ON THE LENGTH OF THE LONGEST HEAD-RUN

P. ERDÖS - P. RÉVÉSZ

1§. INTRODUCTION

Let X_{1}, X_{2}, \ldots be a sequence of independent and identically distributed random variables with $\mathrm{P}\left(X_{1}=0\right)=\mathrm{P}\left(X_{1}=1\right)=\frac{1}{2}$ and let $S_{0}=0$,

$$
\begin{aligned}
& S_{n}=X_{1}+X_{2}+\ldots+X_{n} \quad(n=1,2, \ldots) \text { and } \\
& \quad I(N, K)=\max _{0 \leqslant n \leqslant N-K}\left(S_{n+K}-S_{n}\right) \quad(N \geqslant K) .
\end{aligned}
$$

Define the r.v.'s $Z_{N}(N=1,2, \ldots)$ as follows: let Z_{N} be the largest integer for which

$$
I\left(N, Z_{N}\right)=Z_{N} .
$$

This Z_{N} is the length of the longest head-run. Studying the properties Z_{N} resp. $I(N, K)$ Erdős and Rényi proved the following:

Theorem A. ([1]) Let $0<C_{1}<1<C_{2}<\infty$ then for almost all $\omega \in \Omega\left(\Omega\right.$ is the basic space) there exists a finite $N_{0}=N_{0}\left(\omega, C_{1}, C_{2}\right)$
such that*

$$
\left[C_{1} \log N\right] \leqslant Z_{N} \leqslant\left[C_{2} \log N\right]
$$

if $N \geqslant N_{0}$.
The aim of this paper is to get sharper bounds of Z_{N}. In connection with this problem our first result is

Theorem 1. Let ϵ be any positive number. Then for almost all $\omega \in \Omega$ there exists a finite $N_{0}=N_{0}(\omega, \epsilon)$ such that

$$
Z_{N} \geqslant[\log N-\log \log \log N+\log \log e-2-\epsilon]=\alpha_{1}(N)=\alpha_{1}
$$

if $N \geqslant N_{0}$.
This result is quite near to the best possible one in the following sense:
Theorem 2. Let ϵ be any positive number. Then for almost all $\omega \in \Omega$ there exists an infinite sequence $N_{i}=N_{i}(\omega, \epsilon)(i=1,2, \ldots)$ of integers such that

$$
Z_{N_{i}}<\left[\log N_{i}-\log \log \log N_{i}+\log \log e-1+\epsilon\right]=\alpha_{2}(N)=\alpha_{2}
$$

Theorems 1 and 2 together say that the length of the longest head-run is larger than α_{1} but in general not larger than α_{2}. Clearly enough for some N the length of the longest head-run can be much larger than α_{2}. In our next theorems the largest possible values of Z_{N} are investigated.

Theorem 3. Let $\left\{\gamma_{n}\right\}$ be a sequence of positive numbers for which

$$
\sum_{n=1}^{\infty} 2^{-\gamma_{n}}=\infty
$$

Then for almost all $\omega \in \Omega$ there exists an infinite sequence $N_{i}=N_{i}\left(\omega,\left\{\gamma_{n}\right\}\right) \quad(i=1,2, \ldots)$ of integers such that

$$
Z_{N_{i}} \geqslant \gamma_{N_{i}}
$$

This result is the best possible in the following sense:

