On Products of Consecutive Integers

P. ERDÖS

HUNGARIAN ACADEMY OF SCIENCE BUDAPEST, HUNGARY

E. G. STRAUS†

UNIVERSITY OF CALIFORNIA LOS ANGELES, CALIFORNIA

1. Introduction

We define A(n, k) = (n + k)!/n! where n, k are positive integers and we wish to examine divisibility properties of A(n, k).

First observe that the cases k = 1, 2 are special. The relations

tA(n, 1) = A(m, 1) and tA(n, 2) = A(m, 2)

each have infinitely many solutions n, m—the first for every positive integer t; the second for every positive integer that is not a square, as can be seen from Pell's equation

$$(2m + 1)^2 - t(2n + 1)^2 = 1 - t.$$

On the other hand, it is well known from the Thue–Siegel theorem that for given $k \ge 3$ and fixed t > 1 the equation

$$tA(n, k) = A(m, k) \tag{1.1}$$

has only a finite number of solutions in integers n, m.

† Research of the second author was supported in part by Grant MCS 76-06988.

It is possible that (1.1) has only a finite number of solutions for fixed t and variable k > 2, but we cannot prove this even in the case t = 2 without additional hypotheses on n. Perhaps the following stronger conjecture holds: A(n, k) = tA(m, l) has only a finite number of solutions $m \ge n + k$ for every rational t if min(k, l) > 1, max(k, l) > 2.

Let f(n, k) be the least positive integer m > n so that

$$A(m, k) \equiv 0 \pmod{A(n, k)}.$$
(1.2)

We obviously have $f(n, k) \le A(n, k) - k$ and it is easy to see that for k > 1 we get several residue classes (in addition to -k) (mod A(n, k)) for *m* which ensure that (1.2) holds. The number of these residue classes is always larger than *k*, in fact exponential in *k*, so that the above inequality on f(n, k) can always be improved.

The algebraic identities

$$x(x + 1)(x + 2) = (x^{2} + 2x)(x + 1)$$

which divides $(x^{2} + 2x)(x^{2} + 2x + 1)$

$$x(x + 1)(x + 2)(x + 3) = (x^{2} + 3x)(x^{2} + 3x + 2)$$

$$x(x + 1)(x + 2)(x + 3)(x + 4) = (x^{2} + 4x)(x^{2} + 4x + 3)(x + 2)$$

which divides $(x^{2} + 4x)(x^{2} + 4x + 3)(x^{2} + 4x + 4)$

show that A(n, 3) divides $A(n^2 + 4n + 1, 3)$; A(n, 4) divides $A(n^2 + 5n + 2, 4)$; and A(n, 5) divides $A(n^2 + 6n + 4, 5)$. Thus $f(n, 3) \le n^2 + 4n + 1$, $f(n, 4) \le n^2 + 5n + 2$, $f(n, 5) \le n^2 + 6n + 4$. It seems likely that these bounds are attained for infinitely many, perhaps for almost all, values of n. One might ask whether we get $f(n, k) < n^{k-\delta}$ for all (almost all) large n and some $\delta > 0$ when k > 5. In the other direction we would like to know whether $f(n, k) > n^{1+\delta}$ for infinitely many (almost all) n for some $\delta > 0$ when k > 1. For k = 2, we have infinitely many n with $f(n, k) \sim \sqrt{2n}$. Are there infinitely many n with f(n, k) < cn for fixed c, k > 2?

A function closely related to f(n, k) is g(n, k), the minimal integral value A(m, k)/A(n, k), m > n. The above discussion shows that $g(n, k) \sim f(n, k)^k/A(n, k)$ for fixed k and thus $g(n, k) \ll n^k$ for $k \le 5$. Table 1 gives values of f(n, k), g(n, k) for small n and k.

One may try to estimate the density d(n, k) of integers *m* for which (1.2) holds. Obviously d(n, 1) = 1/(n + 1). For k = 2 we have

$$d(n, 2) = 2^{\omega(A(n, 2))} / A(n, 2), \tag{1.3}$$

where $\omega(x)$ denotes the number of distinct prime factors of x. Relation (1.3) follows from the fact that A(m, 2) is divisible by A(n, 2) if and only if we can

