P. Erdös and A. Hajnal, Budapest

ON SPANNED SUBGRAPHS OF GRAPHS

The aim of this note is to prove some theorems of the following type:

We assume that C is a class of finite graphs satisfying certain assymptotic conditions saying that both G and its complement are large. Then we consider a class D of graphs and show that for all $\sigma \in C$ and $G D, H$ is isomorphic to a spanned subgraph of G provided the size of G is large enough compared to the size of H.

We have already considered problems of the above kind for infinite graphs in [2] and [3]. In those cases the conditions imposed on the elements of C were of "Ramsey type". To explain this expression we state a very easy result which is implicitly contained in [.3].

PROPOSITION 1. Let $c>0$ be a real number. Let C be the class of graphs G such that neither G nor its complement contains complete bipartite graphs $[A, B]$ of the size $|A|=|B|=C \log n$, where n is the number of vertices of G. Then for each graph H and for each $G \in C \quad G$ contains H as a spanned subgraph provided $n>n_{0}(c,|H|)$.
(In fact, we can prove this for n^{ε} in place of $c \log n$
provided $\varepsilon \approx \varepsilon(H)$ is sufficiently small.)
We did not know for a while if the condition of Proposition 1 can be weakened to the following: C is the class of graphs G such that neither G nor its complement contains complete graphs of size $c \log n$. We are going to answer this problem
affirmatively in $\S .4$ of this paper. However our main aim is to investigate the new phenomenae which arise if the conditions imposed on C say that both G and its complement have many edges.

First we agree upon some notation. A graph $G=\left\langle V_{G}, E_{G}\right\rangle=$ $=(V, E)$ contains no loops or multiple edges i.e. $E \subset प^{2}=$ $=\{x \subset V:|x|=2\}$. We put $n(G)=|V|$.

For $x \in V, A \subset V$ we put $D(x, A, G)=\{y \in A:\{x, y\} \in E\}$ and $d(x, A, G)=|D(x, A, G)| . d(x, A, G)$ is the degree of the vertex x for A in G. We briefly put $d(x, V, G)=d(x, G), D(x, V, G)=$ $\Rightarrow D(x, G)$. We remind the reader that for any sets A, B $[A, B]=\{\{x, y\}: x \neq y \wedge x \in A \wedge y \in B\}$. Hence $[A, A]=\{A]^{2}$ for any A.

Whenever $A, B C V$ for a given graph $G-(V, E\rangle$ we will denote by $e(A, B)$ the number of edges of G lying in $[A, B]$ i.e. $\quad e\left(A, B_{l}=|E \cap[A, B]|\right.$

Especially, $e(A)=e(A, A)$ is the number of edges of $G(A)=$ $=\left(A,[A]^{2} \cap E\right)$, which we call the subgraph of G spanned by A.

It will be convenient to identify graphs to two partitions of $[V]^{2}$. In what follows if there is no danger of confusion, for any graph $G=\{V, E\rangle$ we also denote E by E_{0}, $[V]^{2} \backslash E$, by $E_{1}, G_{i}=\left\langle V, E_{i}\right\rangle$ for $i<2$. Hence G_{o} is G, G_{1} is the complement of G. We briefly write

$$
\begin{aligned}
& d_{i}\left(x, A, G_{i}\right)=d_{i}(x, A), D\left(x, A, G_{i}\right)=D_{i}(x, A), \\
& d\left(x, G_{i}\right)=d_{i}(x), \quad D\left(x, G_{i}\right)=d_{i}(x) \text { for } i<2, \\
& x \in V, A \subset V .
\end{aligned}
$$

When $[3, B] \subset E_{i}$ for some $i<2,[A, B]$ is said to be homogeneous for G. The classes "D" will usually consist of some homogeneous pieces.

§.1. Assumptions on the number of edges

DEFINITION 1. a) Let $c>0, C_{1}(c)$ is the class of graphs G which satisfy $\left|E_{i}\right| \geq c n^{2}$ for $i<2$ and $n=n(G)$.
b) Let D_{1} be the class of graphs $H=\langle V, E\rangle$
satisfying the following conditions.
$V=A \cup B_{0} \cup B_{1}$, where A, B_{0}, B_{1} are pairwise disjoint, $|A|=\left|B_{0}\right|=\left|B_{1}\right|=\frac{1}{3} n(H) . A$ and $B_{i}, i<2$ are homogeneous for H. Moreover, $\left[A, B_{i}\right] \subset E_{;}$for $i<2$.

THEOREM 1. There are functions $n_{1}(c), c_{1}(c)>0$ such that for all $c>0$, for all $G \in C_{1}(c)$ with $n(G)=n>n_{1}(c)$ and for all $\mathbb{E A D}_{1}$ with $n(H) \leq c_{1}(c) \log n, H$ is isomorphic to a spanned subgraph of G.