[^0]Theorem 4. Let $\left\{\delta_{n}\right\}$ be a sequence of positive numbers for which

$$
\sum_{n=1}^{\infty} 2^{-\delta}<\infty .
$$

Then for almost all $\omega \in \Omega$ there exists a positive integer $N_{0}=N_{0}\left(\omega,\left\{\delta_{n}\right\}\right)$ such that

$$
Z_{N}<\delta_{N}
$$

if $N \geqslant N_{0}$.
Theorems 1-4 are characterizing the length of the longest run containing no tail at all. One can ask about the length of the longest run containing at most T tails. In order to formulate our results precisely introduce the following notation: Let $Z_{N}(T)$ be the largest integer for which

$$
I\left(N, Z_{N}(T)\right) \geqslant Z_{N}(T)-T .
$$

This $Z_{N}(T)$ is the length of the longest run containing at most T tails.
Our Theorems 1-4 can be easily generalized for this case as follows:
Theorem 1*. Let ϵ be any positive number. Then for almost all $\omega \in \Omega$ there exists a finite $N_{0}=N_{0}(\omega, T, \epsilon)$ such that

$$
\begin{aligned}
& Z_{N}(T) \geqslant[\log N+T \log \log N-\log \log \log N-\log T!+ \\
& \quad+\log \log e-2-\epsilon]=\alpha_{1}(N, T)
\end{aligned}
$$

if $N \geqslant N_{0}$.
Theorem 2*. Let ϵ be any positive number. Then for almost all $\omega \in \Omega$ there exists an infinite sequence $N_{i}=N_{i}(\omega, T, \epsilon)$ of integers such that

$$
\begin{aligned}
& Z_{N_{i}}(T)<\alpha_{2}\left(N_{i}, T\right)= \\
& \quad=\left[\log N_{i}+T \log \log N_{i}-\log \log \log N_{i}-\log T!+\log \log e-\right. \\
& \quad-1+\epsilon] .
\end{aligned}
$$

Theorem 3*. Let $\left\{\gamma_{n}\right\}$ be a sequence of positive integers for which

$$
\sum_{n=1}^{\infty} \gamma_{n}^{T} 2^{-\gamma_{n}}=\infty
$$

Then for almost all $\omega \in \Omega$ there exists an infinite sequence $N_{i}=N_{i}\left(\omega, T,\left\{\gamma_{n}\right\}\right)$ of integers such that

$$
Z_{N_{i}}(T) \geqslant \gamma_{N_{i}}
$$

Theorem 4*. Let $\left\{\delta_{n}\right\}$ be a sequence of positive integers for which

$$
\sum_{n=1}^{\infty} \delta_{n}^{T} 2^{-\delta} n<\infty
$$

Then for almost all $\omega \in \Omega$ there exists a positive integer $N_{0}=N_{0}\left(\omega, T,\left\{\delta_{n}\right\}\right)$ such that

$$
Z_{N}(T)<\delta_{N}
$$

if $N \geqslant N_{0}$.
The last two Theorems clearly can be reformulated as follows:
Theorem 3**. Let $\left\{\gamma_{n}\right\}$ be a sequence of positive integers for which

$$
\sum_{n=1}^{\infty} \gamma_{n}^{T} 2^{-\gamma_{n}}=\infty .
$$

Then for almost all $\omega \in \Omega$ there exists a sequence $N_{i}=N_{i}\left(\omega,\left\{\gamma_{n}\right\}\right)$ of integers such that

$$
S_{N_{i}}-S_{N_{i}-\gamma_{N_{i}}} \geqslant \gamma_{N_{i}}-T
$$

Theorem $4^{* *}$. Let $\left\{\delta_{n}\right\}$ be a sequence of positive integers for which

$$
\sum_{n=1}^{\infty} \delta_{n}^{T} 2^{-\delta} n<\infty
$$

Then for almost all $\omega \in \Omega$ there exists a positive integer $N_{0}=N_{0}\left(\omega, T,\left\{\delta_{n}\right\}\right)$ such that

$$
S_{N}-S_{N-\delta_{N}}<\delta_{N}-T
$$

if $N \geqslant N_{0}$.

