SYSTEMS OF FINITE SETS HAVING A COMMON INTERSECTION

 Richard A. DukeGeorgia Institute of Technology
Paul Erdös
Hungarian Academy of Sciences

1. Introduction.

We say that a collection of finite sets has a common intersection of size t provided that the intersection of each pair of these sets is equal to the intersection of all of them and this intersection has exactly t elements. A family of sets with this property is therefore a strong Δ-system $[6 ; 7]$. Denote by $f(n ; r, k, t)$ the smallest integer with the property that if F is any family of subsets each of size r of a set of size n, and if $|F|>f(n ; r, k, t)$, then some k members of F have a common intersection of size t.

The values of f for $t=0$ or for $r=2$ can be deduced from various well known results. A few theorems and conjectures have also appeared dealing with certain cases in which $k=2$ and $t \geq 1$. It appears, however, that almost no attention has been given to any of the cases where $k>2$ and $t \geq 1$. Here we investigate the general behavior of $f(n ; r, k, t)$ for large n, obtaining specific values or bounds for certain r and t and proposing a conjecture about the size of f for all $r \geq 2, k \geq 2$, and $0 \leq t \leq r-1$.
2. Older Results.

The value of $f(n ; r, k, 0)$ is the size of the largest possible collection of r-sets, no k of which are pairwise disjoint, that can be chosen from a set of size n. As such, the value of $f(n ; r, 2,0)$ for $r \geq 2$ and $n \geq 2 r$ can be deduced directly from the Erdoss-Ko-Rado Theorem [5]. A generalization of that theorem [3] states that for each $r \geq 2$ there exists a constant $c(r)$ such that

$$
\begin{equation*}
f(n ; r, k, 0)=\binom{n}{r}-\binom{n-k-1}{r} \text { for } n>c(r) k . \tag{1}
\end{equation*}
$$

For $r=2$ this result is contained in older theorems [4] dealing with sets of independent edges in graphs. The values $f(n ; 2, k, 1)=\left[\frac{(k-1) n}{2}\right]$ can also be obtained from well known graph-theoretic results.
3. $r=3$; Families of Triples.

The first result we mention for $r=3$ is due to Brown, Erdos, and S6s [1]. It concerns conditions for the existence of a pair of triples having exactly
two elements in common, and states that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-2} f(n ; 3,2,2)=1 / 6 \tag{2}
\end{equation*}
$$

The lower bounds for f in this case follow from the existence of Steiner triple systems for $\mathrm{n} \equiv 1$ or $3(\bmod 6)$. By using collections of disjoint triple systems, (2) has been generalized [2] yielding the following for a family of k triples having a common intersection of size 2 .

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-2} f(n ; 3, k, 2)=\frac{k-1}{6} \tag{3}
\end{equation*}
$$

For pairs of triples having exactly one element in common the next result was obtained by Erdös and Sos $[1]$ and independently in [2].

$$
\mathrm{f}(\mathrm{n} ; 3,2,1)=\left\{\begin{array}{c}
\mathrm{n}-2 \text { for } \mathrm{n} \equiv 2 \text { or } 3(\bmod 4) \tag{4}\\
\mathrm{n}-1 \text { for } \mathrm{n} \equiv 1(\bmod 4) \\
\mathrm{n} \text { for } \mathrm{n} \equiv 0(\bmod 4) .
\end{array}\right.
$$

It was the question of determining the correct analogue of (4) for $k>2$ which led to the present work. The following construction yields a lower bound for $f(n ; 3, k, 1)$ for all $k \geq 2$. Given an n-element set S and an odd integer k, we form a graph G consisting of two disjoint copies of the complete graph K_{k} and having all of its vertices in S. Let F be the collection of all triples which can be obtained by taking the union of an edge of G with an element of S not in G. F contains $k(k-1)(n-2 k)$ such triples, no k of which have a common intersection of size 1 . For k even we replace G by a graph consisting of one copy of K_{k} and one copy of K_{k-1}. It follows that

$$
f(n ; 3, k, 1) \geq \begin{cases}k(k-1)(n-2 k) & \text { for } k \text { odd } \tag{5}\\ (k-1)^{2}(n-2 k+1) & \text { for } k \text { even }\end{cases}
$$

Peter Frank1 has pointed out that the bound can be improved somewhat when k is even by taking G to be a graph on $2 \mathrm{k}-1$ vertices having degree sequence $\mathrm{k}-1, \mathrm{k}-1, \ldots, \mathrm{k}-1, \mathrm{k}-2$.

