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1 WROTE SEVERAL papers and review articles on this subject . One of
them has in fact the same title (P. Erdős, Problems and results on com-
binatorial number theory, A survey of combinatorial theory, Edited by
J. N. Srivastava, North Holland 1973, 117-138 . I will refer to this paper
as 1). To prevent this paper from becoming too long I will avoid ove-
lap with I as much as possible and consider the problems in I only
where some progress has been made in the problems stated there . On
the other hand since I is not everywhere easily accessible I will give as
complete references as possible .

Before starting the discussion of our problems I give a few titles of
papers where similar or related problems were discussed and where
further literature can be found .

II . P. Erdős, On unsolved problems, Publ . Math. Inst. Hung. Acad .
6 (1961), 229-254 ; Some unsolved problems, Michigan Math. J. 4 (1957),
291-300.

III . P. Erdős, Remarks on number theory IV and V . Extremal pro-
blems in number theory I and II (in Hungarian) Mat . Lapok 13 (1962),
28-38 ; 17 (1966) . 135-166 . See also P . Erdős, Extremal problems in
number theory, Proc. Symp. in Pure Math . Vol VIII Theory of Numbers,
Amer. Math. Soc. Providence A . I . 1965, 181-189 ; several of the results
stated in this paper were improved and extended in various papers of
S .R.L .G. Choi .

I . Lecttire delivered at the annual meeting of the Indian Mathematical society at
Powai, Bombay in December 1974.
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IV. P. Erdős, Some recent adrances and current problems in number
theory, Lectures on Modern Mathematics, L . Saaty, Editor, Wiley, New
York 1965 vol 111 196-244 .

V. P. Erdős, Some extremal problems in combinatorial number theory
Math. essays dedicated to A . J. Macintyre, edited by H . Shankar, Ohio
Univ. Press, Athens Ohio 1970,123-133 .

VI . P. Erdős, Some problems in number theory, Computers in number
theory, Academic Press London 1971 (conference held in Oxford 1969)
406-414 .

VII. P . Erdős, Quelques problémes de la théorie des nombres, Mono-
graphic de I'Enseignement Math . No . 6, L'Enseignement Math . (1963),
81-135 .

VIII . H. Halberstam and K . F. Roth, Sequences, Oxford Univ.
Press London 1966 .

IX . H . Rohrbach, Einige neuere Untersuchungen über die Dichte in
der additiven Zahlentheorie . Jahresbericht D. M. V. (1938) .

X . A. Stöhr, Gelöste und ungelöste Fragen über Bases der natürlichen
Zahlenreihe I and II J. reine u. angew Math . 194 (1955),40-65, 111-140 .

XI . Many interesting unsolved problems of a combinatorial and
number-theoretic nature are mentioned in the proceedings of the meet-
ings on number theory held in Boulder in 1959 and 1963 . See also a
forthcoming book of Croft and Guy .

R. L. Graham and I are preparing a longish survey paper on number
theoretic problems .

This list of course does not claim completeness and is heavily biased
in favour of my own work but perhaps I can be excused for this since
after all I am supposed to know my own work best .

1 . Denote by rk (n) the maximum number of integers not exceeding



and Szemerédi proved (1) for k = 4 . It would be very desirable to
improve the upper and lower bounds in (2) . I offered 1000 dollars for
the proof or disproof of (1), and recently Szemerédi proved (1) . His
proof which is a master-piece of combinatorial reasoning will appear very
soon in Acta Arithmetica .

Turán and I were led to our conjecture by trying to obtain better
limits for van der Waerden's well known theorem . There is an f(k) so
that if we split the integers 1 S t C f (k) into two classes at least one of
them contains an arithmetic progression of k terms, Van der Waerden's
proof gives a very poor upper bound for f(k) . Unfortunately Szemerédi's
proof does not help since his proof in fact uses van der Waerden's
theorem .

It would be very desirable to obtain a better upper bound for f(k)
either by improving Szemerédi's proof or by some other method .

Let S be any finite set of lattice points in r-dimensional space . Gallai
and Witt proved that if we split the lattice points of r-dimensional space
into two classes then at least one of them contains a set sim .lar to S .
I conjectured that to every e > 0 there is an no = n o (S, e) so that for every
n > no if

{X1 , . . .,Xrk>},0<X,kt <n,IGi<n,ICk<enr

is any set of Enr lattice points in the cube 0 G Xt G n . 1 G i G r then this
set contains a subset similar to S . Ajtai and Szemerédi proved this for
r = 2 if S is the isosceles right angled triangle and very recently Szemerédi
proved this if S is a square . The general case is still open .