2§. A THEOREM ON THE DISTRIBUTION OF $I(N, K)$

The proofs of Theorems 1-4 are based on the following
Theorem 5. We have

$$
\begin{aligned}
& \left(1-2^{-K-1} \frac{K^{T+1}}{T!}\left(1+o_{K}(1)\right)\right)^{\left[\frac{N-2 K}{K}\right]+1} \leqslant \\
& \quad \leqslant \mathrm{P}(I(N, K)<K-T) \leqslant \\
& \quad \leqslant\left(1-2^{-K-1} \frac{K^{T+1}}{T!}\left(1+o_{K}(1)\right)\right)^{\left[\frac{1}{2}\left[\frac{N-2 K}{K}\right]\right]+1}
\end{aligned}
$$

if $N \geqslant 2 K$.
Before the proof of this Theorem we prove our
Lemma 1. We have

$$
\mathrm{P}(I(2 N, N) \geqslant N-T)= \begin{cases}2^{-N-1}(N+2) & \text { if } T=0 \\ 2^{-N-1}\left(N^{2}+4-2^{-N+1}\right) & \text { if } T=1 \\ 2^{-N-1} \frac{N^{T+1}}{T!}(1+o(1)) & \text { if } T>1\end{cases}
$$

Proof. Let

$$
\begin{aligned}
& A=A(T)=\{I(2 N, N) \geqslant N-T\}, \\
& A_{k}=A_{k}(T)=\left\{S_{k+N}-S_{k} \geqslant N-T\right\} \quad(k=0,1,2, \ldots, N),
\end{aligned}
$$

and

$$
S_{-j}=-\infty \quad(j=1,2, \ldots)
$$

Then we clearly have

$$
A=A_{0}+\bar{A}_{0} A_{1}+\bar{A}_{0} \bar{A}_{1} A_{2}+\ldots+\bar{A}_{0} \bar{A}_{1} \ldots \bar{A}_{N-1} A_{N}
$$

where

$$
\mathrm{P}\left(A_{0}\right)=\sum_{j=0}^{T}\binom{N}{j} 2^{-N}
$$

and

$$
\begin{aligned}
& p_{k}={\mathrm{P}\left(\bar{A}_{0} \bar{A}_{1} \ldots \bar{A}_{k-1} A_{k}\right)=}^{\quad=\sum_{k+1 \leqslant l_{1}<l_{2}<\ldots<l_{T} \leqslant k+N} \mathrm{P}\left(\bar{A}_{0} \bar{A}_{1} \ldots \bar{A}_{k-1} A_{k},\right.} \\
& \left.\quad X_{k}=X_{l_{1}}=X_{l_{2}}=\ldots=X_{l_{T}}=0\right)= \\
& \quad=\sum_{k+1 \leqslant l_{1}<l_{2}<\ldots<l_{T} \leqslant k+N} \mathrm{P}\left(A_{k}, X_{k}=X_{l_{1}}=X_{l_{2}}=\ldots\right. \\
& \quad \ldots=X_{l_{T}}=0, S_{k-1}-S_{l_{T}-N-1}<k-l_{T}+N, \\
& \\
& S_{k-1}-S_{l_{T-1}-N-1}<k-l_{T-1}+N-1, \ldots \\
& \left.\quad \ldots, S_{k-1}-S_{l_{1}-N-1}<k-l_{1}+N-(T-1)\right)= \\
& \quad=2^{-N-1} \sum_{k+1 \leqslant l_{1}<l_{2}<\ldots<l_{T} \leqslant k+N} \mathrm{P}\left(S_{k-1}-S_{l_{T}-N-1}<\right. \\
& \quad<k-l_{T}+N, S_{k-1}-S_{l_{T-1}-N-1}<k-l_{T-1}+N-1, \ldots \\
& \left.\quad \ldots, S_{k-1}-S_{l_{1}-N-1}<k-l_{1}+N-(T-1)\right) .
\end{aligned}
$$