The following examples show that the theorem is in some sense best possible. EXAMPLES 1. Let $G_{k, n}^{1}$ be a graph with $w_{k, n}^{i} k=n, A \subset V$ $|A|=k$ and $E_{k, n}^{1}=[A]^{2}$.

Clearly, $G_{k, n}^{1} \in C_{1}\left(\frac{c^{2}}{2}\right)$ if $k=\{o n\}$ and n is large enough. $G_{k, n}^{1}$ does not contain spanned subgraphs $H^{\prime}=\left\{V^{\prime}, E^{\prime}\right\rangle$ of the following kind $V^{\prime}=A^{\prime} \cup B^{\prime}, A^{\prime} \cap B^{\prime}=\| \quad\left[A^{\prime}, B^{\prime}\right] \subset E_{i}^{\prime}$ and $\left[A^{\prime}\right]^{2},\left[B^{\prime}\right\}^{2} C E_{1-i}^{\prime}$ for some $i<2$, where A^{\prime}, B^{\prime} are both large.

We will often use the following

LEMMA 1. There are functions $\tilde{c}\left(c^{\prime}, c^{\prime \prime}, \alpha\right)>0$ and $\tilde{n}\left(c^{\prime}, c^{\prime \prime}, a\right)$ such that for all $c^{\prime}, c^{\prime \prime}>0,0<\alpha<1$ and graphs $G=(V, E)$ with $n=n(G)>\tilde{n}\left(c^{*}, c^{\prime \prime}, \alpha\right)$ and for all $A \subset V$ with $|A| \geq\left[c^{\prime} \log n\right]$ and $|e(A, V-A)| \geq c^{\prime \prime} \log n n$ there are sets $A^{\prime} C A, B^{\prime} C V A$ with $\left[A^{\prime}, B^{\prime}\right] C E,\left|A^{\prime}\right| \geq \tilde{c}\left(c^{\prime}, c^{\prime \prime}, a\right) \operatorname{logn}$, $\left|B^{\prime}\right| \geq n^{\alpha}$. For the lemma see e.g. [1].

PROOF OF THEOREM 1. Assume $\sigma_{1}^{C}(c), n(G)=n$. Let $A_{d}=$ $=\left\{x \in V: d_{i}(x)>d n\right.$ for $\left.i<2\right\}$ for $d>0$. We claim (1) $\left|A_{d}\right| \geq d$ if $d>0$ is small enough, and n is large enough.

To see this, put $T_{i, d}=\left\{d \in V: d_{i}(x) \leq d n\right\}$ for $i<2$.
Consider the following inequalities: $T_{0}, d^{T_{1, d}}=\boldsymbol{q}$ for $d<\frac{1}{2}$. Because of this $\left|T_{0, d}\right|\left|r_{1, d}\right| \leq n d\left(\left|r_{0, d}\right|+r_{1, d} \mid\right)$ By the assumption on the number of edges,

$$
c n^{2} \leq d n\left|T_{i, d}\right|+\frac{\left(n-\left|T_{i, d}\right|\right)^{2}}{2} \text { for } i<2
$$

These inequalities imply that $\|_{0}, d{ }_{1, d} d^{\leq(1-d) n}$ provided d is small and n is large enough.

We now fix some $d_{1}>0$ depending on c which satisfies (1). Using the fact that the partition relation

$$
\begin{equation*}
n \rightarrow\left(\frac{\log n}{2 \log 2}\right)_{2}^{2} \tag{2}
\end{equation*}
$$

holds for sufficiently large n (see e.g. [4] or [5]), it foliows that there exists a number $d_{2}>0$ such that $A_{d_{1}}$ has a subset $A_{2},\left|A_{2}\right| \geq d_{2} 10 g n$ which is homogeneous for G provided n is large enough. Note that $d_{i}(x, \| A) \geq$ $\geq \frac{1}{2} d f^{n}$ holds for $x \in A_{2}$ and $i<2$. Applying Lemma 1 twice we get a number d_{3} (depending on d_{1}, d_{2} and a) such that there
exist pairwise disjoint subsets $A_{2}, B_{i}^{\prime} C H A_{2}$ for $i<2$ satisfying the following conditions:
$|A| \geq d_{3} \log n, \quad\left|B_{i}^{\prime}\right| \geq n^{\alpha}$ for $i<2$ and
$\left[A, B_{i}^{\prime}\right] \subset E_{i}$ for $i<2$ provided n is large enough. Applying (2) with n^{α} in place of n we get that there are $B_{i} \subset B_{i}^{\prime}$ such that $\left|B_{i}\right| \geq \frac{\alpha}{2 \log 2} n$ and B_{i} is homogeneous for G for $i<2$ provided n is large enough.

