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1 § . INTRODUCTION

Let X I , X 2 , . . . be a sequence of independent and identically distrib-
uted random variables with P(X 1 = 0) = P(X 1 = 1) =

2
and let So = 0,

SX 1 +X2 + . . .+Xn (n=1,2, . . .) and

I(A', K) =

		

max

	

(Sn + K .-S,T )

	

(N > K) .
0-<n-<N- K

Define the r .v .'s ZN (N = 1, 2, . . .) as follows : let ZN be the largest
integer for which

I(N, Z v ) = I_N .

This ZN is the length of the longest head-run. Studying the proper-
ties ZN resp . I(N, K) E r d ő s and R é n y i proved the following :

Theorem A . ([ 1]) Let 0 < C'1 < 1 < C2 < - then for almost all
w E U (S2 is the basic space) there exists a finite N 0 = NO (w, C 1 , ('2 )



such that*

[C, log N] < Zv ~< [ C 2 log N]

if N~> N o .

The aim of this paper is to get sharper bounds of ZN . In connection
with this problem our first result is

Theorem 1. Let e be any positive number. Then for almost all

w E 2 there exists a finite N o = NO (w, e) such that

ZN > [log N -- log log log N + log log e - 2 - e] = a l (N) = a l

if N , No ,

This result is quite near to the best possible one in the following sense :

Theorem 2 . Let c be any positive number. Then for almost all

w E 12 there exists an infinite sequence N,. = N, (w, e) (i = l, 2, . . .) of

integers such that

ZNl < [log Ni - log log log Ni + log log e - 1 + E1 = a 2 ("V) = a2 .

Theorems 1 and 2 together say that the length of the longest head-run
is larger than a l but in general not larger than a 2 . Clearly enough for
some N the length of the longest head-run can be much larger than a 2 .
In our next theorems the largest possible values of Z N are investigated .

Theorem 3. Let {yn } be a sequence of positive numbers for which

G 2
n=1

Then for almost all w E Q there exists an infinite sequence
N1. = Ni (w,

{yn }) (i = 1, 2 . . . . ) of integers such that

,v ; ti v

This result is the best possible in the following sense .

*Here and in what follows log means logarithm with base 2 ; [xl is the integral part of x .



Theorem 4. Let {Sn } be a sequence of positive numbers for which

Then for almost all w E 2 there exists a positive integer
No = No (w, {Sn }) such that

ZN <SN

if' N, No .

Theorems 1-4 are characterizing the length of the longest run contain-
ing no tail at all . One can ask about the length of the longest run contain-
ing at most 7' tails . In order to formulate our results precisely introduce
the following notation : Let ZN (T) be the largest integer for which

ZN ( ")) % ZN ( 7~ -- T.

"This ZN (T) is the length of the longest run containing at most 7' tails .

Our Theorems 1-4 can be easily generalized for this case as follows :

Theorem 1*. Let e be any positive number. Then for almost all
w E 2 there exists a finite No = NO (w, T, e) such that

ZN (T) , [log N + T log log N -- log log log N - log T! +

+ log log e - 2 - e] = a 1 (N, T)

if N, No .

Theorem 2*. Let e be any positive number. Then for almost all
w E 2 there exists an infinite sequence Nj = Nr (w, T, e) of integers such
that

ZNt(T) < a2 (NP T) _

_ [log A't + T log log Nt -- log log log Ni --- log T! + log log e -

--1+E] .

Theorem 3*. Let {yn } be a sequence of positive integers for which

- 2 2 1 -



y
•

T 2 yn
n=1 n

Then for almost all w E 2 there exists an infinite sequence

NI.

	

T, {y n 1) of integers such that

ZN1(T) > yNi .

Theorem 4* . Let {Sn ) be a sequence of positive integers J'or which

S
•

T
2-sn

< ~ .
n=1 n

Then for almost all w E 2 there exists a positive integer

No = No (w, T, {S n 1) such that

•

	

(T) < SN

if' .N > No .

The last two Theorems clearly can be reformulated as follows :

Theorem 3** . Let {y,, 1 be a sequence of positive integers for which

2 y
•

T 2- yn

n=1 n

Then for almost all w E 92 there exists a sequence N~ = N I-(w, (yn 1) of

integers such that

N1
• - N I _ 7Ni ~ yNt -

Theorem 4** . Let {Sn ) be a sequence of positive integers for which

ST 2
sn
<

n=1 n

Then for almost all w E 92 there exists a positive integer

No = No (w, T, {Sn 1) such that

•

	

- SN _ 6N < S N -- T

if N > No *
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and

where

2§ . A THEOREM ON THE DISTRIBUTION OF 1(N, K)

The proofs of Theorems 1-4 are based on the following

Theorem 5 . We have

KT+ 1

	

~N-2K
]+11 _ 2-K-1	Ti - (1 + 0K ( '»)

K

S P(1(N, K) < K - T)

T+1

	

1 _N-2K

(I -- 2- K -1 KTI--- (1 + oK(1))) [2[ K

	

1,+

if N 3 2K .

Before the proof of this Theorem we prove our

Lemma 1 . We have

1

l

2-N -1 (N + 2)

	

if T = 0,

2-N-1 (N2 + 4- 2-N+1) if T= 1,

N T+ 1
2- N - 1

	

T, (1 + 0(1))

	

if T> 1 .

P(I(2N, N) >, N -- T) _

Proof. Let

A=A(T)=(I(2N,N)~> N-T),

A k =A k (T)={Sk+N -Sk >N-T}

	

(k =0,1,2, . . .,N),

S-i =--

	

(Í= 1,2, . . .) .