It would be very desirable to get an asymptotic formula for rk (n) ;

and
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Turinn \~hich do not contain an arithmetic progression
I conjectured more than 40 years ago that

of k terms .
for every k

lim rk (n)/n = 0 .
n=-

Behrend and Roth proved

(1)

n n C, 17

exp (c i (log n)' Iz C r 3 (rT) log log ii (2)
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this seems to be hopeless at present . Szemerédi pointed out to me that
we cannot even prove

lim rk (n)/rk +I (n) = 0.
n= .

F. Behrend, On sets of integers which contain no three terms in an
arithmetic progression Proc. Math. Acad. Sci USA 32 (1946), 331-332 . .

K . F. Roth, On certain sets of integers, J . London Math . Soc . 28 (1953),
104-109 .

E. Szemerédi, On certain sets of integers containing no four elements
in arithmetic progression, Acta Math. Acad. Sci. Hunger 20 (1969),
89-109 .

E . R. Berlekamp, A construction for partitions which avoid long arith-
metic progressions, Canad. Math. Pull . 11 (1968), 409-414 .

H. L. Abbott, A. C. Liu and J. Riddell, On sets of integers not con-
taining arthmetic progressions of prescribed length . J. Australian Math .
Soc . 18 (1974), 188-193 .

2 . An old conjecture in number theory states that for every k there
are k primes in arithmetic progression . This conjecture would
immediately follow if we could prove that for very k and n > n l (k),
rk (n) < zz (n) . This method of proof seems very attractive, it tries to
prove a difficult property of the primes by just using the facts that the
primes are numerous in some cases I have been successful with this simple
minded approach . In this connection I recently formulated the follow-
ing conjecture for the proof or disproof of which I offer 2500 dollars :

Let a l < a2 < . . . be an infinite sequence of integers satisfying E 1 = X .
ai

Then for every k there are k a's in an arithmetic progression . (The truth
of this conjecture would imply that for every k there are k primes in
arithmetic progression) . One can put this problem in a finite form as
follows : Put

gk (n) = max

	

1, G (k) = lim gk (n) .
ai>n ai

	

n = w
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where the maximum is extended over all sequences {ail not exceeding n

which do not contain an arithmetic progression of k terms . The 2500
dollar conjecture is equivalent to G(k) < oo for every k (it is not quite
trivial to show that G (k) = oo implies the falseness of the conjecture) .
It would be of great independent interest to obtain good upper and lower
bounds for gk (n) and G (k) . First of all, observe that trivially f (k) is the
least integer so that if we split the positive integers < f(k) into two
classes at least one class contains an arithmetic progression of k terms

f(k)-1 I

	

I
G (k) > gk (f (k) - 1) > 2

	

t > 2 logf(i) •
t=1

Probably G (k) > e log f (k) holds for every c if K > k o (c) but I can
not disprove
	 G (k)

	

1
km logf(k)

- a* (1)

The best known lower bound for f (k) is k 2k (Berlekamp quoted before)
and I can not disprove

Jim
G (k)

1 am sure that (2) is false and expect (1) to be false too . (Added in proof.
Gerver proved : G(k) > (1 -l- 0 (1)) k log k . His proof will appear in
Proc. Amer. Math . Soc) .

Denote by hk(n), k > 3 the largest integer so that there is a sequence
of integers 1 < al < . . . < an < which contains Ilk (n) arithmetic pro-
gressions of three terms but no progression of k terms . It seems very
likely that hk (n) = o (n2) for every k, but I would not prove this even for
k = 4 . It is easy to see by probabilistic methods that Ilk (n) > c' n 2 for
k > c logn . Perhaps the following result holds : there is an increasing,
continuous function g (c), g (0) = 0, g (oo) = 1 so that for k = c logn,

hk (n) _ (g (c) + o (1)) n 2 .

An o'.d prob'.em of Cohen states : Determine or estimate a function
F(d) so that if we split the integers into two classes at least one class
contains, for infinitely many values of d, an arithmetic progression of
difference d and length F(d) . (This problem is stated incorrectly in I
p. 121). 1 showed F(d) < cd. Petruska and Szemerédi very considerably
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improved this result, they showed F(d) < cd'i 2 and they are sure that
their proof will give F(d) = O(dr) . Their proof will soon be published .
As far as I know there is no known explicit lower bound for F(d) .
F(d) -->. oo follows from van der Waerden's theorem, and the true order
of magnitude of F(d) may be very difficult to establish .

