Some Extremal Problems in Geometry V Paul Erdös and George Purdy

Continuing our work of [3] we obtain lower bounds on the number of simplices of different volumes and on the number of hyperplanes determined by n points in E^{k}, not all of which lie on an E^{k-1} and no k of which lie on an E^{k-2}. We also determine the minimum number of triangles t determined by n noncollinear points in the plane and discuss what values of t can be achieved.
L. M. Kelly and W. O. J. Moser [4] proved a number of results that we use in this paper. They proved that if n points are given in the real projective plane, with no more than $n-k$ points collinear, and if

$$
\begin{equation*}
\mathrm{n} \geq 1 / 2\left\{3(3 \mathrm{k}-2)^{2}+3 \mathrm{k}-1\right\} \tag{1}
\end{equation*}
$$

then the number of lines t containing two or more of the points satisfies

$$
\begin{equation*}
t \geq k n-1 / 2(3 k+2)(k-1) \tag{2}
\end{equation*}
$$

The result is therefore true in the euclidean plane also. Putting $k=[c \sqrt{n}]$, we see that (1) holds for n sufficiently large if $c^{2}<2 / 27$, and for such c, we have

$$
\begin{equation*}
\mathrm{t} \geq \mathrm{cn}^{3 / 2}+0(\mathrm{n}), \tag{3}
\end{equation*}
$$

the requirement that n be sufficiently large now being redundant. Kelly and Moser also show that if t_{i} is the number of lines containing exactly i of the points, then
(4)

$$
t_{2} \geq 3+\sum_{i \geq 4}(i-3) t_{i}
$$

Adding $t_{2}+t_{3}$ to both sides of (4) we obtain $3 \max \left(t_{2}, t_{3}\right) \geq 2 t_{2}+t_{3}$ $3+t_{2}+t_{3}+t_{4}+\ldots=3+t$. Consequently,

$$
\begin{equation*}
\max \left(t_{2}, t_{3}\right) \geq 1+\frac{1}{3} t . \tag{5}
\end{equation*}
$$

This useful inequality first appears in P.D.T.A. Elliott's [2] as (6).
In [3] we proved the following

Theorem 1. Given n points in E^{2}, not all on a line, the number of different areas determined by the triangles formed from these points is at least $\mathrm{cn}^{3 / 4}$, where c is a positive absolute constant.

Here we prove the following:

Theorem 2. Given a set S of n points in E^{3}, no three on a line, not all on a plane, there are at least $\mathrm{cn}^{3 / 4}$ distinct volumes among the simplices.

Proof: Fix a point P of S and project the remaining points of S from P onto a plane π, obtaining $n-1$ distinct projected points. Suppose that there is a line in π containing at least $\frac{1}{2} n$ points of S. By theorem 1 there are $\mathrm{cn}^{3 / 4}$ different areas among the triangles, and fixing a point Q of S not on the plane yields $\mathrm{cn}^{3 / 4}$ different volumes. We may therefore suppose that no line of π contains more than $n / 2$ points, and by (3) there are at least $\mathrm{cn}^{3 / 2}$ connecting lines in π. These give rise to $\mathrm{cn}^{3 / 2}$ planes through P containing three or more points of S. Let π_{0} be one of these planes. Let π_{1}, \ldots, π_{s} be the connecting planes parallel to π_{0}, and let $\pi_{s+1}, \ldots, \pi_{r}$ be the planes parallel to π_{0} containing one or two
points of S. We may suppose that $r<\varepsilon n^{3 / 4}$ for any $\varepsilon>0$. To see this, pick a point X_{i} from π_{i} for $1 \leq i \leq r$ and 3 points A, B and C from π_{0}. The simplices $X_{i} A B C$ determine at least $r / 2$ different volumes. Hence we may indeed assume $r<\varepsilon n^{3 / 4}$ for any positive ε. Now $\sum_{i=1}^{S}\left|\pi_{i}\right| \geq n-2 \varepsilon n^{3 / 4}>\frac{1}{2} n$, and by a well-known inequality

$$
\sum_{i=1}^{S}\binom{\left|\pi_{i}\right|}{3} \geq \frac{S}{6}\left(\frac{n}{2 s}-3\right)^{3} \geq \frac{\mathrm{cn}^{3}}{\mathrm{~s}^{2}} \geq \frac{\mathrm{cn}^{3}}{\varepsilon^{2} n^{3 / 2}}=\frac{\mathrm{cn}^{3 / 2}}{\varepsilon^{2}} .
$$