Then we clearly have

A = A 0 + A D A 1 + A 0A j A 2 + . . . + AOA, . . . A N-I A N



and

T
P(A,) = 1

ó ( . ) 2
- N ,

Pk = P(A 0 A 1 . . . Ak- IAk) _

k+1-11<12< . . .<'T6k+N
P(A o A 1 . . .A k l A k ,

Xk
=X11

=X12 = . . . =XlT=0)=

P(A k , Xk = X1, = X12 =
k+ 1 5~11<l2< . . .<'T<-k+N

. . . =X1
T
=0' Sk-1 -Sl T -N-1

<k-IT +N,

Sk-1-S!T- 1
-N-1<k-IT-i+N-1, . . .

.'Sk-1 -S11-N-1 <k--I 1 +N --(T- 1)) =

2 N-1
-

	

P(Sk-k+1<11<12< . . .<'T-k+N

	

1 --SIT -N- 1 <

<k---IT+N, Sk-i -SIT-1-N-1 <k-IT _ 1 +N-1, .
. . . ,Sk-1

	

S11-N-1 <k--I 1 +N-- (T- 1)) .

Especially if

(i) T=O then Pk = 2- N -1

(ü) T= 1 then Pk = 2 - N -1 (N-- 2+ 2-k+1 )

(iii) T > 1 then pk = 2-N- 1 T)(1 -4- 0(1))

what clearly implies our Lemma .

Proof of Theorem 5 . Let

Bk = 1Sk + K -- Sk > k -- T }

(14 1)K
Cl =

		

Bk

	

l = 0, 1, 2, . . .
k=1K

- 224 -

( k = 0, 1, 2, .

	

N --- K),

-- 2 K



Then by Lemma 1

P(C) = 2-K - 1 K
T+ 1

1

	

Ti--(1 + o K (1))

and since the events CO) C2 , . . . are independent we have

P(D 0 ) = P(CO) P(C2 ) . . . P (C2 [i [N	
-Y

	 2K ]]) _
2

	

K

and similarly

Clearly

and

Do = Cp +C2 + . . . + C2[ 1 [ N- 2K ]],
2

	

K

Dl = Cl + C3 + . . . + C2
[2 ([N

	 K2K
]- 1)]+ 1

T+1

	

1 íN- 2K

_ (1 -2-K-1

	

T!-(1
+ oK(1)))[1

	

K ]]+1

_

	

KT+ 1

	

[ 1 ([N 2K ] 1)]+ 1
P(D 1 ) _ ~ 1 -- 2-K- 1

	

Ti

	

(1 + OK (1))~ 2

	

K

Do c{I(N,K)>K -- T}=Do+DI

P{l(N, K) < K - T) = P(Do + D1 ) = P(DoD2 ) P(DQ ) P(Dr )5

What proves Theorem 5 . The right side of tilt last inequality follows from
the simple inequality

P(D I IBk ) % P(D 1 )

	

(k= 0, 1, 2, . . . , N- K) .

§3 . THE PROOFS OF THEOREMS 1 * - 4*

The following two Lemmas are trivial consequences of Theorem 5 .

Lemma 2. Let N = N (T) be the smallest integer for which
a l (N , T) = i. Then
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and

(1)

P{Z, (T)<a,(N.,T) }_
i= 1

	

1

P{I(N., a,(N , T)< a, (N , 7) - T} <
i= 1

~ .

Lemma 3. Let S be a positive number and let N . = N .(T, 8) be the
smallest integer for which a z (N, T) _ [j1+s] Then

P{1(N, az (N, T)) < a z (N , 7) - T} _ -
i= 1

if' S is small enough.

Now Theorem 1 * follows immediately from Lemma 2 .

In order to prove Theorem 2* the following version of the Borel ---
Cantelli lemma will be applied :

Lemma A. ([2]) If A 1 , A 2 , . . . are arbitrary events, fulfilling the
conditions

P(A n )n=1

n

	

n
P(A kAI )

lim inf	k=1 1=1
n--

	

n

( Z NAk»k= 1

Then there occur with probability 1 infinitely many of the events A n .

Hence Theorem 2* will follow from

Lemma 4 . If the event A i is defined as

Ai = {I(N , a2 (N , T)) < az (N, T) -- T}

then (1) holds true.



Then

and

hence

Proof of Lemma 4 . Let

BI~ = f

	

max

	

(Sk +« '2(N1, T) - Sk ) < a 2 (N, T) - T}
0<k< N-a2(Nt,T)

	

2 1 ,

C . . _ (

	

max

	

(Sk+a (N •, T) Sk ) < ce (N, T) - T}
11

	

N I<k<Nj-a2(Nj,T)

	

2 1

(l < i) .

P(A-A
i
) = P(A I)P(CIj)(1 + o(1))

P(A
i
) = P(B I,) P(CIl.) (1 + o(, »

P(At.)P(A .)

P(A IAi) -

	

P B .. ~ (1 +
0(1)) .

( n )

By Theorem 5 we also have : P(B I~) = 1 + 0(1) what proves Lemma 4
and Theorem 2 at the same time .

Since

(i < 1),

T a 1

	

T lP(Sn - Sn-a>a-T)=~ó(a)

	

a
2a

	

7,! 2a .

Theorem 4** follows from the Borel - Cantelli Lemma and Theorem 3*
is a simple consequence of Lemma A. (To check the conditions of Lem-
ma A is quite easy .)
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