
3. The Case $A(m, k) \equiv 0(\bmod A(n, k)) ; n+k \leq m \leq \Delta n$ and $\{n+1, \ldots, n+k\}$ Contains a Prime

We first mention the interesting example

$$
\begin{equation*}
A(32,6)=37 \cdot A(16,6) \tag{3.1}
\end{equation*}
$$

Here two of the integers $17,18,19,20,21,22$ are primes and 17 may well be the largest n which solves our problem in case $\Delta=2$. In the following we show that we can find an effective bound for all solutions k, n, m.

From Theorem 2.1 we know that we can restrict attention to cases $k<\delta n$ where δ is any fixed positive number. Since there exists a prime p with

$$
\begin{equation*}
n+1 \leq p \leq n+k \leq m \leq \Delta n \tag{3.2}
\end{equation*}
$$

and $A(m, k) / A(n, k)$ is an integer, there must exist an integer l so that

$$
\begin{equation*}
m+1 \leq l p \leq m+k \tag{3.3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\ln +l-k \leq m \leq \ln +(l-1) k \tag{3.4}
\end{equation*}
$$

Lemma 3.1 Every integer

$$
x \in[n+1, n+k]\left[\frac{m+1}{l}, \frac{m+k}{l}\right]
$$

has all prime divisors less than $(l+1) k$.
Proof Assume that x has a prime divisor $q>(l+1) k$. Now, either $l x<m+1$ and $l x+q>l n+l k \geq m+k$ so that q does not divide $A(m, k)$, or $l x>m+k$ and $l x-q<\ln +l k-(l+1) k<m$ and again q does not divide $A(m, k)$.

The set of integers in $[n+1, n+k][(m+1) / l,(m+k) / l]$ contains an interval of length $\geq k(l-1) / 2 l=k s$.

Lemma 3.2 There exists a k_{0} so that $A(n,[k s])$ has prime divisors greater than $(l+1) k$ for all $k \geq k_{0}, k \leq \delta n$.

Proof Set $[k s]=t$ and consider the binomial coefficient

$$
\binom{n+t}{t}=\frac{A(n, t)}{t!}
$$

Every prime power q^{α} that divides a binormal coefficient $\binom{n+t}{t}$ satisfies $q^{\alpha} \leq n+t$. Thus the hypothesis that all prime divisors are $<(l+1) k$ yields

$$
\begin{equation*}
\binom{n+t}{t} \leq(n+t)^{\pi((l+1) k)}<(n+t)^{c(l+1) k / \log k} \tag{3.5}
\end{equation*}
$$

for a suitable constant c. On the other hand

$$
\begin{equation*}
\binom{n+t}{t} \geq\left(\frac{n+t}{t}\right)^{t} \tag{3.6}
\end{equation*}
$$

Now set $(n+t) / t=C>1 / \delta$ and compare (3.5) and (3.6) to get

$$
\begin{equation*}
C^{t}<C^{c(l+1) k / \log k}(s k)^{c l l+1) k / \log k} \tag{3.7}
\end{equation*}
$$

which is false for $k>k_{0}$ provided δ is small enough.
Theorem 3.3 For each $\Delta>1$ there exists only a finite number of integers k, n, m such that $k>1, n+k \leq m \leq \Delta n$ and $A(m, k) \equiv 0(\bmod A(n, k))$ where the interval $[n+1, n+k]$ contains a prime.

Proof We first pick δ in Theorem 2.1 sufficiently small and then can restrict attention to a fixed integer $l, 2 \leq l \leq \Delta+\delta$. By Lemma 3.2 we have $k<k_{0}$. Now pick one of the integers $x \in[n+1, n+k]$ so that $l x \notin[m+1, m+k]$. Then, by the same argument that we used in the proof of Lemma 3.1 we have $(x, y)<(l+1) k$ for every $y \in[m+1, m+k]$ and hence, if $x \mid A(m, k)$ we must have $n<x<((l+1) k)^{k}<\left((l+1) k_{0}\right)^{k_{0}}$.

We have not carried out the detailed estimates needed to show, for example, that the example stated at the beginning of this section is the unique solution for $\Delta=2$, except for $A(4,2)$ and $A(8,2)$, but it would not be difficult to do so.

4. Open Questions

4.1. In view of Lemma 2.2, it would be interesting to know the smallest $m>2 k$ so that every prime in the interval $[k+1,2 k]$ divides $A(m, k)$. In particular, is it true that $m \gg k^{c}$ for every c ?
4.2. We know of no example with $n>16, k>2$, where $A(n, k)$ divides $A(m, k)$ and $n+k \leq m \leq 2 n$. It would be interesting to find a bound for such n without the hypothesis that there exists a prime in the interval $[n+1, n+k]$.
4.3. A question related to those discussed in this paper is to find solutions for $A(n, k) \mid A(n+k, n+2 k)$. Charles Grinstead has found the following examples:

$n:$	2	3	4	5	6	7	8	9
$k:$	4	3	206	1886	3472	3471	8170	8169