Let $c_{1}(c)=3 \min \left(d_{3}, \frac{a}{2 \log 2}\right)$. The subgraph $H=G\left(A \cup B_{0} \cup B_{1}\right)$ establishes our claim.

§.2. Assumptions on the degree of vertices

DEFINITION 2. a) Let $\delta>0$ and let $C_{2}(\delta)$ be the class of graphs satisfying $a_{i}(x) \geq\left(\frac{1}{4}+\delta\right) n$ for $i<2$ and $x \in v$.
b) Let D_{2} be the class of complete bipartite graphs [k,k] and their complements i.e.

$$
H=(V, E) \in D_{2} \text { iff } V=A \cup_{B}, \quad A \cap B=g \text {, }
$$

$|A|=|B| \quad$ and $[A]^{2},[B]^{2} \subset E_{i} \quad[A, B] \subset E_{1-i}$ for some $i<2$ and $A, B C V$.

THEOREM 2. There are functions $n_{2}(\delta), c_{2}(\delta)>0$ such that for all $\delta>0$, for all $G \in C_{2}(\delta)$ with $n(G)=n>n_{2}(\delta)$ and for all $\mathscr{H E D}_{2}$ with $n(H) \leq c_{2}(\delta) \log n, H$ is isomorphic to a spanned subgraph of G.

Before we prove the theorem we show that it is best possible.

EXAMPLES 2. Let n be even and $0<\alpha<1$. Let $G_{n, \alpha}^{2}$ be a graph satisfying the following conditions:

$$
G_{n, a}^{2}=\langle V, E\rangle, \quad|V|=n, \quad V=A \cup B, \quad|A|=|B|=\frac{n}{2} .
$$

Choose er $A, B]$ to be"sufficiently random" on [$A, B]$ We can certainly find an E with $d_{i}(x, A), d_{i}(y, B) \geq \frac{n}{2}-\sqrt{n} \log ^{2} n$ for $x \in B, y \in A, i<2 \quad$ for sufficiently large n.

It is well-known that for $0<\alpha<1$ there is a $k(a)$ and a graph $G_{n, a}^{\prime}$ on $\frac{n}{2}$ vertices for sufficiently large n, such that the degree of each vertex is not less than n^{α} and $G_{n, \alpha}^{\prime}$ contains no $\left[A^{\prime}, B^{\prime}\right]$ with $\left|A^{\prime}\right|=\left|B^{\prime}\right|=$ $=k(\alpha)$.

See e.g. [5] for a method to prove this.
Now choose $G_{n, a}^{2}$ to be a copy of $G_{n, a}^{\prime}$ on A and to be a copy of the complement of $G_{n, a}^{\prime}$ on B

It is easy to see that $d_{i}(x) \geq \frac{1}{4} n+n^{a}$ for $i<2$ $\frac{1}{2}<\alpha<1$ and $x \in V$, and still there is some $k^{\prime}(\alpha)$ such that no $G_{n, a}^{2}$ contains a copy of an element H of D_{2} with $n(H) \geq k^{\prime}(\alpha)$.

PROOF OF THEOREM 2. In what follows in the proof if we choose constants and claim that all $\propto \in C_{2}(\delta)$ satisfy certain properties we always mean that all $G \in C_{2}(\delta)$ with large enough $n(G)$ have these properties.

Let $G \in C_{2}(5)$ and $n(G)=n$
Frist we claim that there is a $\delta^{\prime}>0$ such that
(1) For all disjoint pairs $A_{0}, A_{i} C V$, satisfying

$$
e_{i}\left(A_{i}\right) \leq 2 \delta^{\prime} n^{2} \text { for } i<2 \text {, }\left|n\left(A_{0} U_{i}\right)\right|>\delta^{\prime} n \quad \text { holds. }
$$

This comes from the inequality
$\left|A_{0}\right|\left|A_{1}\right| \geq\left(\frac{t}{4}+\delta\right)\left(\left|A_{0}\right|+\left|A_{1}\right|\right)-2\left(e_{1}\left(A_{1}\right)+e_{2}\left(A_{2}\right)\left|-\left|V-\left(A_{0} \varphi A_{1}\right)\right| n\right.\right.$.