In the other direction one can show that for each $k \geq 2$ there exist constants $c(k)$ and $n_{0}(k)$ such that

$$
\begin{equation*}
\mathrm{f}(\mathrm{n} ; 3, \mathrm{k}, 1) \leq \mathrm{c}(\mathrm{k}) \mathrm{n} \quad \text { for } \mathrm{n}>\mathrm{n}_{0}(\mathrm{k}) . \tag{6}
\end{equation*}
$$

This result can be derived from the proof of the theorem given in the next section, and can also be established by an argument along the following lines. Let F be a family of triples chosen from a set S with $|\mathrm{S}|=\mathrm{n}$ and $|\mathrm{F}|>\mathrm{c}(\mathrm{k}) \mathrm{n}$. We may assume that the elements of S which are contained in few triples of F (say less than $\frac{1}{2} c(k)$) have been deleted. Each element of S therefore has a large "valence" with respect to the triples of F . Either there exist k triples of F having a common intersection of size 1 or each element of S is contained in a pair which in turn is contained in many members of F. In the latter case there exist many such pairs of high valence, so either k such pairs share a common element or there exists a large collection of these pairs which are independent. In either event the result follows.

Frank1 has now given an argument involving Δ-systems of edges in graphs which shows that $f(n ; 3, k, 1)<(5 / 3) k(k-1) n$ for sufficiently large n. He also informs us that he has been able to use this technique to show that $\mathrm{f}(\mathrm{n} ; 3,3,1)=6(\mathrm{n}-6)+2$ for $\mathrm{n}>54$, thus settling in the affirmative a conjecture which we made just a few months ago.
4. $r=4$; Families of Quadruples.

Let F be a family of quadruples chosen from a set S . By the link of an esement x in S we mean the collection of all triples whose union with x yields a member of F . If $|\mathrm{S}|=\mathrm{n}$ and $|\mathrm{F}| \geq \mathrm{cn}^{2}$, for a given constant c , then there exists an element of S whose link contains at least cn triples. It follows from (6) that there exist constants $c_{1}(k)$ and $n_{1}(k)$ such that

$$
\begin{equation*}
f(n ; 4, k, 2) \leq c_{1}(k) n^{2} \quad \text { for } n>n_{1}(k) . \tag{7}
\end{equation*}
$$

This argument can also be used in conjunction with (3) to show that there exist $c_{2}(k)$ and $n_{2}(k)$ such that

$$
\begin{equation*}
\mathrm{f}(\mathrm{n} ; 4, \mathrm{k}, 3) \leq \mathrm{c}_{2}(\mathrm{k}) \mathrm{n}^{3} \quad \text { for } \mathrm{n}>\mathrm{n}_{2}(\mathrm{k}) . \tag{8}
\end{equation*}
$$

As in the case of (3), lower bounds can be obtained in some of these cases from the study of designs. The first, for $t=2$, comes from a result on disjoint pairwise balanced designs due to Poucher [10]. The second, for $t=3$ and $k=2$, is from a result of Hanani [8] concerning sparse designs.

$$
\begin{equation*}
f(n ; 4, k, 2) \geq c_{3}(k) n^{2} \quad \text { for } n>n_{3}(k) \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{f}(\mathrm{n} ; 4,2,3) \geq \mathrm{c}_{4} \mathrm{n}^{3} \quad \text { for } \mathrm{n}>\mathrm{n}_{4} \tag{10}
\end{equation*}
$$

Katona (unpublished) proved that $f(n ; 4,2,1)=\binom{n-2}{2}$, for n sufficiently large. A lower bound for $f(n ; 4, k, 1)$ for all $k \geq 2$ can be obtained by using the following inequality which holds for $a 11 r \geq 2$ and $0 \leq t \leq r-1$ and sufficiently large n.
(11) $f(n ; r, k, t) \geq\binom{ n-t-1}{r-t-1}$.

This inequality, which has been used many times elsewhere, can be seen as follows. Let S be a set with $|S|=n, A \subseteq S$, and $|A|=t+1$. If F is the family of all r-element subsets of S which contain A, then no k members of F have a common intersection of size exactly t.

