A CLASS OF RAMSEY-FINITE GRAPHS

S. A. Burr
A.T.\&L. Long Lines
P. Erdös
Hungarian Academy of Sciences
R. J. Faudree and R. H. Schelp Memphis State University

Introduction

Let F, G and H be finite, undirected graphs without loops or multiple edges. Write $F \longrightarrow(G, H)$ to mean that if the edges of F are colored with two colors, say red and blue, then either the red subgraph of F contains a copy of G or the blue subgraph contains a copy of H. The class of all graphs F (up to isomorphism) such that $F \longrightarrow(G, H)$ will be denoted by $R^{\prime}(G, H)$. This class has been studied extensively, for example the generalized Ramsey number $r(G, H)$ is the minimum number of vertices of a graph in $R^{\prime}(G, H)$.

A graph F is (G, H)-minimal if $F \in R^{\prime}(G, H)$ but no proper subgraph of F is in $R^{\prime}(G, H)$. Denote the class of (G, H)-minimal graphs by $R(G, H)$. Since each graph in $R^{\prime}(G, H)$ has a subgraph which is in $R(G, H)$, it is natural to study the smaller class $R(G, H)$. A pair (G, H) is Ramsey-finite if $R(G, H)$ is finite. Otherwise the pair (G, H) is Ramsey-infinite. There are large classes of graphs which are Ramseyminfinite. For example, Nesetril and Rödl, [6], have shown that the pair (G,H) is Ramsey-infinite if both G and H are 3-connected or if G and H are forests neither of which is a union of stars. By comparison the class of pairs of graphs (G, H) which are known to be Ramsey-finite is small. Trivially the pair $\left(\mathrm{K}_{2}, \mathrm{H}\right)$ is Ramsey-finite since $R\left(\mathrm{~K}_{2}, \mathrm{H}\right)=\{\mathrm{H}\}$. If G and H are both disjoint unions of edges then (G, H) is Ramsey-finite, [4], or if G and H are stars with an odd number of edges then (G,H) is Ramsey-finite [3]. In this paper a proof that the pair $\left(\mathrm{mR}_{2}, \mathrm{H}\right)$ is Ramseyfinite for $m \geq 1$ and H an arbitrary graph will be given. This will be accomplished by giving an upper bound on the number of edges of any graph in $R\left(\mathrm{mK}_{2}, H\right)$.

The Main Result

The notation used within this paper will be fairly standard. The edge set and vertex set of a graph G will be denoted by $E(G)$ and $V(G)$ respectively. As usual
K_{n}, C_{n} and $K_{1, n}$ will denote a complete graph on n vertices, a cycle with n vertices, and a star with n edges respectively. The graph consisting of n disjoint copies of a graph G will be written $n G$. If H is a subgraph of G, then $G-H$ will be the graph obtained from G by deleting the edges of H. If v is a vertex of G, then the graph obtained by deleting v and its incident edges will be denoted by G-v. Notation not specifically mentioned will follow Harary [5].

The central result of the paper is the following theorem and its corollary.

Theorem: Let G be an arbitrary graph on n vertices and m a positive integer. Then for $F \in R\left(m K_{2}, G\right)$,

$$
|E(F)| \leq \sum_{i=1}^{b} n^{i}
$$

where $b=(m-1)\left(\binom{2 m-1}{2}+1\right)+1$.
An immediate consequence of this is the following.

Corollary: For m a positive integer and G an arbitrary graph, the pair $\left(\mathrm{mK}_{2}, G\right)$ is Ramsey-finite.

The next two lemmas will be needed in the proof of the theorem.

Lemma 1: If $m K_{2} \nsubseteq H$, then

$$
|E(H)| \leq \max \left\{\binom{2 m-1}{2},(m-1) \Delta(H)\right\}
$$

Proof: With no loss of generality it can be assumed that ($m-1) K_{2} \subseteq H$. This implies that H is isomorphic to a subgraph of

$$
\begin{equation*}
k_{s}+\left(\sum_{i=1}^{\ell} k_{2 n_{i}+1}\right) \tag{1}
\end{equation*}
$$

where $s \geq \ell$ and $s+\sum_{i=1}^{\ell} n_{i}=m-1$,
Therefore $|E(H)| \leq s \Delta(H)+\sum_{i=1}^{\ell}\left(2^{2 n_{i}+1}\right)$.
Since $\binom{a}{2}+\binom{b}{2} \leq\binom{ a+b-1}{2}$ for positive integers a and b, $\sum_{i=1}^{\ell}\binom{2 n_{i}^{+1}}{2} \leq\binom{ 2(m-s-1)+1}{2}$. If $f(s)=s \Delta(H)+\binom{2(m-s-1)}{2}$, then $|E(H)| \leq f(s)$. Since $f(0)=\binom{2 m-1}{2}$ and $f(m-1)=(m-1) \Delta(H),|E(H)| \leq \max \left\{\binom{2 m-1}{2},(m-1) \Delta(H)\right\}$