We now fix a number $0<\alpha<1$ for the rest of the proo The next claim to prove is
(2) There is a number $d_{1}>0$ such that either G has a spanned subgraph $E \in D_{2}$ with $n(H) \geq 2 d_{1} \log n$ or for all $A C V,|A|>\delta^{\prime} n$ there are $B C A$ and $i<2$ such that $|B| \geq n^{\alpha}$ and there is no $C_{B}, \quad|C| \geq \log n$ with $[C]^{2} \subset E_{i}$.
Let $A \subset V,|A|>$ on. Let $A_{i}=\left\{x \in A_{i}: d_{i}(x, A)>\frac{1}{4}|A|\right\}$ for $i<2$. Clearly, there is an $i<2$ such that $\left|A_{i}\right|>$ $>\frac{1}{4}|A|>\frac{1}{4} \delta^{\prime} n$. He may assume that $\left|A_{0}\right|>\frac{1}{4} \delta^{\prime} n>n^{\alpha}$. Now either $A_{0}=B$ satisfies our second claim with $i=1$, or else there is a $C C A,|C| \geq \log n$ such that $[C]^{2} \subset E_{1}$. By Lemma 1 , there is a number $0<d_{1}<1$, depending on α and δ^{\prime} only, such that there are $B^{\prime} C C, A^{\prime} C A\left|B^{\prime},\left|B^{\prime}\right| \geq d_{1} \log n\right.$, $\left|A^{\prime}\right| \geq n^{\alpha}$ and $\left[A^{\prime}, B^{\prime} \eta \subset E_{0}\right.$. Again, either $A^{\prime}=B$ satisfies our second claim with $i=1$ or else there is an $A^{\prime \prime} C A$ ', $\left|A^{\prime \prime}\right| \geq d_{1} \log n$ with $\left[A^{\prime \prime}\right] \subset E_{1}$. However, in this case $H-G\left(A " \cup B^{\prime}\right)$ shows that the first part of (2) is true.

We may assume in the rest of the proof that the second part of (2) is true.

The following is our main lemma
(3) There is a number $d_{2}>0$ such that either G has a spanned subgraph $\mathscr{C D}_{2}$ with $n(H) \geq 2 d_{2} 1 \mathrm{logn}$ or else for all $A, B C V,|A|,|B| \geq n^{\alpha}$ and for all $i<2$ the condition that no $C C A$ or $C C B,|C| \geq \operatorname{logn}$ satisfies
$[C]^{2} \subset E_{i}$ implies that the inequality

$$
e_{i}(A, B) \leq \delta^{\prime}|A||B| \quad \text { holds as well. }
$$

We are going to use the following corollary of a theorem of Erdös and Szekeres(see [5]).
(4) For all $c^{\prime}>0$ there is a $c^{\prime \prime}>0$ such that

$$
n \rightarrow\left(c^{\prime} \log n, c^{\prime \prime} \log n\right)^{2} \text { holds for sufficiently }
$$

large n.
To prove (3) let now $A, B C V,|A|,|B| \geq n^{\alpha}$ and $i<2$ be given, and assume that $: C l^{2} \subset E_{i}, ~ C C A$ or $C \subset B$ implies $|C|<1 \log n$.

Assume that the second claim of (3) is false i.e.

$$
e_{i}(A, B) \geq \delta^{\prime}|A||B|
$$

Clearly there is a number $d_{3}>0$ such that there is a subset $A_{1} \subset A,\left|A_{1}\right| \geq d_{3}|A|$ and satisfying $d_{i}(x, B) \geq d_{3}|B|$ for all $x \in A_{1}$.

By (4), we can choose a number $d_{4}>0$ such that $d_{3} n^{\alpha} \rightarrow\left(\log n, d_{4} \log n\right)^{2}$ holds. Then there is a subset $A_{2} C A$, $\left|A_{2}\right|=\left[d_{4} \log n\right]$ such that $\left[A_{2}\right]^{2} \subset \Sigma_{1-i}$. Now we choose a number $0<\beta<\alpha$. By Lemma 1, there is a number $d_{5}>0$ such that there are $A_{3} C A_{2}, B_{1} C A A_{2}$ satisfying $\left|A_{3}\right| \geq d_{5} \operatorname{logn}$, $\left|B_{1}\right| \geq n^{B}$ and $\left[A_{3}, B_{1}\right] \subset E_{i}$. By (4) again, there is a number $d_{6}>0$ such that $n^{\beta} \rightarrow\left(\log n, d_{6} \log n\right)^{2}$. There is a subset $B_{2} C_{B}$ such that $\left|B_{2}\right| \geq d_{6} \log n$ and $\left[B_{2}\right]^{2} \subset E_{1-i}$. Let $d_{2}=\min \left\{d_{5}, d_{6}\right\} . G\left(A_{3} \cup B_{2}\right)$ shows that d_{2} satisfies the first claim of (3). In the rest of the proof we may assume that the second claim of (3) holds. We now derive a contradiction. This will yield that Theorem 2 is true with $c_{2}(\delta)=2 \min \left\{d_{1}, d_{2}\right\}$.

