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PROBLEMS AND RESULTS IN COMBINATORIAL ANALYSI S

By

PÁL ERDÖS

4 . Some remarks on a theorem of Stone and myself . Sto-

ne and I proved that for ., n - no (E ,k ,L) every G(n ;2(1 -y +
E) contains a 4(L) for k=2 this is

again a weaker form of the Kővári-Sós, Turán theorem) .
Our original proof did not give a very good dependence

of n on L and E . A very much sharper result in

this divertion was just published by Bollobás and myself ;

a further improvement which is nearly best possible bal

recently been obtained by Bollobás, Simonovits and myself .

Recently I succeeded to extend this theorem tor-graphs

as follows: To every r . ., E I t and I there is an na=

no (E r t ,_l,1 eb that every G ( r ) (n ; Ot(t ,r) f E)('))

contains a X (I) where fl(t ,r) is defined by (1 )

of chapter I . Here we do not yet have a good . estimate of

n in terms of E , k and l (unlike for r=2) .

The following problem is open and seems very challene
ging to me: Let ((n), i = 1 , . . . ,ni -+►•~ he- a sequenc e

of r-graphs of ni vertices . We say that the family

has subgraphs of density -4OE if there is a sequence of sub-
graphs G (sa l ) 'of Ali ) ; mi - ' ,so that G (mi ) has at

least (O` 4 . O (1 )) (J ) edges . The theorem of Stone and
myself implies that every G ig (1-x 4E)) contains a
subgraph of density 1 - 'TT and it is easy to see that
this is best possible . Thus the possible maximal densi-
ties of subgraphs are of the form I . - T ., 2 4 L '~ .
Now it may be true that for r 2 there are also only a
denumerable number of possible values of the maximal . den-
sities of subgraphs . As stated at the end of the previous
Current Address : Mathematical Institute, Hungarian Academ y
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chapter, I proved that every r-graph of density a, con-

tains a subgraph of density atilt. . The simplest unsolved
problem states : Is there a constant cy r ~. 0 so that every
r-graph of n vertices (n large) and (2 4- a)nr edges

contains a subgraph of density

	

4- cx > This is unsol-
ved even for r=3 . Perhaps every GL5t3n ; n 3 4-1) contains
either a

	

4 ;3) or a G(-*(5 ;4) ; (1,2,3),(1,2,4),(1,2,5) ,

(3,4,5)

	

or a

	

(5,5) ' ( 1 , 2 ,3), ( 1 , 2 ,4), ( 1 ,3,5),( 2 ,4,5 )
(3,4,5) . The same unsolved problems on the possible maxi -

mal densities arise on multigraphs and digraphs as stated
in a recent paper of Brown, Simonovits and myself .

By the method of probabilistic graph theory it is eas y

to prove that to every £ and 0 a. 41 there is a C=

C(6 1 00 so that for n no (C ,

	

0-)) there is a G06. ,
an so that for every m C(logn) lrl-r every spanned
subgraph of its m vertices has more than (0. - ) (r) and 1ws

than (Ott E)() edges and it follows from the results . o f
my paper on graphs and generalized graphs that this resul t

is best possible (Israel Journal Math . 2(1965), 183-190) .

P. Erdős and. A.Stone, On the structure of linear graphs, Bull ,
Amer. Math. Soc. 52(1946.), 1087-1091 .

B. Bollobás and P. Erdös, On the structure of edge graphs,

Bull. London Math . 15(1973), 317-321. The triple pa—
per

	

Simonovits will soon appear i n J. London
Math. Soc

.
P.Erdős, On some extremal problems- on r-graphs, Discret e

Math.1(1971), 1-6 .

W.G.Brown, P. Erdős and M. Simonovits, Extremal problems fob

directed graphs, J . Comb . Theory, s er .B .15 (1973) , 77-

5, in this' chapter I discuss various combinatorial prob

lams on subsets . First -of all I call attention to my pap e.

with Kleitman quoted in the introduction.. Hera I mainlydis

ewe problems -not considered in our survey paper .