Hindman proved the following conjecture of Graham and Rothschild :
Divide the integers into two classes in an arbitrary way . Then there is
always an infinite sequence al > a2 > . . . so that all the finite sums
Y eiai, si - 0 or 1 belong to the same class . A simpler proof of

i
Hindman's theorem was found recently by Baumgartner .

Is the following extension of the conjecture of Graham and Rothschild
true : Split the set of integers (or real numbers) into two classes . There
always is an infinite sequence xl < x2 < . . . so that all multilinear
expressions formed from the (xi) (where each variable occurs only once)
are in the same class? I could first try to find a counterexample. A
much weaker conjecture would be : To every r there are r integers
x l , . . ., x, so that the set of r 2 numbers

{xi, xi + xi, xixij, I < i < j < r

all belong to the same class. By aid of a computer Graham proved that
if we divide the integers I < n < 252 into two elasses, there are
always four integers x, y, x+y, xy in the same class . This fails for
ii = 251 .

P Erdös, On the sum and difference of squares of primes, J. London
Math. I and II, 12(1937), 133-136 and 168-171, On the integers which
are the totient of a product of two primes, Quart J. Math. 7(1936),
227-229 . See also Copeland and P. Erdös, Note on normal numbers,
Bull. Amer. Math. Soc . 52 (1946), 857-860 .

N. Hindman, Finite sums from sequences within cells of a partition of
N .J. Comb. theory, 17 (1974), 1-11 .

J . E. Baumgartner, A short proof of Hindman's theorem, J. Comb .
theory (A) 17 (1974), 384-386 .
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3 . A system of congruences
ai (mod ni), 1 < nl < . . . < nk

	

(1)
is called a covering system if every integer satisfies at least one of the
congruences (1). My old problem can nl be arbitrarily large is still
unsolved and Choi still holds the record with his system for n, = 20 .

Let g (t) be the smallest integer for which there is a system (1) with
n l = t and k = g (t) . My conjecture states : g (t) < oo for every t . It
would be interesting to estimate g (t) from above and below . I think

lim g (t)/tl = 00
n=-

for every 1, but as far as I know this question has not yet been investi-
gated . It would also be of interest to estimate the smallest possible
value of nk as a function of n1 = t .

I conjectured and L . Mirsky and D . Newman proved that there is no
exact covering system (1) . A covering system is called exact if every
integer satisfies exactly one of the congruences (1) . In fact their proof
gives that in every exact covering system we have nk_, = nk. Recently
Herzog and Schönheim posed the following interesting generalisation :
Is it true that no finite Abelian group can be covered exactly by disjoint
cosets C1.I<i<j<k, IGI IC;I?

Let G (n) be the lower bound of

	

iz
where n = n, < . . . is a cover-

s
ing system . Probably G (n) > 1 for n > 4 and G (n) co as n ->. oo . This
was conjectured by Selfridge and myself .

Using covering congruences I proved that there is an arithmetic
progression consisting entirely of odd numbers, no term of which is of
the form 2k +p. If n l in (1) can be made arbitrarily large then we
immediately get that for every r there is an arithmetic progression no
term of which is the form 2k + 0, where 0, has at most r distinct prime
factors .

Is it true that for every 1 there is an arithmetic progression no term
of which is of the form 21:L + . . . -f- 2kl + p? Recently Gallagher proved
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that for large enough l the lower density of these numbers is > 1- e
(previously Linnik proved that all large numbers are the sum of two
primes and I powers of 2) . Very likely the density of integers of the
form p + 2k exists, but this question is intractable at present-in fact
almost nothing is known about the distribution of these numbers e .g .
I cannot prove that there are arbitrarily many consecutive integers none
of which are of the form p + 2k . This conjecture would easily follow if
in (1) we can take n l arbitrarily large .

I conjectured that for n > 105 the integers

n-2k, l,<k,< glog 2
(2)

can not all be primes . If true this conjecture will be very difficult to
prove . Vaughan obtained a non-trivial upper bound for the number of
integers n < X for which all the integers (2) are primes .

Schinzel proved that there are infinitely many integers not of the
form p + 2k1 +2k2, but he only obtains a very sparse sequence not of the
form p -}- 2k, - 2ka .

I conjectured that the density of integers of the form 2k -}- Q, Q
sgarefree is 1 . The main difficulty is to prove that if q, , . . . , qk is a

finite set of primes then to every sufficiently large n > n o (4, . . ., kk)

there is an l

0 < l < log2 and q? $ n - 2i, i = 1, . . . , I; .