1	k 1		2		3		4		5		6		7	
n	\int_{f}	g	\overline{f}	g	\overline{f}	g	ſ	g	f	g	\overline{f}	g	\overline{f}	g
1	3	2	2	2	3	5	2	3	4	21	2	4	3	15
2	5	2	7	6	3	2	6	14	4	6	3	3	5	22
3	7	2	14	12	7	6	4	2	11	78	6	11	13	646
4	9	2	8	3	12	13	6	3	13	68	22	1794	20	2691
5	11	2	13	5	13	10	52	2915	13	34	6	2	17	437
6	13	2	47	42	25	39	52	1749	17	57	16	969	7	2
7	15	2	62	56	53	231	52	1113	31	476	50	18921	21	345
8	17	2	34	14	42	86	32	119	50	2703	50	10812	20	138
9	19	2	43	18	19	7	51	477	51	1908	20	46	59	68076
10	21	2	31	8	63	160	62	720	51	1272	60	11346	49	11925
11	23	2	38	10	25	9	24	15	60	1891	46	1645	62	33902
12	25	2	76	33	62	96	61	372	47	420	50	1749	50	5247
13	27	2	19	2	47	35	31	22	31	42009	151	695981	169	11865205
14	29	2	79	27	117	413	268	72899	131	30954	284	20233213	149	3346915
15	31	2	254	240	269	4065	302	92415	319	1860516	284	14452295	169	5393275

TABLE 1

factor A(n, 2) into two relatively prime divisors $A(n, 2) = d_1 d_2$, $(d_1, d_2) = 1$, and require

$$m \equiv -1 \pmod{d_1}, \qquad m \equiv -2 \pmod{d_2}.$$

Since there are $2^{\omega(A(n, 2))}$ such factorizations of A(n, 2), we get that many residue classes (mod A(n, 2)) for m.

For k > 2, the problem of computing d(n, k) becomes messier, but not intrinsically difficult. The number of residue classes (mod A(n, k)) to which *m* must belong remains $O(n^{\epsilon})$ for every $\epsilon > 0$ and hence

$$\frac{1}{n^k} \ll d(n, k) \ll \frac{1}{n^{k-\varepsilon}}$$

for all values of k.

Another question is that of determining those m > n so that there exists some k for which (1.2) holds. Since for k > m - n, we have

$$\frac{A(m, k)}{A(n, k)} = \frac{A(n+k, m-n)}{A(n, m-n)},$$

which is certainly an integer for k = A(n, m - n) - m, the problem becomes trivial unless we restrict the values of k to $k \le m - n$.

For n = 1 and any *m* we see that

$$\frac{A(m, p-1)}{A(1, p-1)} = \frac{1}{p} \binom{m+p-1}{p-1}$$

is divisible by p unless $m \equiv 0 \pmod{p}$. Since m cannot be divisible by all primes $\leq m$ except when m = 2, we see that for every m > 2 there exists a k, $1 \leq k \leq m-1$ so that A(1, k) divides A(m, k). The question whether there exists a k, $1 \leq k \leq m-2$, so that A(2, k) divides A(m, k), which is equivalent to $\binom{k+2}{2}$ divides $\binom{m+k}{k}$, seems much more difficult to decide. The general problem can be stated as follows:

Given n > 1 is it true that for all (almost all) large m there exists a k, $1 \le k \le m - n$ so that

$$\binom{k+n}{n} \binom{m+k}{k}? \tag{1.4}$$

If not, what is the density $d^*(n)$ of integers m for which (1.4) has a solution with $1 \le k \le m - n$?

In Section 2 we show that for bounded ratios m/n and any $\delta > 0$ we get only a finite number of solutions of (1.2) with $k > \delta n$.

In Section 3 we treat the special case in which the set $\{n + 1, ..., n + k\}$ contains a prime and m/n is bounded to show that (1.2) has only a finite number of solutions $2 \le k \le m - n$ in that case. We give an example which may prove the only one with $m \le 2n$. Finally, we mention some additional problems and conjectures.

2. The Case $k \ge \delta n$

In this section we prove the following.

Theorem 2.1 Given positive numbers δ , Δ so that $k \ge \delta n$ and $n + k \le m \le \Delta n$, then there exists an $n_0 = n_0(\delta, \Delta)$ so that the congruence (1.2) has no solution with $n \ge n_0$.

The proof depends on showing that for all large *n* there exists a prime *p* in the interval [n + 1, n + k] that divides A(n, k) to a higher power than it divides A(m, k).

Lemma 2.2 Assume that the hypotheses of Theorem 2.1 are satisfied and that every prime $p \in [n + 1, n + k]$ divides A(m, k). Then for every $\varepsilon > 0$ there exists an $n_1 = n_1(\varepsilon)$ so that for all $n \ge n_1$ there exists an integer $l, 2 \le l < \Delta$, with

$$(l-\varepsilon)n + (l-1)k < m < lk + \varepsilon n \tag{2.1}$$

and hence

$$(l - 2\varepsilon)n < k. \tag{2.2}$$

Note that it is possible to have every prime that divides A(n, k) also divide A(m, k). This always happens when k = ln, $m = l^2 n$.