First we consider some problems related to a result of
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No, Rado and myself . let l3'1, A;GS > 121 =k. Denote by t +'n ;
k ,r , (X) the size of the largest family . Ai ,16 j t ;k ,

r , c) satifying A . n A• 2

	

r and every element is con-
tained in at most

	

t-n ; k ,r

	

of the A's . t(n ;k,r,'4Q)

is the size of the largest subfamily with the same proper—
ties but now every element is contained in fewer than
Oit(n ; k ,r , OL) of the A 's . Ko, Rado and I proved t1 t
for n 2k :

	

n-1 l
(1)

	

t(n ; k ,i ' 1) =
)

For n .2k equality holds iff all . the A 's have a common

element . For n no (k r) we further proved
(2) t(n ; k ,r '1) = ( )k-r

Our estimation for no (k ,r) is probably very poor, but

Min observed	 ) does not hold for all n 2k. We conjec -

tur ed that
(3) ;2L

	

2 1 f f

	

/2t\ 2t(4L

	

,2 ,1)
=

	

)

	

l

	

Y
(3) if true is' best possible. We state in our paper seve-

ral other problems most of which has been settled sinc ethen

but as far as I know (3) has not been settled as yet .
Hilton and Milner proved that for n 2k

(4) t(n ; k

	

, <1) = 1
4 Vá-1)

	

w k"-1 1)

Equality in (4) occurs if ,(and no doubt only if n na (k ,
r)); Al is an arbitrary k-tuple, x i is not in A l All the
other A i s contain x 1 and have a non-empty intersection
with AI .

Observe that for fixed k

t(n ; k ,1 ,1) = (1 40(7))n-2() .
Now Rothschild, Szemeredi and I took up thi

s ínvestiga-tion. We first of all showed that for a=

(5) t(n ;k
3

	

3

	

= 3 `k-2/

	

2 (k-3)
Equality iff (until further notice n. is supposed to be. lax.-

;- ge), there are three elements and the A .'s contain at leas t

two of them .

We further proved: t(n;k ,t ,' ) = cn 3(n •



30

	

PÁL ERDŐS	 30

The extremal family is obtained as follows : given three el e
ments x 1 , x.2 ,x3 and a set Al not containing any of th e

AU the other A 's meet A1 and contain at least two of

the x 's .
Let now C.>. 0 be. sufficiently small .

	

are fairly sur

that a family of size t(n; • k 1 2, , 3 - E,) is obtained as fo

lows : Let x 1 : , . . ., X5 be five elements, the A 's contai

three or more of them and t(n ; k , 4 .) Qt..) is constant

between 1 and 3 . There seem to be only a finite number

of values of t(n ; k s 4 ,CL ) for 4 Oe < 3 . t(n;k ,

1 .p 7}
is probably obtained as follows : Consider a set B C

~`BI =7 and the 7 Steiner triples of B . The A 's are all

the sets which meet B in a set which contains at leas t

one of these triples . We also are fairly sure. that

t(n ; k ,l , 73) 440
More generally we conjecture that

	

rn~
t(n ; k 1	 	 t	 t, 1 ) - --T~-~- lk) .

If there is a finite geometry on L~ - L. + 1 elements, then

it is easy to see that
t . . .

	

_ c
t(n ; k ,1 , L,,-t+1/ -

Tik/ 7

but if there is no such finite geometry we conjecture that
t(n, k ,1 'y-i+

	

.+4 (k)
Needless to say these. last two conjectures are very specie]
tive.

Kneser made the following prett yconjectures - Let

f3{ = 2n + k and define a graph Gn,k as follows: Its v

ertices are the ` n
n*n J n-tuples of . S . Two vertices are j s

lied if the corresponding n-sets are disjoint . Denote by

K (G) the chromatic number of G. Kneser conjectured K (Gn, k
=k+2 . K(Gn,k) 5 k$2 is immediate but the opposite in-

equality seems to present great and unexpected difficultiE
Szemeredi proved (unpublished) that K(Gn k ) tends to inf :

nity uniformly in k . Hajnal and I and no doubt many other

tried to attack this problem by the following 	

The continuation will appear in creation in Mathematics 1
1978 .


	page 1
	page 2
	page 3
	page 4