Lemma 2: If $\mathrm{mK}_{2} \Phi_{\mathrm{H}}$, then each vertex of H of degree at least $2 m-1$ is contained in any maximal matching of H. Proof: Let M be a maximal matching of H. BY assumption M has at most $2 m-2$ vertices. If v is a vertex of H of degree at least $2 m-1$, then there is a vertex w of H not in M which is adjacent to v. Thus v is a vertex in M, for otherwise $\{v w\} \cup M$ is a matching of H which properly contains M.

Proof of Theorem: Suppose to the contrary that $F \in R\left(m K_{2}, G\right)$ and $|E(F)|>\sum_{i=1}^{b} n^{i}$.
It will be shown that this leads to a contradiction.
Let e be an edge of F. Since $F \in R\left(m K_{2}, G\right)$,

$$
F-e \xrightarrow{H}\left(\mathrm{mK}_{2}, G\right)
$$

Therefore the edges of F - e can be colored with the colors red and blue such that there is no red $m K_{2}$ or blue G. Among all such colorings, select a red subgraph with a maximal number of edges. Denote this graph by S_{e}. The
maximiality of S_{e} and Lemma 2 imply that if v is a vertex of degree at least $2 m-1$ in S_{e}, then every edge of F incident to v is also in S_{e}. Since $F \rightarrow\left(m K_{2}, G\right)$, there is a copy of G in F, say G_{e}, such that $E\left(G_{e}\right) \cap E\left(S_{e}\right)=\phi$. Clearly $e \varepsilon E\left(G_{e}\right)$. In fact note that for any copy G^{\prime} of G in F,

$$
E\left(G^{\prime}\right) \cap\left(\{e\} \cup E\left(S_{e}\right)\right) \neq \phi
$$

Let $t=|E(F)| \geq \sum_{i=0}^{b} n_{i}$. Denote the edges of F by $\left\{e_{1}, e_{2}, \ldots, e_{t}\right\}$. For each $i \varepsilon T_{0}=\{1,2, \ldots, t\}$ there is a triple $\left(e_{i}, G_{i}, S_{i}\right)$ where $S_{i}=S_{e_{i}}$ and $G_{i}=G_{e_{i}}$. It will next be shown that there is a subset $T_{b-1} \subseteq T_{0}$ with $\left|T_{b-1}\right| \geq n+1$ such that $S_{i}=S_{j}$ for all i, $j \varepsilon T_{b-1}$ and each S_{i} is a union of $m-1$ stars.

Consider the graph G_{1}. For each $i \varepsilon T_{0}$, $\mathrm{E}\left(\mathrm{G}_{1}\right) \cap\left(\left\{\mathrm{e}_{\mathrm{i}}\right\} \cup \mathrm{E}\left(\mathrm{S}_{\mathrm{i}}\right)\right) \neq \phi$. Thus $\mathrm{E}\left(\mathrm{G}_{1}\right) \cap \mathrm{E}\left(\mathrm{S}_{\mathrm{i}}\right) \neq \phi$ if $e_{i} \notin E\left(G_{1}\right)$. Since G_{1} has n edges, there are at least $t-n$ different $i ' s$ such that $E\left(G_{1}\right) \cap E\left(S_{i}\right) \neq \phi . \quad$ In fact there is an edge f_{1} of G_{1} which is contained in at least $(t-n) / n$ of the graphs S_{i}. Let

$$
T_{1}=\left\{i \varepsilon T_{0}: f_{1} \in E\left(S_{i}\right)\right\}
$$

Then $\left|T_{1}\right| \geq \sum_{i=0}^{b-1} n^{i}$.
For some fixed $k \in T_{1}$, consider the edge e_{k} and corresponding graph G_{k}. The edge f_{1} is not in $E\left(G_{k}\right)$ since $E\left(G_{k}\right) \cap E\left(S_{k}\right)=\phi$. Using the graph G_{k} just as G_{1} was used in the previous argument, one obtains an edge f_{2} with the same properties as f_{1}. Hence if

$$
T_{2}=\left\{i \varepsilon T_{1}: E_{2} \varepsilon E\left(S_{i}\right)\right\}
$$

then

$$
\left|T_{2}\right| \geq\left\{\left(\left|T_{1}\right|-n\right) / n\right\} \geq \sum_{i=0}^{b-2} n^{i}
$$

