Continuation from "Creation in Mathematics ,9,1976"

PROBL EMS AND RESULTS IN COMBINATORTAL ANALYSIS
By
PAL ERDOS
4. Some remarks on a theorem of Stene and wiself. Stone and I proved that for $n=n_{0}(\varepsilon, k, l)$ every $G(n ;$ $\frac{n^{2}}{2}\left(1-\frac{1}{k-1}+\varepsilon\right)$ contains a $K_{k}^{n}(L)$ (for $k=2$ this is again a weaker form of the Kovari-Sos, Turan theorem). Our original proof did not give a very good dependence of n on L and ε. A very much sharper result in this divertion was just published by Bollobas and myself: a further improvement which is nearly best possible has recently been obtained by Bollobas, Simonovitz and myealf.

Recently I succeeded to extend this thaorem to r-graphe. as follows: Tọ every r, ε, t and l there is an $n_{0}=$ $n_{0}(\varepsilon, r, t, l)$ so that every $\left.G^{(r)}(n ; a(t, r)+\varepsilon)\left(r_{r}^{0}\right)\right)$ contains a $K_{t}^{(r)}(L)$ where $a(t, r)$ is defined by (1) of chapter 1. Here we do not yet have a good estinate of n in terms of ε, k and l (unlike for $r=2$).

The following problem is open and seems very challenging to me: Lot $G^{(j)}\left(n_{i}\right), i=T, \ldots, n_{i} \rightarrow \infty$ be a sequence of r-graphs of n_{i} vertices. We say that the family has subgraphs of density $\geq \alpha i f$ there is a sequance of subgraphs $G\left(m_{i}\right)$ of $G\left(n_{i}\right) ; m_{i} \rightarrow \infty$, so that $G\left(m_{1}\right)$ has at least $(a+o(1))\left(\frac{m_{i}}{r}\right)$ edges. The theorera of Stone and myself implies that every ${ }_{1}\left(n_{i} \cdot \frac{n^{2}}{2}\left(1-\frac{1}{2}+\varepsilon\right)\right)$ contains a subgraph of density $1-\frac{1}{1+1}$ and it is easy to see that this is best possible. Thus the possible maximal densities of subgraphs are of the form $1-\frac{1}{\tau}, 2 \leqslant l<\infty$. Now it may be true that for $r>2$ there are also only a denumerable number of possible values of the marimal densities of subgraphs. As stated at the and of the previous Ourrent Address: Mathomatical Institute, Hungarian Academy of Sciences, Real Tanoda U13-15, Budapest V, Hungary.
chapter, I proved that every r-graph of density ε contains a subgraph of density $\geq \frac{r!}{r^{f}}$. The simplest unsolved problem states: Is there a constant $a_{r}>0$ so that every r-graph of n vertices (n large) and ($\left.\frac{r!}{r^{r}}+\varepsilon\right) n^{r}$ edges contains a subgraph of density $\geq \frac{r!}{r^{f}}+\alpha_{r}$. This is unsolved even for $r=3$. Perhaps every $G^{(3)}\left(3 n ; n^{3}+1\right)$ contains either a $G^{(3)}(4 ; 3)$ or a $G^{(3)}(5 ; 4) ;(1,2,3),(1,2,4),(1,2,5)$, $(3,4,5)$ or a $(5,5) ;(1,2,3),(1,2,4),(1,3,5),(2,4,5)$, $(3,4,5)$. The same unsolved problems on the possible maximal densities arise on multigraphs and digraphs as stated in a recent paper of Brown, Simonovits and mysalf.

By the method of probabilistic graph theory it is easy to prove that to every ε and $0<\alpha<1$. there is a $C=$ $=C(\varepsilon, \alpha)$ so that for $n>n_{0}(c, \varepsilon, a)$ there is a $G(r)(n$, $\alpha\binom{n}{r}$ so that for every $m>C(\log n)^{r-1}$ every spanned subgraph of its m vertices has more than $(a-\varepsilon)\binom{m}{r}$ and lass than $(a+\varepsilon)\binom{m}{r}$ edges and it follows from the results of majer on graphs and generalized graphs that this result Is best possible (Isracl Journal Nath. 2(1965), 183-190). P. Erabs and A.Stone, on the structure of linear graphs, Bull. Amer.Math.Soc.52(1946), 1087-1091.
B.Bollobas and P. Erdös, on the structure of edge graphs, Bull.London Math. 15(1973), 317-321. The triple paper with Simonovits will soon appear in J.London Math.Soc.
P. trabs, On some extramal problems on r-graphs, Discrete Math. 1(1971), 1-6.
W.G.Brown, E. Zedös and MoSimonovits, Extremal problems for directed graphs, J.Comb.Theory, ser.B.15(1973),77-9
5. In this chaptor I discuss various combinatorial prob lems on stbsets. First of all I call attention to my paper with Kleitman quoted in the introduction. Here I mainly dis cuss problems not considered in our survey paper.