Taking the triples from all the $\mathrm{cn}^{3 / 2}$ parallel families, we obtain

$$
\binom{\mathrm{n}}{3} \geq \frac{\mathrm{cn}^{3 / 2} \mathrm{cn}^{3 / 2}}{\varepsilon^{2}}=\frac{\mathrm{cn}^{3}}{\varepsilon^{2}},
$$

which is impossible if ε is sufficiently small, and the result follows.

Remark. Erdös has made the following conjecture: There exists a constant $c>0$, independent of n and k so that if there are given n points in the plane, no $n-k$ on a line, then the points determine at least ckn lines.

If true, this conjecture with $k=n / 2$ together with the proof of theorem 2 implies the existence of at least cn distinct volumes.

In E^{k} we have

Theorem 3 Given n points in $E^{k}, k \geq 3$, no k on an E^{k-2} and not all on an $\mathrm{E}^{\mathrm{k}-1}$, the k -dimensional simplices with those points as vertices have at least $d_{k} n^{\alpha k}$ distinct volumes where $\alpha_{k}=\frac{k-2}{k-1}$ and $d_{k}>0$.

To prove this we need the following

Lemma 1. Given n points in E^{k}, no k on an E^{k-2}, not all on an E^{k-1}, there are at least $c_{k} n^{k-1}$ distinct hyperplanes containing exactly k points.

Proof. If $k=2$ this follows from a result of L. M. Kelly and W. O. J. Moser [4] stating that n noncollinear points in the plane determine at least $\frac{3 n}{7}$ lines with two points. Let $k>2$ and use induction on k. Let P be one of the points, and project the other $n-1$ points from P onto a hyperplane H. No three points are collinear, and so H has $n-1$ distinct points, not all on an E^{k-2}, and no $k-1$ on an E^{k-3}. By the induction hypothesis H contains $c_{k-1} n^{k-2} E^{k-2}$ spaces with exactly $k-1$ points. When joined to P these become the same number of hyperplanes through P having exactly k points on them. If we do this for the n choices for P, each hyperplane is counted k times. Thus we get

$$
\frac{c_{k-1} n^{k-1}}{k}=c_{k^{n}} n^{k-1}
$$

hyperplanes as claimed.

Remarks. The example of $k-1$ skew lines with $\frac{n}{k-1}$ points on each shows that the hypothesis of no k points on an E^{k-2} is necessary. Dirac [1] proved the existence of one such hyperplane when $k=3$.

Proof of Theorem 3. Project the system from one of the points P onto a hyperplane H. Then H has $n-1$ points, not all on an E^{k-2}, and no $k-1$ on an E^{k-3}. By lemma 1 there are at least $c_{k-1} n^{k-2}$ distinct E_{k-2} spaces in H containing exactly $k-1$ points. This leads to the same number of E_{k-1} spaces through P containing exactly k points, and no two of these hyperplanes are parallel. Let H_{0} be one of these, let H_{1}, \ldots, H_{s} be the connecting hyperplanes parallel to H_{0}, and let H_{s+1}, \ldots, H_{r} be the hyperplanes parallel to H_{0} containing fewer than k points. We may suppose that
$r \varepsilon \varepsilon n^{\alpha}{ }^{k}$ for any fixed $\varepsilon>0$. To see this, pick a point X_{i} from H_{i} for $1 \leq i \leq r$ and k points y_{1}, \ldots, y_{k} from H_{0}. The simplices $X_{i} Y_{1} \ldots Y_{k}$ determine at least $\frac{r}{2}$ different volumes. Now $\sum_{i=1}^{S}\left|H_{i}\right| \geq n-k \varepsilon n^{k}>\frac{1}{2} n$ if ε is sufficiently small, and by a well known inequality

$$
\sum_{i=1}^{s}\binom{\left|H_{i}\right|}{k} \geq \frac{s}{k!}\left(\frac{n}{2 s}-k\right)^{k} \geq \frac{c^{k}}{s^{k-1}} \geq \frac{c^{k}}{\left(\varepsilon n^{\alpha k}\right)^{k-1}}=\frac{c^{k-\alpha_{k}(k-1)}}{\varepsilon^{k-1}} .
$$

Taking the k-tuples from all the $c_{k-1} n^{k-2}$ parallel families, we obtain

$$
\binom{n}{k} \geq \frac{c_{k-1} n^{k-2}{ }^{k} n^{k-\alpha_{k}(k-1)}}{\varepsilon^{k-1}}
$$

which is a contradiction if $\alpha_{k}=\frac{\mathrm{k}-2}{\mathrm{k}-1}$ and ε is sufficiently small. The theorem follows.