Let $\left\{B_{j}: j<m\right\}$ be a maximal pairwise disjoint system of subsets of v satisfying the following conditions:
$\left|B_{j}\right| \geq n^{\alpha}$ for $j<m$; for each $j<m$ there is an $i(j)<2$ such that $|C|<\operatorname{logn}$ for all $\left.\subset C_{B_{j}}[C]\right]^{2} \subset E_{i(j)}$. Put

$$
A_{i}=\cup\left\{B_{j}: i(j)=i \wedge j<m\right\} \text { for } i<2
$$

Let now $i<2$. By (3), $e_{i}\left(B_{j}, B_{\ell}\right) \leq \delta^{\prime}\left|B_{j}\right|\left|B_{\ell}\right|$ holds for all pairs with $i(j)=i(\ell)=i, j, \ell<m$. It follows that

$$
\begin{aligned}
& \quad e_{i}\left(A_{i}\right) \leq \sum\left\{e_{i}\left(B_{j}, B_{\ell}\right): i(j)=i \wedge j, \ell<m\right\} \leq \\
& \leq \delta^{*} \sum\left\{\left|B_{i}\right|\left|B_{j}\right|: i(j)=i(\ell)=i \wedge j, \ell<m\right\} \leq 2 \delta^{\prime}\left|A_{i}\right|^{2} \leq 2 \delta^{\prime} n^{2}
\end{aligned}
$$

Then, by (1), $\left|A\left(A_{0} \cup A_{1}\right)\right|>\delta^{\prime} n$. (2) implies that there is a set $\operatorname{BCV}\left(A_{0}\left(A_{1}\right),|B| \geq n^{\alpha}\right.$ and an $i<2$ with $|B| \geq n^{\alpha}$ such that $|C|<\operatorname{logn}$ holds for all CCB $[C]^{2} C E_{i}$. This contradicts the maximality of the system $\left\{B_{j}: j<m\right\}$.

§.3. Strongly c, k-universal graphs

DEFINITION 3. a) Let $G \approx(v, E)$ be a graph, $n(G)=n$, For each $x \in\left\{\eta^{k}\right.$ and $v: x \rightarrow\{0,1\}$ we write
$K(X, \psi)(=K(X, \varphi, G))=\left\{v \in U X: \quad \psi_{u} \in X\left(\{u, v\} \in E_{v(u)}\right)\right\}$

Note that for $k=1,|x|=1, x=\{u\}$ we have
$K(X, v)=D\left(u, E_{\varphi(u)}\right)$, and $K(\varphi, \eta)=V$ in case $k=0$.
b) We say that G is strongly c, k-universal for some $c>0, k \geq 1$ if for all $\times \in \mathbb{V})^{k}$ and for all $p: x \rightarrow\{0,1\}$ we have

$$
|K(X, \varphi)| \geq c n .
$$

c) $\mathrm{C}_{3}(c, k)$ is the class of strongly c, k-universal
graphs. Clearly, $C_{3}(c, k) \neq g$ can hold only if $c<\frac{1}{2^{k}}$.
The concept defined above is a generalization of k-superuniversal graphs introduced in [7]. We only mention a few results and problems concerning this concept.

DEFINITION 4. Let $B=(V, E)$ be a graph, $n(H)=k$. Let $\ell \geq 1 . H^{\prime} \neq V^{\prime}, E^{\eta} \quad$ is said to be an 2 multiple of H if there are pairwise disjoint sets A_{1}, \ldots, A_{k}, and an enumeration x_{1}, \ldots, x_{k} of the vertices of H such that, $V=\bigcup_{j=1}^{k} A_{j}, \quad\left|A_{j}\right|=\ell, A_{j}$ is homogeneous for H^{\prime} for $1 \leq j \leq k$ and

$$
\left[A_{j}, A_{\ell}\right] \subset E_{i} \quad \text { iff } \quad\left\{x_{j}, x_{\ell}\right\} \in E_{i}^{\prime} \text { for } 1 \leq j<\ell \leq k, i<2 .
$$

Using a computation similar to the one needed for the proof of Lenma 1 , one can prove

THEOREM 3. Assume $c>0, k, l \geq t$. Then for all graphs H with $n(H)=k+1$ and for all $\sigma \in C_{3}(c, k), G$ contains a spanned subgraph isomorphic to some ℓ-multiple of H provided
$n=n(G)$ is large enough $(n>n(c, k))$.
We omit the proof.
We only mention a class of c,2-universal graphs.

EXAMPLES 3. Let $H\left(V^{\prime}, F^{\prime}\right)$ be a 2-super universal graph. i.e. a graph such that for all $\left.x \in V^{\prime}\right]^{2}$ and for all $\varphi: X \rightarrow\{0,1\}, K(X, \varphi, H) \neq \varnothing$. Assume $n(H)=2 k$.