It follows that there are constants $c_{5}(k)$ and $n_{5}(k)$ such that

$$
\begin{equation*}
\mathrm{f}(\mathrm{n} ; 4, \mathrm{k}, 1) \geq \mathrm{c}_{5}(\mathrm{k}) \mathrm{n}^{2} \quad \text { for } \mathrm{n}>\mathrm{n}_{5}(\mathrm{k}) \tag{12}
\end{equation*}
$$

An upper bound is given by the following general result.
Theorem. There exist constants $c_{6}(k)$ and $n_{6}(k)$ such that when $k \geq 2$ we have

$$
\begin{equation*}
f(n ; 4, k, 1) \leq c_{6}(k) n^{2} \quad \text { for } n>n_{6}(k) . \tag{13}
\end{equation*}
$$

Proof. Suppose F is a family of quadruples chosen from a set S with $|S|=n$, $|F| \geq c(k) n^{2}$. Let x be an element of S for which the valence $v(x)$ (that is, the number of quadruples of F containing x) is as large as possible. If $v(x) \geq \frac{1}{2}(k-1) n^{2}$, then by (1) the link of x contains at least k disjoint triples and the result follows. Thus we may assume that $v(x)=\alpha n$, where $\alpha \leq \frac{1}{2}(k-1) n$, and that no collection of mutually disjoint triples in the link of x has more than $\mathrm{k}-1$ members. It follows that some element y of S is contalned in at least $\frac{\alpha n}{3(k-1)}$ triples which are in the link of x. The pair $\{x, y\}$ is then contained in at least $\frac{\alpha n}{3(k-1)}$ quadruples of F. Hence there is a triple $\{x, y, z\}$ which is contained in at least $\frac{\alpha}{3(k-1)}$ members of F.

Delete x, y, and z and those quadruples of F which contain one or more of these three elements. At most $3 \alpha n$ quadruples are thus removed, and at least $\frac{\alpha}{3(k-1)}$ of these quadruples contain the triple $\{x, y, z\}$.

For $c(k)$ sufficiently large we can repeat this procedure (at least k times) until $\frac{1}{2} c(k) n^{2}$ quadruples have been deleted. Note that on the average at least
one out of every $9(k-1) n$ quadruples which were removed contained one of the triples which was deleted, and that these triples were mutually disjoint. It follows that if $c(k) \geq 18 k(k-1)$, then some element of S forms a quadruple of F with each of at least k of these triples, and this completes the proof.
5. The General Case.

The proof of the theorem in the last section can be modified to yield the following for all $k \geq 2$ and $r \geq 3$.

There exist constants $c(r)$ and $n(k, r)$ such that

$$
\begin{equation*}
f(n ; r, k, 1) \leq c(r) k(k-1) n^{r-2} \quad \text { for } n>n(k, r) . \tag{14}
\end{equation*}
$$

The bounds given in (11) and (14) for $t=1, r \geq 3$ and those obtained for the remaining cases when $r=2,3$, or 4 suggest the following which we conjecture to be true for all $k \geq 2, r \geq 2$, and $0 \leq t \leq r-1$. Conjecture. There exist constants $c_{1}(k, r)$ and $c_{2}(k, r)$ such that for all sufficiently large n we have

$$
\begin{equation*}
c_{1}(k, r) n^{\max (r-t-1, t)} \leq f(n ; r, k, t) \leq c_{2}(k, r) n^{\max (r-t-1, t)} . \tag{15}
\end{equation*}
$$

P. Frankl has just recently informed us that he has been able to establish (15) for all $r \leq 8$. He further states that he has obtained $f(n ; r, k, t) \leq$ $c(k, r) n^{r-t-1}$ for $[r / 3]>t$, which, together with (11), establishes the conjecture for these values as well.

It would also be interesting to know whether k always enters as a multiplicative constant. That is, does there always exist a constant $c(k)$ such that $f(n ; r, k, t)<c(k) f(n ; r, 2, t)$?

References

1. W. Brown, P. Erdös, and V. T. Sós, On the existence of triangulated spheres in 3-graphs and related problems. Period. Math. Hungar., 3 (1973), 221-228.
2. R. A. Duke, Some extremal problems for simple two-complexes. Proc. of the Int'1. Conf. on the Theory and Appl. of Graphs. (Western Mich. Univ., Kalamazoo, Mich., 1976).
3. P. Erdös, A problem on independent r-sets. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 8 (1965), 93-95.
4. P. Erdos, T. Gallai. Acta Math Sci Hung., On maximal paths and circuits of graphs, 10 (1959), 337-356.
5. P. Erdoss, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quarterly J. Math. Oxford Ser. (2), 12 (1961), 313-320.
6. P. Erdors, R. Rado, Intersection theorems for systems of sets, I. J. Lond. Math. Soc., 35 (1960), 85-90.
7. P. Erdös, R. Rado, Intersection theorems for systems of sets, II. J. Lond. Math. Soc., 44 (1969), 467-479.
8. H. Hanani, On some tactical configurations, Can. J. Math., 15 (1963), 702-722.
9. D. E. Larman, C. A. Rogers, The realization of distances within sets in Euclidean space, Mathematika, 19 (1972), 1-24.
10. W. B. Poucher, Finite embedding theorems for partial pairwise balanced designs, (to appear).