Perhaps cvcry sufficiently large odd integer is of the form 2k + Q .

Cohen and Selfridge recently proved using covering congruences that
not every integer is the sum or difference of two prime powers, (and in
fact the set of exceptional integers contains infinite arithmetic progres-
sions' .

Interesting and unexpected applications of covering congruences were
made by A . Schinzel .
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P. Erdős, On integers of the form 2k + p and some related problems,
Summa Brasil Math . 11 (1950), 113-123 .

S. L. G. Choi, Covering the set of integers by congruence classes of
distinct moduli, Math. Conrp . 25 (1971), 885-895 .

F. Cohen and J . L . Selfridge, Not every integer is the sum or
difference of two prime powers, Math . Comp . 29 (1975), 79-81 .

A. Schnizel, Reducibility of polynomials and covering systems of
congruences, Acta Arith . 13 (1967-68), 91-101 .

4 . Sidon calls a sequence a, < az < . . . < ak, aB,-sequence if the sums
k

eiai are all distinct (ei = 0 or 1) . Turán and I conjectured
.=1

max B._(x)=x12+0(1),

	

( 1 )

(where the maximum is taken over all the B., sequences) but we only
could prove

(1 +0(1) .x'/2 < B2 (x) < x'j 2 + cx 1 14 .

Recently Szemerédi proved

B., (x) = x 1 1 2 + 0 (x' i4)

his proof appears in the Colloquium of finite and infinite sets held at
Keszthely Hungary, June 1973 .

Perhaps the most striking unsolved problem on B 2 sequences asks : Is
there an infinite B., sequence satisfying ak/k 3 --i 0?

I proved (see X, p. 132-134) that there is an infinite B,, sequence
a i < a z, < . . . for which

lim inf ak!k 2 < 2, (3)

and Krickeberg improved 22 to

	

Perhaps in (3), 2 can be replaced
by 1 .

I proved that for every infinite B 2 sequence
lim inf ak/k 2 = 0.

	

(4)
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My proof in fact gives that if 1 < a„ . . ., < ak < x is a B., sequence
then

k

	

1

	

c log x
< (l og log x)l,s •

My proof given in X (p . 132-134) gives that there is a B., sequence for
which

1,2 > c log log x .
ui, ai

I do not know and cannot give whether (4) or (5) is closer to the
truth . Bose and Chowla (see XI) using finite fields construct for every
x > Y, (E:) a Br sequence satisfying BY (x) > (1 - E)x' n they conjecture that
for every e > 0 and X > Xo (e)

B,(x) < (I + e)x1Jr .

	

(7)

The proof of (2) does not seem to help at all in trying to proving
(7) . Let a,< . . . be an infinite Br sequence I am sure that

lim sup allk" = co

is true but proof of (4) does not seem to help and I can not at present
prove (8) .

Rényi and I proved (see VIII) that for every e > 0 there is an infinite
sequence ak > k 2 +e for which the number of solutions of ai + a; = n is
less than c., On the other hand Turán and I conjectured that if a l < . . .
is Such that if the number of solutions of ri - ai + a ; is bounded then

lim sup ak/k 2 = 00 .

	

(9)
k=m

1 offer 300 dollars for a proof or disproof of (9) .

P. Erdős and P. Turán : On a problem of Sidon in additive number
theory and on some related problems J . London Math. Soc. 10 (1941),
212-216 .

(5)

(6)

F . Krückeberg : B.,-Folgen und verwandte Zahlenfolgen J . reine u .
argew . Math. 206, (1961) 53-60 .
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5. Let a, < as < . . . be a primitive sequence i .e, no a; divides any
other . I proved that (see VIII)

1
~a,loga, <C

Perhaps

1

	

1max

	

ai log ai _ Ep log p

	

~I)

But I have not been able to prove (1) .

I state a few external problems on sequences of integers most of which
are unsolved, Let a, < . . . be a B, sequence . It is easy to see that

1 is bounded . It might be of some interest to determine
ai

max

	

1 when the maximum is taken over all B, sequences a, < . . . -ai
The same question can be asked for Bk sequences .