First we consider some problems ralated to a result of

Ko, Redo and myself. Let $|S|=n, A_{i} \subset S,|S|=k$. Denote by $t(n ;$ $k, r, \infty)$ the size of the largest family $A_{j}, 1 \in j \leq t(n g k$, $r, \infty)$ satifying $\left|A_{j_{1}} \cap A_{j_{2}}\right| \leqslant r$ and every element is contrained in at most $\alpha t(n ; k, r, a)$ of the A 's. $t(n ; k, r,<a)$ is the size of the largest subfamily with the same properties but now avery element is contained in fewer than $\alpha t(n ; k, r,<\alpha)$ of the A 's. Ko, Redo and I proved that for $\mathrm{n} \geqslant 2 \mathrm{k}$:

$$
\begin{equation*}
t(n ; k, 1,1)=\binom{n-1}{k-1} \tag{1}
\end{equation*}
$$

For $n>2 k$ equality holds iff all the A 's have a common element. For $n>n_{0}(k, r)$ we further proved

$$
\begin{equation*}
t(n ; k, r, 1)=\binom{n-r}{k-r} \tag{2}
\end{equation*}
$$

Our estimation for $n_{0}(k, r)$ is probably very poor, but fin observed (2) does not hold for all $n \geqslant 2 k$. We conjectoured that (3)

$$
t(4 l ; 2 l, 2,1)=\frac{1}{2}\left\{\binom{4 l}{2 l}-\binom{2 l}{l}^{2}\right\}
$$

(3) if true is ${ }^{2}$ best possible. We state in our paper serverail other problems most of which has been settled since then but as far as I know (3) has not been settled as yet.

Hilton and miner proved that for $n \geq 2 k$

$$
\begin{equation*}
t(n ; k, 1,<1)=1+\binom{n-1}{k-1}-\binom{n-k-1}{k-1} \tag{4}
\end{equation*}
$$

Equality in (4) occurs if, (and no doubt only if $n>n_{0}(k$, r)), A_{1} is an arbitrary k-tuple, x_{1} is not in A_{1}. 171 the other A 's contain x_{1} and have a non-ampty intersection with A_{1} -

Observe that for fixed k

$$
t(n ; k, 1,1)=(1+\sigma(1)) n^{-2}\binom{n}{k} .
$$

Now Rothschild, Szemeredi and I took up this investigation. We first of all showed that for $a=\frac{2}{3}$

$$
\begin{equation*}
t\left(n ; k, 1, \frac{2}{3}\right)=3\binom{n-2}{k-2}-2\binom{n-3}{k-3} \tag{5}
\end{equation*}
$$

quality jiff (until further notice n is supposed to be lar-
;- ge), there are three elements and the A.'s contain at least two of them.

We further proved:

$$
t\left(n ; k, t,<\frac{2}{3}\right)=\mathrm{cn}^{-3}\binom{\mathrm{n}}{\mathrm{k}}
$$

The extremal family is obtained as follows：giventhree ele ments x_{1}, x_{2}, x_{3} and a set A_{1} not containing any of the A11 the other A＇s meet A_{1} and contain at least two of the x is．

Let now $\varepsilon>0$ be sufficiently small．We are fairly sur that a family of size $t\left(n ; k, 1, \frac{2}{3}-\varepsilon\right)$ is obtained as fo lows：Let x_{1}, \ldots, x_{5} be five elements，the A＇s contai three or more of them and $t(n ; k, 1, \alpha)$ is constant betweon $\frac{1}{2}$ and $\frac{3}{5}$ ．There seem to be only a finite number of values of $t(n ; k, 1, \alpha)$ for $\frac{3}{7}<\alpha<\frac{2}{3}$ ．$t(n ; k$ ， 1．3）is probably obtained as follows：Consider a set $B C$ $|B|=7$ and the 7 Steiner triples of B ．The \mathbb{A}＇s are all the sets which meet B in a set which contains at least one of these triples．We also are fairly sure that

$$
t\left(n ; k, 1,<\frac{3}{7}\right)<\frac{c}{n^{m}}\left(\frac{n}{k}\right)
$$

More generally we conjecture that

$$
t\left(n ; k, 1,<\frac{l}{E-l+1}\right)-\frac{c}{n^{2}+4}\binom{n}{k}
$$

If there is a finite geomatry on $L^{2}-L+1$ elements，then it is easy to see that

$$
t\left(n ; k, 1, \frac{t}{t^{2}-t+1}\right)=\frac{c}{n^{4}}\binom{n}{k}
$$

but if there is no such finite geometry we conjecture that $t\left(n ; k, 1, \frac{l}{2-i+1}\right)<\frac{c}{n^{L}+1}\binom{n}{k}$ ．
Weediless to say these last two conjectures are very specu］圷属。

Fneser made the following pretty conjectures－Iet $|S|=2 n+k$ and define a graph $G_{n, k}$ as follows：Its．ves tices are the $\binom{2 n+k}{n}$ n－tuples of．S．Two vertices are $j s$ ned if the corresponding n－sets are disjoint．Denote by $K(G)$ the chromatic number of G ．Kneser conjectured $K\left(G_{n, k}\right.$ $=k+2$－$K\left(G_{n, k}\right) \leq k+2$ is imediate but the opposite in－ equality seems to present great and unexpected difficulti！ Szemeredi proved（unpublished）that $K\left(G_{n, k}\right)$ tends to inf： nity uniformy in k ．Hajnal and I and no doubt many other tried to attack this problem by the following ．．．．．．．．．．．． Thae continuation will appear in Creation in Mathematics 1
1978 ．