Let $G^{3}(H, n)=\{V, E\rangle$ be a graph satisfying the following conditions.
$V=\bigcup_{i=1}^{2 k} A_{j}$, where the A_{i} are pairwise disjoint, and $\left|A_{j}\right|=\frac{n}{2 k}$ for $1 \leq j \leq 2 k$. Let $V^{\prime}=\left\{x_{j}: 1 \leq j \leq 2 k\right\}$ be an ennumeration of the vertices of $H_{\text {. We put }}\left[A_{j}\right]^{2} n E=\varnothing$ for $1 \leq j \leq 2 k$;

$$
\left[A_{j}, A_{\ell}\right]^{2} \subset E_{i} \quad \text { iff } \quad\left\{x_{j}, x_{\ell}\right\} \in E_{i}^{\prime} \text { for } 1 \leq j<\ell \leq k, \quad i<2
$$

provided $\ell * k+j$.
Choose E to be a "sufficiently random graph" on [$\left.\boldsymbol{A}_{j}, \boldsymbol{A}_{\boldsymbol{k}+j}\right]$ for $1 \leq j \leq k$.

It is easy to see that $G^{3}(H, n)$ is strongly $c, 2$-universal.
We leave it to the reader to ponder about the restrictive effect of these examples on possible embedding theorems. We only prove one more theorem in which we can make real use of strong c,2-universality.

THEOREM 4. There are functions $n_{4}(c, l), c_{4}(c, l)>0$ such that for all $c>0, \ell \geq 1$ and for all strongly $c, 2$-universal graphs $G=\{v, E)$ with $n(G)=n>n_{4}(c, l)$ there exists a subset $x \subset v,|x|=\ell$ for which

$$
|X(X, \varphi)| \geq c_{4}(c, l) \text { holds for all } \varphi: X \rightarrow\{0,1\} .
$$

Proof. Choose ℓ_{0} so that $c \ell_{0}-\ell>0$. Put
$c_{4}=c_{4}(c, \ell) \frac{c \ell_{0}-\ell}{2_{2}^{\ell} \ell_{0}}$. Let now $Y C V,|Y|=\ell_{0}+1$,
$Y=\left\{y_{0}, \ldots, y_{l_{0}}\right\}$. We claim that there exists a subset
$L=(0, \ell),|L|=\ell$ such that
(1) $\left|\left\{x \in V: \forall j \in L\left(\left\{y_{j}, x\right\} \in E \Lambda\left\{y_{j+1}, x\right\} \notin E\right]\right\}\right| \geq c^{\prime} n$.

Let $w_{x}=\left\{j: 0 \leq j<\ell_{0} \wedge\left\{x_{j}, x\right\} \in \mathbb{R} \wedge\left\{y_{j+1}, x\right\} \notin E\right\}$
for $x \in V$, and $w\{j, x\rangle=j \in W_{x} \wedge x \in M$. By the assumption, $|N| \geq \ell_{0} c n$. Let $V_{1}=\left\{x \in V:\left|w_{x}\right| \geq \ell\right\}$. Since
$|W| \leq n \ell+\left|V_{1}\right| \ell \ell_{0}$ it follows that $\quad\left|v_{1}\right| \geq$
$\geq \frac{l_{0} c-n}{l_{0}^{n}} n$. It follows that there is an $L \subset[0, \ell],|L|=\ell$ which is contained in w_{x} for at least $c^{\prime} n$ elements x of v. This proves (1).

Let now $\Psi:[0, \ell) \rightarrow\{0,1\}$ be any function, and $z=\left\{z_{2}, \ldots, z_{t}\right\}$ an ordering of a subset of $\left.v, x \in z\right]^{l}$. The mapping Ψ induces a mapping $\phi: x \rightarrow\{0,1\}$ by the stipulation $\varphi\left(z_{j}\right)=\psi(k)$ provided z_{j} is the k-th element of x. We may denote $K(x, \varphi)$ by $K(x, \Psi)$ as well.

Let now ℓ_{1} be so large that

$$
\ell_{1} \rightarrow\left(\ell_{0}+1\right)_{2 \ell}^{\ell} \text { holds. }
$$

For sufficiently large n choose an ordered set.
$z=\left\{z_{1}, \ldots, z_{\ell_{1}}\right\} \subset v$. For $\Psi:[0, \ell) \rightarrow\{0,1\}$.
Let $\left.I_{\psi}=\{x \in z]^{\ell}:|x(x, \psi)|<c^{\prime} n\right\}$.
It is sufficient to see, that there is an $x \in z]^{\ell}$ not contained in I_{Ψ} for all $\Psi:[0,2) \rightarrow\{0,1\}$. If this is not true, then $[z]^{\ell}=U\left\{I_{\Psi}: \Psi:[0, \ell) \rightarrow\{0,1\}\right\}$ is a partition of ℓ tuples of z into 2^{ℓ} classes. By the choice of ℓ_{1} there are a $Y \subset Z,|Y|=\ell_{0}+1$ and a $\Psi:[0, \ell) \rightarrow\{0,1\}$ such that

This contradicts (1).
Note that we only used the following consequence of strong c,2-universality in the proof.