Proof Let n be so large that there exists a prime in [n + 1, n + k] and let p be the largest prime in that interval. Let l be the largest integer so that $lp \le m + k$. Then $l \ge 2$ and for large n we have $p > n + k - \delta n$. Hence

$$l \le \frac{m+k}{p} < \frac{m+k}{n+k-\delta n} < 1 + \frac{m-n}{(1+\delta-\delta)n} < 1 + \Delta - 1 = \Delta.$$

Now pick n so large that $p > n + k - \varepsilon n/\Delta$. Then

$$m+k \ge lp > ln+lk-\varepsilon n$$

and hence

$$(l-\varepsilon)n + (l-1)k < m.$$

Let q be the smallest prime so that m + k < (l + 1)q. For large n we must have n < q since otherwise l times every prime in [n + 1, n + k] would lie in [m + 1, m + k], which is impossible. Let n be so large that

$$\frac{m+k}{l+1} < q < \frac{m+k}{l+1} + \frac{\varepsilon n}{l(l+1)},$$

then m < lq and hence

 $(l+1)m < l(m+k) + \varepsilon n$

or

 $m < lk + \varepsilon n$.

Lemma 2.3 Assume that the hypotheses of Theorem 2.1 are satisfied and that s is an integer such that n < k/s and every prime $p \in [k/t, (n + k)/t], t = 1, 2, ..., s$, satisfies

 $A(m, k) \equiv 0 \pmod{p'}.$

Assume further that for the integer l in Lemma 2.2 we have

$$m + \frac{a}{b}k - \varepsilon n < l(n+k) < m + \frac{c}{d}k + \varepsilon n$$
(2.3)

where a/b and c/d are consecutive terms in the Farey series of order s and ε is a given number, $0 < \varepsilon < s^{-2}$.

Then there exists an $n_2 = n_2(\varepsilon)$ so that for all $n \ge n_2$ we have

$$(l-\varepsilon)n + \left(l - \frac{c}{d}\right)k < m < \left(l - \frac{a}{b}\right)k + \varepsilon n$$
(2.4)

and hence

$$k > bd(l - 2\varepsilon)n \ge s(l - 2\varepsilon)n.$$
(2.5)

Proof For s = 1, this is Lemma 2.2. We now proceed by induction on s. If max $\{b, d\} < s$, then the result follows from the induction hypothesis.

If d = s > 1, then b < s and the first inequality in (2.4) follows directly from (2.3) while the second inequality holds by the induction hypothesis.

Now assume that b = s, d < s. Then the first inequality in (2.4) is still an immediate consequence of (2.3). If the second inequality were false, we would have

$$sl\frac{k}{s} < m + \frac{a}{s}k - \varepsilon n < sl\frac{n+k}{s}.$$

If $l(n + k) \le m + (a/s)k + \varepsilon n$ and n is sufficiently large, then there exists a prime p so that

$$m + \frac{a}{s}k - 2\varepsilon n < slp < m + \frac{a}{s}k + \varepsilon n$$
 and $\frac{n+k}{s} - \frac{\varepsilon n}{sl} .$

Hence $(sl - a)p \le m$ and (sl + s - a)p > m + k and $A(m, k) \not\equiv 0 \pmod{p^s}$, contrary to hypothesis.

We may therefore assume that $l(n + k) > m + (a/s)k + \varepsilon n$; then for large *n* there exists a prime *p* with

$$m + \frac{a}{s}k < slp < m + \frac{a}{s}k + \frac{\varepsilon n}{sl}$$
 and $\frac{k}{s} + \frac{\varepsilon n}{sl} .$

Thus, again, $(sl - a)p \le m$ while (sl + s - a)p > m + k and $A(m, k) \ne 0 \pmod{p^s}$, contrary to hypothesis.

Proof of Theorem 2.1 If l > 2 and every prime $p \in [k/2, (n + k)/2]$ satisfies $A(m, k) \equiv 0 \pmod{p^2}$, then, according to (2.5), we have k > 3n. Now let s be the largest integer for which sn < k. If every prime $p \in [k/t, (n + k)/t]$, t = 1, 2, ..., s satisfies $A(m, k) \equiv 0 \pmod{p^t}$, then, according to (2.5), we have $k > s(2 - 2\epsilon)n > (s + 1)n$, a contradiction.

Now if l = 2 and 2n < k, then Lemma 2.3 can be applied as before. If l = 2 and $2n \ge k$, then every prime $p \in [n + 1, (n + k)/2]$ satisfies $A(n, k) \equiv 0 \pmod{p^2}$. But, according to Lemma 2.2, we have

$$(4 - 3\varepsilon)n < m < m + k < (6 + \varepsilon)n.$$

Thus for large n there exists a prime p,

$$(\frac{5}{4} - \varepsilon)n$$

so that for sufficiently small ε we have 3p < m while 5p > m + k and $A(m, k) \neq 0 \pmod{p^2}$.