A sequence a, < a,< . . . is a Bm sequence if all the sums Eeiai,

ei = 0 or 1 are distinct . I conjectured that

maxI-1 + . . .ák/=2- y _i
llli

equality only for {2i}, i = 0, . . . , k - 1 . This conjecture was proved
by Ryavec and E. Szekeres in a surprisingly simply way . On the other
hand the determination of min ai r seems a very difficult problem. Moser

Bm

and I proved
c2kmin ai, >

am

and I offer 300 dollars for a proof or disproof of the conjecture

min ak > c2k .
B

On the other hand it is a simple exercise to prove that for an infinite
B„ sequence we have

min ai ,, 2k-1
B

for infinitely many values of k (equality only for ak = 2k-i)
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Let 1 < a l < . . . be a sequence of integers where no a; is the distinct

sum of other a's . I proved that 1 < 100 . 1 was told at the New York
a;

meeting of the Amer . Math. Soc . in April 1973 that Sullivan replaced 100 by

5 and that 1 > 2 is possible but that the maximum is probably closeci

to 2 . The following result might hold :

	

1~ a, < log 2 -}~ e holds for every

e > 0 if a l > ao (e) . This is best possible if true is shown by a; = a l + i - 1,
i =0, . . ., al - 1 .

S . J. Benkoski and P. Erdős, On weird and pseudoperfect numbers,
Math. Comp, 28 (1974), 617-624 .

P . Erdős, Problems and results in additive number theory, Coll. TNorie
des ,Hombres, Bruxelles ; George Thone, Liége, Masson et Cie Paris 1955,
127-137 see p . 135-137 . The proof of E . Szekeres will be published in a
problem in Bull. Eanad. Math. Soc .

6 . Before completing the paper I state a few miscellaneous problems
which were mentioned in 1, and where some progress was made since I,
was written .

Let a l < . . . < ah ; b l < . . . < b, < x be two sequences of integers .
Assume that the products a,b; are all different . How large can k .1 be and
which are the extremal sequences? In this form the problem is probably
hopeless but I conjectured and Szemerédi proved that

Y
2

kl<c
log x

always holds . Szemerédi's proof will appear in the Journal of Number
Theory . Szemerédi and I gave a simpler proof of (1) and obtained
various extensions, also we conjecture that (1) holds with c = 1 + e for
every e > 0 if x > x, (e) . It is not difficult to see that if this is true then
it is best possible . Our paper will appear in the Journal of the Australian
Math. Soc .

It is not difficult to give two infinite sequences A and B so that the



Very likely in (2) c, must be substantially smaller than 1 .

The following quest on might be of some interest : Let a, < . . . < ak G x ;
b, < . . . < b, < x and assume that the number of distinct products of
the form c ,b ;, is greater than ekl, How large can k • 1 be?

A sequence of integers foil is called an essential component if for any
sequence {b,} of Schnirelmann density 1 > a >0 the Schnirelmann sum
of {a, -i- b ;} has Schnirelmann density > a . Essential components were
introduced by Khintchine for the relevant definitions, see VIII . I proved
that every basis is an essential component and Linnik proved that there
is a nonbasis which is an essential component . Stöhr and Wirsing obtained
a simpler proof of Linnik's theorem, but Linnik's essential component
had the additional property of being very sparse, in fact

Y_ 1 = A (x) < exp ((log x)«)
"i>x

for some a < 1 . 1 conjectured that if ak+,lak > c > 1 then A is not an
essential component .

Linnik's proof was very complicated . Recently Wirsing gave a fairly
simply proof that for every e > 0 there is an essential component
satisfying

A (x) < exp ((log x)i+E)
and he conjectures that for every s > 0 and x > x, (s)

A (x) > exp ((log x)i - E)

(3) if true shows that (2) is best possible . (3) is of course much stronger
than my conjecture .

For the older literature see VIII . The paper of Wirsing will appear
in the proceedings of the colloquium on number theory held in Debrecen
(Hungary, Bolyai math. soc .) and will be publised by North Holland .

Graham conjectured (1, p . 126) : Let a,, . . ., ap be p not necessarily
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products ai • b j are all different and for every .x

A (x)'B (x) > e, x2 (A(X)=

	

1) . (2)log

	

/xa, <X
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distinct residues mod p . Assume that there is an r so that for every
P

choice of s l = 0 or 1 for which

	

zi ai = 0 (mod p), we have

	

Ei = r .
r=t

	

i= t

Then there are at most two distinct residues among a's . Szemerédi and
I proved this conjecture for p > p,,. No doubt with some calculation
and lots of patience we could get rid of the assumption p > p, Our
paper will appear in Publications Math . Debrecen .

I asked : Is it true that for every z > 0 one can give a sequence
1 < a, < . . . < a, < x, r > (1 - e) x so that the product of distinct a's
can be equal only if the number of factors is the same . 1, Ruzsa recently
proved that such a sequence does not exist if e sufficiently small . His proof
of this and related results will appear in Acta Arithmetica .
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