For $\{u, v\} \in \mid v\}^{2}$ and for $\varphi:\{u, v\} \rightarrow\{0,1\}$

```
|K(x,\varphi)|\geqcn provided }\varphi(u)\not=\varphi(v)
```


§.4. Ramsey type conditions

THEOREM 5. There is a function $n_{5}(c, k)$ such that for all graphs G establishing the negative partition relation $n \nmid(c \log n)_{2}^{2}$ and for all graphs H with $n(H)=k, H$ is isomorphic to a spanned subgraph of G provided $n=n(G)>$ $>n_{5}(c, k)$.
Proof.

By the result of [5] already used, there is a $d>0$ such that
(1) $n \rightarrow(2 c \log n, d \log n)^{2}$ holds for all sufficiently

First we prove that there exists $n_{6}(c, k)$ such that
(2) For all graphs $G=(V, E)$ establishing $n \neq(c \log n)_{2}^{2}$ with $n=n(G)>n_{6}(c, k)$ and for all H with $n(H)=k$ either H is isomorphic to a spanned subgraph of G or there are $i<2, A, B C V$ such that $A \cap B=\varnothing$
$[A]{ }^{2} \subset E_{i}, \quad[A, B] \subset E_{i^{\prime}}, \quad|A| \geq \frac{d}{2} \log n, \quad|B| \geq \frac{n}{(\log n)^{2 k}}$.
Let $B=\left(V^{\prime}, E^{\prime}\right)$ and $V^{\prime}=\left\{x_{1}, \ldots, x_{k}\right\}$. We are going to select $Y=\left\{y_{1}, \ldots, y_{k}\right\} \subset v$ in such a way that $x_{j} \rightarrow y_{j}$
is an isomorphism between H and $G(Y)$.
Assume that for some $1 \leq j \leq k$ the elements $Y_{j}=$ $=\left\{y_{\ell}: 1 \leq \ell<j\right\}$ have already been chosen in such a way that for each $\varphi: Y_{j} \rightarrow\{0,1\}$

$$
\left|K\left(Y_{j}, \Phi\right)\right| \geq \frac{n}{(\log n)^{2(j-1)}} \text { and }
$$

$\left\{y_{\ell}, y_{s}\right\} \in E_{i}$ iff $\left\{x_{\ell}, x_{z}\right\} \in E_{i}^{\prime}$ for $t \leq \ell, s<j$ and $i<2$.

Let $\varphi_{0}\left(y_{\ell}\right)=i$ iff $\left\{x_{\ell}, x_{j}\right\} \in E_{i}^{\prime}$ for $\ell<j$.
If there is an element $y_{j} \in K\left(Y_{j}, \varphi_{0}\right)$ and such that
(3) $d_{i}\left(y_{j}, K\left(Y_{j}, \varphi\right)\right) \geq \frac{n}{(\log n)^{2 j}}$ for $i<2$ and for all
© : $Y_{j} \rightarrow\{0,1\}$ we can continue the induction. Otherwise all elements y of $K\left(Y_{j}, \varphi_{0}\right)$ fail to satisfy (3) for some $i<2$ and $\varphi: Y_{j} \rightarrow\{0,1\}$.

It follows that there are $A_{i} C K\left(Y_{j}, \varphi_{0}\right), i<2$ and a $\varphi_{1}: Y_{j} \rightarrow\{0,1\}$ such that
(4) $\left|A_{1}\right| \geq \frac{n}{2^{j} \cdot \log n^{2(j-1)}}$, and $d_{i}\left(x, B_{1}\right)<\frac{n}{\log n^{2 j}}$ holds
for $x \in A$ and $B_{i}=K\left(Y_{j}, \varphi_{i}\right)$
Now, if n is large enough, $\frac{n}{2^{j} \log n^{2(j-1)}} \geq n^{1 / 2}$. By $(1), n^{1 / 2} \rightarrow\left(c \log n, \frac{d}{2} \log n\right)^{2}$. Considering that G_{i} does not contain a complete c logn, it follows that there is an $A \subset A_{1},|A|=\left[\frac{d}{2} \log n\right]+1,[A]^{2} \subset E_{1-i}$. Now put $B=B_{1} \backslash\left(A \cup \cup\left\{D_{i}(x, B): x \in A\right\}\right)$

$$
\text { BI } \left.\geq \frac{n}{(\log n)^{2(j-1)}}-\left(G \frac{d}{2} \log n\right]+1\right)\left(\frac{n}{(\log n)^{2 j}}+1\right) \geq
$$

$$
\geq \frac{n}{2 \log n^{2(j-1)}} \geq \frac{n}{1 \log n^{2 k}}
$$

provided n is large enough. Clearly $\left\{A, B \in \subset E_{1-i}\right.$ and this proves (2). In what follows we assume indirectly that the second part of (2) is true for all large enough spanned subgraphs G^{\prime} of G.