ON PRODUCTS OF CONSECUTIVE INTEGERS

3. The Case $A(m, k) \equiv 0 \pmod{A(n, k)}$; $n + k \le m \le \Delta n$ and $\{n + 1, ..., n + k\}$ Contains a Prime

We first mention the interesting example

$$A(32, 6) = 37 \cdot A(16, 6). \tag{3.1}$$

Here two of the integers 17, 18, 19, 20, 21, 22 are primes and 17 may well be the largest *n* which solves our problem in case $\Delta = 2$. In the following we show that we can find an effective bound for all solutions *k*, *n*, *m*.

From Theorem 2.1 we know that we can restrict attention to cases $k < \delta n$ where δ is any fixed positive number. Since there exists a prime p with

$$n+1 \le p \le n+k \le m \le \Delta n \tag{3.2}$$

and A(m, k)/A(n, k) is an integer, there must exist an integer l so that

$$m+1 \le lp \le m+k. \tag{3.3}$$

Thus

$$ln + l - k \le m \le ln + (l - 1)k.$$
(3.4)

Lemma 3.1 Every integer

$$x \in [n+1, n+k] \left[\frac{m+1}{l}, \frac{m+k}{l} \right]$$

has all prime divisors less than (l + 1)k.

Proof Assume that x has a prime divisor q > (l + 1)k. Now, either lx < m + 1 and $lx + q > ln + lk \ge m + k$ so that q does not divide A(m, k), or lx > m + k and lx - q < ln + lk - (l + 1)k < m and again q does not divide A(m, k).

The set of integers in $[n + 1, n + k] \setminus [(m + 1)/l, (m + k)/l]$ contains an interval of length $\geq k(l - 1)/2l = ks$.

Lemma 3.2 There exists a k_0 so that A(n, [ks]) has prime divisors greater than (l + 1)k for all $k \ge k_0$, $k \le \delta n$.

Proof Set [ks] = t and consider the binomial coefficient

$$\binom{n+t}{t} = \frac{A(n,t)}{t!}$$

Every prime power q^x that divides a binormal coefficient $\binom{n+t}{t}$ satisfies $q^x \le n+t$. Thus the hypothesis that all prime divisors are <(l+1)k yields

$$\binom{n+t}{t} \le (n+t)^{\pi((l+1)k)} < (n+t)^{c(l+1)k/\log k}$$
(3.5)

for a suitable constant c. On the other hand

$$\binom{n+t}{t} \ge \left(\frac{n+t}{t}\right)^t. \tag{3.6}$$

Now set $(n + t)/t = C > 1/\delta$ and compare (3.5) and (3.6) to get

$$C^{t} < C^{c(l+1)k/\log k} (sk)^{c(l+1)k/\log k}$$
(3.7)

which is false for $k > k_0$ provided δ is small enough.

Theorem 3.3 For each $\Delta > 1$ there exists only a finite number of integers k, n, m such that $k > 1, n + k \le m \le \Delta n$ and $A(m, k) \equiv 0 \pmod{A(n, k)}$ where the interval [n + 1, n + k] contains a prime.

Proof We first pick δ in Theorem 2.1 sufficiently small and then can restrict attention to a fixed integer $l, 2 \le l \le \Delta + \delta$. By Lemma 3.2 we have $k < k_0$. Now pick one of the integers $x \in [n + 1, n + k]$ so that $lx \notin [m + 1, m + k]$. Then, by the same argument that we used in the proof of Lemma 3.1 we have (x, y) < (l + 1)k for every $y \in [m + 1, m + k]$ and hence, if $x \mid A(m, k)$ we must have $n < x < ((l + 1)k)^k < ((l + 1)k_0)^{k_0}$.

We have not carried out the detailed estimates needed to show, for example, that the example stated at the beginning of this section is the unique solution for $\Delta = 2$, except for A(4, 2) and A(8, 2), but it would not be difficult to do so.

4. Open Questions

4.1. In view of Lemma 2.2, it would be interesting to know the smallest m > 2k so that every prime in the interval [k + 1, 2k] divides A(m, k). In particular, is it true that $m \gg k^c$ for every c?

4.2. We know of no example with n > 16, k > 2, where A(n, k) divides A(m, k) and $n + k \le m \le 2n$. It would be interesting to find a bound for such n without the hypothesis that there exists a prime in the interval [n + 1, n + k].

4.3. A question related to those discussed in this paper is to find solutions for A(n, k)|A(n + k, n + 2k). Charles Grinstead has found the following examples:

AMS (MOS) 1970 subject classification: 10A05.