Especially if
(i) $T=0$ then $p_{k}=2^{-N-1}$
(ii) $T=1$ then $p_{k}=2^{-N-1}\left(N-2+2^{-k+1}\right)$
(iii) $T>1$ then $p_{k}=2^{-N-1}\binom{N}{T}(1+o(1))$
what clearly implies our Lemma.
Proof of Theorem 5. Let

$$
\begin{aligned}
& B_{k}=\left\{S_{k+K}-S_{k} \geqslant k-T\right\} \quad(k=0,1,2, \ldots, N-K), \\
& C_{l}=\sum_{k=l K}^{(l+1) K} B_{k} \quad\left(l=0,1,2, \ldots,\left[\frac{N-2 K}{K}\right]\right),
\end{aligned}
$$

$$
\begin{aligned}
& D_{0}=C_{0}+C_{2}+\ldots+C_{2\left[\frac{1}{2}\left[\frac{N-2 K}{K}\right]\right]} \\
& D_{1}=C_{1}+C_{3}+\ldots+C_{2\left[\frac{1}{2}\left(\left[\frac{N-2 K}{K}\right]-1\right)\right]+1}
\end{aligned}
$$

Then by Lemma 1

$$
\mathrm{P}\left(C_{l}\right)=2^{-K-1} \frac{K^{T+1}}{T!}\left(1+o_{K}(1)\right)
$$

and since the events C_{0}, C_{2}, \ldots are independent we have

$$
\begin{aligned}
& \mathrm{P}\left(\bar{D}_{0}\right)=\mathrm{P}\left(\bar{C}_{0}\right) \mathrm{P}\left(\bar{C}_{2}\right) \ldots \mathrm{P}\left(\bar{C}_{2\left[\frac{1}{2}\left[\frac{N-2 K}{K}\right]\right]}\right)= \\
& \quad=\left(1-2^{-K-1} \frac{K^{T+1}}{T!}\left(1+o_{K}(1)\right)\right)^{\left[\frac{1}{2}\left[\frac{N-2 K}{K}\right]\right]+1}
\end{aligned}
$$

and similarly

$$
\mathrm{P}\left(\bar{D}_{1}\right)=\left(1-2^{-K-1} \frac{K^{T+1}}{T!}\left(1+o_{K}(1)\right)\right)^{\left[\frac{1}{2}\left(\left[\frac{N-2 K}{K}\right]-1\right)\right]+1}
$$

Clearly

$$
D_{0} \subset\{I(N, K) \geqslant K-T\}=D_{0}+D_{1}
$$

and

$$
\mathrm{P}\{I(N, K)<K-T\}=\mathrm{P}\left(\overline{D_{\rho}+D_{z}}\right)=\mathrm{P}\left(\bar{D}_{\rho} \bar{D}_{z}\right) \geqslant \mathrm{P}\left(\bar{D}_{\rho}\right) \mathrm{P}\left(\overline{D_{p}}\right) .
$$

what proves Theorem 5 . The right side of the last inequality follows from the simple inequality

$$
\mathrm{P}\left(D_{1} \mid B_{k}\right) \geqslant \mathrm{P}\left(D_{1}\right) \quad(k=0,1,2, \ldots, N-K) .
$$

§3. THE PROOFS OF THEOREMS $1^{*}-4^{*}$

The following two Lemmas are trivial consequences of Theorem 5.
Lemma 2. Let $N_{j}=N_{j}(T)$ be the smallest integer for which $\alpha_{1}\left(N_{j}, T\right)=j$. Then

$$
\begin{aligned}
& \sum_{j=1}^{\infty} \mathrm{P}\left\{Z_{N_{j}}(T)<\alpha_{1}\left(N_{j}, T\right)\right\}= \\
& \quad=\sum_{j=1}^{\infty} \mathrm{P}\left\{I\left(N_{j}, \alpha_{1}\left(N_{j}, T\right)\right)<\alpha_{1}\left(N_{j}, T\right)-T\right\}<\infty .
\end{aligned}
$$