We now "iterate" (2). Let t be such that $\frac{1}{8} t d>c$. We define a sequence A_{1}, \ldots, A_{t} of pairwise disjoint subsets of v by induction on j. Assume that $i \leq j \leq t$, and the sets ${ }^{A}{ }_{\ell}, 1 \leq \ell<j$ have already been defined and a set $B_{j-1},\left|B_{j-1}\right| \geq \frac{n}{(\log n)^{k(j-1)}}$ is defined as well. (Set $B_{0}=V$). Assume further that $A_{1}, \ldots, A_{j-1}, B_{j-1}$ are pairwise disjoint.

Put $m=\frac{n}{(\log n)^{k(j-1)}}$. We choose sets $A_{j}, B_{j} C_{j-1}$ and an $i(j)<2$ in such a way that

$$
\left|A_{j}\right|=\left[\frac{d}{2} \log m\right]+1, \quad\left|B_{j}\right| \geq \frac{m}{(\log m)^{k}}, A_{j} \cap B_{j}=\varnothing \text { and }
$$

$\left[A_{j}\right]^{2} \subset E_{i(j)},\left[A_{j}, B_{j}\right] \subset E_{i(j)}$. Then $\log n \geq \log m \geq$ $\geq \log n-\log (\log n)^{k(j-1)} \geq \frac{\log n}{2}$ provided n is large enough. It follows that $\left|B_{j}\right| \geq \frac{n}{(\log n)^{k j}}$ and $\left|A_{j}\right| \geq$ $\geq \frac{d}{2} \log m \geq \frac{d}{4} \log n$ for $1 \leq j \leq t$. This defines the sets A_{1}, \ldots, A_{t}. Moreover we know that for each $1 \leq j \leq t$ there is an $i(j)<2$ such that $\left[A_{j}, A_{\ell}\right]^{2} \subset E_{i(j)}$, for $j \leq \ell \leq t$. There is an $i<2$ such that $L_{i}\{1 \leq j \leq t: i(j)=i\}$ has $\geq \frac{t}{2}$ elements.

Put $A=U\left\{A_{j}=j \in L_{i}\right\}$. Then $|A| \geq \frac{1}{8} t d \log n>c \log n$ and $[A]^{2} \subset E_{i}$. This is a contradiction.

A refirement of this proof gives the following
There is a function $n_{7}(k)$ such that for all graphs G establishing the negative partition relation
$n+\left(2^{\frac{1}{2}\left(\frac{1}{2 k+1} \log n\right)^{1 / 2}}\right)_{2}^{2}$, and for all graphs H with $n(H)=k$, H is isomorphic to a spanned subgraph of G provided $n>n_{7}(k)$. We do not discuss this since we do not know how far this is from being best possible. As far as we know the theorem could be true with ${ }_{n}{ }^{\varepsilon} k$ in place of $2^{\frac{1}{2}\left(\frac{1}{2 k+1} \log n\right)^{1 / 2}}$.

REFERENCES

[1] P. Erdös, On extremal problems of graphs and generalized graphs. Israel Journal of Math. 2 (1964), pp. 183-189.
[2] P. Erdös and A. Hajnal, Embedding theorems for graphs establishing negative partition relations. Research Paper No. 307. The University of Calgary and to appear in Periodica Math. Hung.
[3] P. Erdös, A.Hajnal and L. Pōsa, Strong embeddings of graphs into colored graphs. Colloquia Math. Soc. Jănos Bolyai 10. Infinite and Finite Sets Keszthely, (Hungary) 1973. pp. 585-595.
[4] P. Erdös and P. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62(1956) pp. 427-489.
[5] P. Erdös and G. Szekeres, A combinatorial problem in geometry, Compositio, Math. 2(1935), 463-470.
[6] P. Erdös and A. Rēnyi, On the evolution of random graphs, Publ. Math. Inst. Hunc̣. Acad. Sci. 5(1960), pp.17-61.
[7] S. Hechler, Large superuniversal Metric Spaces Israel Journal of Math. 14, 2 (1973) 115-148.