If the condition of no k on an E^{k-2} is dropped, then we can only prove the following:

Theorem 4. Given n points in E^{k}, not all on an E^{k-1}, there are at least $c_{k}{ }^{\varepsilon^{\varepsilon}}{ }^{n}$ distinct volumes, where $\varepsilon_{k}=3(3 k-2)^{-1}$.

Proof. If $k=2$, this follows from theorem 1 . Let $k>2$ and use induction on k. If there is an E^{k-1} containing m points we get $\mathrm{cm}^{\varepsilon^{k}-1}$ volumes, otherwise we get at least $\frac{n}{m}$ volumes. Putting $m=n^{\alpha}$, where $\alpha=\left(1+\varepsilon_{k-1}\right)^{-1}$ gives

$$
\min \left(\frac{\mathrm{n}}{\mathrm{~m}}, \mathrm{~cm}{ }^{\varepsilon_{\mathrm{k}}-1}\right) \geq \mathrm{cn}^{\varepsilon_{\mathrm{k}}} \text {, and the theorem follows. }
$$

and the theorem follows.

It seems natural to ask the question: Given n points in space, no three on a line, not all on a plane, how many planes do they determine? We
are able to answer this question by the following:

Theorem 5. Under the above conditions at least $\binom{n-1}{2}+1$ planes are determined, provided $n \geq 552$.

Remark. The example of $n-1$ points on a plane and one point off the plane shows that the result is best possible.

We need the following lemma:

Lemma 2. Given n points in E^{3}, no three on a line and $n-2$ on a plane at least $2\binom{n-2}{2}-\left[\frac{n-2}{2}\right]$ planes are determined.

Proof. Let π be the plane with $n-2$ points and let P and Q be the other two points. The points of π and P determine $\binom{n-2}{2}$ planes. It is enough to show that Q can lie on at most $\left[\frac{n-2}{2}\right]$ of these. Firstly, suppose that the line $P Q$ is parallel to π. The m planes through P and Q intersect π in m parallel lines generated by the $n-2$ points, and so $m \leq\left[\frac{n-2}{2}\right]$. Secondly, suppose that $P Q$ intersects π in a point A. Since no three points are collinear, A is not one of the $n-2$ points on π, and so the number of planes through P and Q is again at most $\left[\frac{n-2}{2}\right]$.

Proof of Theorem 5. If $n-1$ points are coplanar, then $\left[\frac{n-1}{2}\right]+1$ planes are determined. We suppose that there is a plane π containing at least $n-7$ and at most $n-2$ of the points. Then by lemma 2 the number of planes determined is at least $2\binom{n-7}{2}-\left[\frac{n-7}{2}\right]$, and this is greater than $\binom{\mathrm{n}-1}{2}+1$ for $\mathrm{n} \geq 23$.

We may therefore suppose that at most $n-6$ points are coplanar. From one of the points P we project all of the points onto a fixed plane π.

Since no three points are collinear the plane π contains $n-1$ points, and at most $n-7$ of them are collinear. It follows from (2) and (5) that there are at least $\frac{7}{3} n-22$ lines in π containing either two or three projected points, provided $n \geq 552$. Hence there are at least $\frac{7}{3} n-22$ planes through P having four or fewer points on them. There are n choices for P, and each plane is counted at most four times in this way. Hence the number of planes is at least $\frac{n}{4}\left(\frac{7}{3} n-22\right)$, and this is greater than $\binom{n-1}{2}+1$ for $n \geq 55$.

We next show that you get nearly as many planes if you restrict yourself to planes containing only three or four points.