Lemma 3. Let δ be a positive number and let $N_{j}=N_{j}(T, \delta)$ be the smallest integer for which $\alpha_{2}\left(N_{j}, T\right)=\left[j^{1+\delta}\right]$. Then

$$
\sum_{j=1}^{\infty} \mathrm{P}\left\{I\left(N_{j}, \alpha_{2}\left(N_{j}, T\right)\right)<\alpha_{2}\left(N_{j}, T\right)-T\right\}=\infty
$$

if δ is small enough.
Now Theorem 1* follows immediately from Lemma 2.
In order to prove Theorem 2* the following version of the Borel Cantelli lemma will be applied:

Lemma A. ([2]) If A_{1}, A_{2}, \ldots are arbitrary events, fulfilling the conditions

$$
\sum_{n=1}^{\infty} \mathrm{P}\left(A_{n}\right)=\infty
$$

and
(1) $\quad \liminf _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} \sum_{l=1}^{n} \mathrm{P}\left(A_{k} A_{l}\right)}{\left(\sum_{k=1}^{n} \mathrm{P}\left(A_{k}\right)\right)^{2}}=1$.

Then there occur with probability 1 infinitely many of the events A_{n}.
Hence Theorem 2* will follow from
Lemma 4. If the event A_{j} is defined as

$$
A_{j}=\left\{I\left(N_{j}, \alpha_{2}\left(N_{j}, T\right)\right)<\alpha_{2}\left(N_{j}, T\right)-T\right\}
$$

then (1) holds true.

Proof of Lemma 4. Let

$$
\begin{gathered}
B_{i j}=\left\{\max _{0 \leqslant k \leqslant N_{i}-\alpha_{2}\left(N_{j}, T\right)}\left(S_{k+\alpha_{2}\left(N_{j}, T\right)}-S_{k}\right)<\alpha_{2}\left(N_{j}, T\right)-T\right\} \\
(i<j), \\
C_{i j}=\left\{{ }_{N_{i} \leqslant k \leqslant N_{j}-\alpha_{2}\left(N_{j}, T\right)}\left(S_{k+\alpha_{2}\left(N_{j}, T\right)}-S_{k}\right)<\alpha_{2}\left(N_{j}, T\right)-T\right\} \\
(i<j) .
\end{gathered}
$$

Then

$$
\mathrm{P}\left(A_{i} A_{j}\right)=\mathrm{P}\left(A_{i}\right) \mathrm{P}\left(C_{i j}\right)(1+o(1))
$$

and

$$
\mathrm{P}\left(A_{j}\right)=\mathrm{P}\left(B_{i j}\right) \mathrm{P}\left(C_{i j}\right)(1+o(1))
$$

hence

$$
\mathrm{P}\left(A_{i} A_{j}\right)=\frac{\mathrm{P}\left(A_{i}\right) \mathrm{P}\left(A_{j}\right)}{\mathrm{P}\left(B_{i j}\right)}(1+o(1))
$$

By Theorem 5 we also have: $\mathrm{P}\left(B_{i j}\right)=1+o(1)$ what proves Lemma 4 and Theorem 2 at the same time.

Since

$$
\mathrm{P}\left(S_{n}-S_{n-a} \geqslant a-T\right)=\sum_{j=0}^{T}\binom{a}{j} \frac{1}{2^{a}} \approx \frac{a^{T}}{T!} \frac{1}{2^{a}} .
$$

Theorem 4** follows from the Borel - Cantelli Lemma and Theorem 3** is a simple consequence of Lemma A . (To check the conditions of Lemma A is quite easy.)

REFERENCES

[1] P. Erdős - A. Rényi, On a new law of large numbers. Journ. Analyse Math., 22 (1970), 103-111.
[2] A. Rényi, Probability Theory, Akadémiai Kiadó, Budapest, 1970, p. 391.
P. Erdős - P. Révész

Math. Inst. of Hungarian Academy of Sci. Budapest, Reáltanoda u. 13-15, Hungary.

[^0]: ${ }^{*}$ Here and in what follows \log means logarithm with base $2 ;[x]$ is the integral part of x.