Theorem 6. Given n points in E^{3}, no three on a line, not all on a plane, the points determine at least $\frac{1}{2} n^{2}-c n$ planes having three or four points on them.

Proof. If $n-1$ points are coplanar, then $\binom{n-1}{2}$ planes through three points are determined. If at most $n-6$ points are coplanar, then the result follows from the proof of theorem 5. Suppose that there is a plane π containing at least $n-7$ points and at most $n-2$ points. Let P and Q be two points not on π. From the proof of lemma 2 we see that there are at least $2\binom{n-7}{2}-\left[\frac{n-7}{2}\right]$ planes through P or Q. There are at most five other points, and each can be on at most $n-7$ planes. Hence the number of planes through three or four points is at least

$$
2\binom{n-7}{2}-\left[\frac{n-7}{2}\right]-5(n-7)
$$

and this is greater than $\frac{1}{2} n^{2}-c n$ for suitable c.
P. D. T. A. Elliot proves in [2]

Theorem 7. Let S be a set of $n \geq 3$ points in the plane, not all on a line. Then S determines at least $\binom{n-1}{2}$ distinct triangles.

Elliott's proof seems only to be correct for $n \geq 16$. Here we present a simpler proof which is true for $n \geq 3$.

Proof of Theorem 7. Let $k_{i}, 1 \leq i \leq r$, be the number of points on the ith line of the r lines determined by S. Then $\sum_{i=1}^{r}\binom{k_{i}}{2}=\binom{n}{2}$ and the number of triangles t is

$$
t=\frac{1}{3} \sum_{i=1}^{r}\binom{k_{i}}{2}\left(n-k_{i}\right)
$$

If $n-k_{i} \geq 3$ for all i the theorem follows. Suppose $n-k_{i}=1$ for some i. Then there is a line with $n-1$ points on it and $t=\binom{n-2}{2}$. We may therefore suppose that $n-k_{i}=2$ for some i. There is a line with $\mathrm{n}-2$ points on it. The worst case occurs when the two points not on the line are collinear with a point on the line, and $t=2\binom{n-3}{2}+3(n+3)$. This is greater than or equal to $\binom{n-2}{2}$ for $n \geq 3$, and the theorem follows.

Remarks. The above proof does not use the fact that the n points lie in a plane. In fact the same argument proves the following theorem about sets:

Theorem 8. Let $|S|=n$ be a set, and let $2 \leq\left|A_{k}\right|<n, 1 \leq k \leq m$ be a family of subsets so that every pair (x, y) of elements of S is contained in one and only one of the A_{i}. Then the number t of unordered triples (x, y, z) so that x, y and z do not lie in the same A_{i} satisfies $t \geq\binom{ n-1}{2}$.

Remark. The method of theorem 7 can also be used to show that n noncoplanar points in E^{3}, no three of which are collinear determine at least $\binom{n-1}{3}$ simplices.

It seems natural to ask what values of t between $\binom{n}{3}$ and $\binom{n-1}{2}$ can be achieved in the plane. We have
Theorem 9. If cn ${ }^{3-\frac{1}{3}}<\mathrm{m} \leq\binom{\mathrm{n}}{3}$, where c is a certain constant, then there exist configurations of n points in the plane with exactly m triangles. To prove this we need

Lemma 3. Every integer $\mathrm{t}<\binom{\mathrm{n}}{3}-\mathrm{cn}^{8 / 3}$ can be written in the form

$$
t=\sum_{i} \alpha_{i}\binom{n_{i}}{3}
$$

where $\sum_{i} \alpha_{i} n_{i} \leq n, n_{i} \geq 3$ and the α_{i} are positive integers.
Proof. Let n_{1} be the largest integer such that $t \geq\binom{ n_{1}}{3}$. We then have $\frac{1}{6}\left(\mathrm{n}_{1}-2\right)^{3}<\binom{\mathrm{n}_{1}}{3} \leq \mathrm{t}<\frac{\mathrm{n}^{3}}{6}-\mathrm{cn}^{8 / 3}$. Hence $\mathrm{n}_{1}-2<\mathrm{n}\left(1-6 \mathrm{cn} n^{-1 / 3}\right)^{1 / 3}<$ $\mathrm{n}\left(1-2 \mathrm{cn}^{-1 / 3}\right)$, or $\mathrm{n}_{1}<2+\mathrm{n}-2 \mathrm{cn}^{2 / 3} \leq \mathrm{n}-\mathrm{cn}^{2 / 3}$ for c sufficiently large. Also $t-\binom{n_{1}}{3}<\binom{n_{1}+1}{3}-\binom{n_{1}}{3}=\binom{n_{1}}{2}$. Let n_{2} be defined by $\binom{n_{2}}{3} \leq t-\binom{n_{1}}{3}<$
$\binom{n_{2}+1}{3}$. Then $\frac{1}{6}\left(n_{2}-2\right)^{3}<\binom{n_{2}}{3} \leq t-\binom{n_{1}}{3}<\binom{n_{1}}{2}<1 / 2\left(n-\mathrm{cn}^{2 / 3}\right)^{2}$, $\mathrm{n}_{2}-2<3^{1 / 3} \mathrm{n}^{2 / 3}\left(1-\mathrm{cn}^{-1 / 3}\right)^{2 / 3}<3^{1 / 3}\left(\mathrm{n}^{2 / 3}-2 / 3 \mathrm{cn}^{1 / 3}\right)$. Thus $\mathrm{n}_{2}<3^{1 / 3} \mathrm{n}^{2 / 3}$ for c large enough. Thus $t-\binom{n_{1}}{3}-\binom{n_{2}}{3} \leq\binom{ n_{2}+1}{3}-\binom{n_{2}}{3}=\binom{n_{2}}{2}<$ $\frac{3^{2 / 3}}{2} \mathrm{n}^{4 / 3}$. Let n_{3} be defined by $\binom{\mathrm{n}_{3}}{3} \leq \mathrm{t}-\binom{\mathrm{n}_{1}}{3}-\binom{\mathrm{n}_{2}}{3}<\binom{\mathrm{n}_{3}+1}{3}$. Then $\frac{1}{6}\left(n_{3}-2\right)^{3}<t-\binom{n_{1}}{3}-\binom{n_{2}}{3}<\frac{3^{2 / 3}}{2} n^{4 / 3}, n_{3}<2+2 n^{4 / 9} \leq 4 n^{4 / 9}$.

Put $\alpha_{1}=\alpha_{2}=\alpha_{3}=1, \quad \alpha_{4}=t-\binom{n_{1}}{3}-\binom{n_{2}}{3}-\binom{n_{3}}{3}<\binom{n_{3}+1}{3}-\binom{n_{3}}{3}=$
$\binom{n_{3}}{2}<8 n^{8 / 9}$. Then putting $n_{4}=3$, we have $t=\sum_{i=1}^{4} \alpha_{i}\binom{n_{i}}{3}$ and $\sum \alpha_{i} n_{i} \leq n$ for $\mathrm{n} \geq \mathrm{n}_{0}$. Taking c sufficiently large will force $\mathrm{n} \geq \mathrm{n}_{0}$.

Proof of Theorem 9. Let α_{i} and n_{i} be given by lemma 3. Place the points so that there are α_{i} lines having n_{i} points on them, with the points in general position otherwise. The number of triangles is then

$$
\binom{n}{3}-\sum_{i} \alpha_{i}\binom{n_{i}}{3},
$$

and the result follows from lemma 3.

The proof of theorem 9 can be modified slightly to show
Theorem 10. If cn ${ }^{3-\frac{1}{3}}<m \leq\binom{ n}{3}$, where c is a certain constant, and $m \neq\binom{ n}{3}-r_{i}$, where the $r_{i}, 1 \leq i \leq k$ are certain integers, then there exists a configuration of n points in E^{3}, no three of which are collinear, which determine exactly m planes.

References

[1] G. A. Dirac, Collinearity properties of sets of points, Quart. J. Math. 2 (1951), 221-227.
[2] P. D. T. A. Elliot, On the number of circles determined by n points, Acta Math. Acad. Sci. Hungar. 18 (1967), 181-188.
[3] P. Erdos and G. Purdy, Some Extremal Problems in Geometry IV, Proc. 7 th S-E Conf. Combinatorics, Graph Theory, and Computing, (1976), p. 307-322.
[4] L. M. Kelly and W. O. J. Moser, On the number of ordinary lines determined by n points, Canad. J. Math. 10 (1958), 210-219.