A repetition of this argument yields a set of distinct edges $\left\{f_{1}, f_{2}, \ldots, f_{b-1}\right\}$ and sets $T_{j}=\left\{i \varepsilon T_{j-1}: f_{j} \varepsilon E\left(S_{i}\right)\right\}$ such that $\left|T_{j}\right| \geq\left(\left|T_{j-1}\right|-n\right) / n \quad$ for $\quad 1 \leq j \leq b-1$. Thus $\left|T_{j}\right| \geq \sum_{i=0}^{b-j} n^{i}$, and in particular

$$
\left|T_{b-1}\right| \geq \sum_{i=0}^{1} n^{i}=n+1
$$

Let $r=\binom{2 m-1}{2}+1$. For each $k, 0 \leq k \leq m-2$,
let L_{k} be the graph spanned by the edges

$$
\left\{f_{k r+1}, f_{k r+2}, \ldots, f_{(k+1) r}\right\} .
$$

Therefore L_{k} has $\binom{2 m-1}{2}+1$ edges. Also $L_{k} \subseteq S_{i}$ for any $i \in T_{b-1}$, so L_{k} does not contain a subgraph isomorphic to mK_{2}. Thus Lemma 1 implies that L_{k} has a vertex, say w_{k}, of degree at least $2 m-1$. Therefore for any i $\in T_{b-1}, S_{i}$ conatins the $m-1$ vertices $w_{0}, w_{1}, \ldots, w_{m-2}$, each of which has degree at least $2 m-1$ in S_{i}. Let S be the subgraph of F spanned by the edges of F incident to at least one of the vertices of $\left\{w_{0}, w_{1}, \ldots, w_{m-2}\right\}$. Since each S_{i} was chosen with a maximal number of edges, Lemma 2 implies that $S_{i}=S$ for all i εT_{b-1}.

For some fixed $k \in T_{b-1}$, consider the triple $\left(e_{k}, G_{k}, S_{k}\right)$. For each $i \varepsilon T_{b-1}, S_{i}=S_{k}$ and therefore $E\left(S_{i}\right) \cap E\left(G_{k}\right)=\phi$. Since $E\left(G_{k}\right) \cap\left(\left\{e_{i}\right\} \cup E\left(S_{i}\right)\right) \neq \phi$, $e_{i} \varepsilon E\left(G_{k}\right)$ for all $i \in T_{b-1}$. This contradicts the fact that G_{k} has n edges and completes the proof.

Examples

In general it is difficult to determine the graphs in $R(G, H)$, even if the pair (G, H) is Ramsey-finite. In fact, the problem appears to be very difficult for $R\left(m K_{2}, H\right)$. There is one trivial case and some small order cases that are known. For example one can verify directly the following

Although for a fixed m and a fixed graph H, $R\left(\mathrm{mK}_{2}, \mathrm{H}\right)$ is finite, the cardinality of the set $R\left(\mathrm{mK}_{2}, \mathrm{H}\right)$ is not bounded as m and H vary. For H either a dense graph or a very sparse graph this can be exhibited. First for $n \geq 4$ a family of $[(n+1) / 2]$ non-isomorphic graphs in $R\left(2 K_{2}, K_{n}\right)$ will be described. Next for $n \geq 3 a$ collection of $n-2$ non-isomorphic graphs in $R\left(2 K_{2}, K_{1, n}\right)$ will be described.

Let K be a graph isomorphic to K_{n+1}. Let $V(K)=R U S$ be partition of the vertices of K, and denote the cardinality of R by r. To each edge $e=x y$ with $\{x, y\} \subseteq R$ or $\{x, y\} s$, associate a vertex v_{e} not in K and let v_{e} be adjacent to each vertex of K except for x and y. For $1 \leq r \leq[(n+1) / 2]$, denote this graph by F_{r}.

$$
\left|v\left(F_{r}\right)\right|=n+1+\left(\frac{r}{2}\right)+\left(\begin{array}{r}
n+1-r \\
2
\end{array}\right.
$$

and

$$
\left|E\left(F_{r}\right)\right|=\binom{n+1}{2}+(n-1)\left(\left(\frac{r}{2}\right)+\binom{n+1-r}{2}\right)
$$

Clearly F_{r} is not isomorphic to F_{r}, for $1 \leq r \neq r^{\prime} \leq[(n+1) / 2]$. It will be shown that $F_{r} \varepsilon R\left(2 K_{2}, K_{n}\right)$. Color the edges of F_{r} with colors red and blue. If there is no red $2 \mathrm{~K}_{2}$, then the red subgraph is either a star or a triangle. It is easily checked for any vertex v of F_{r} or any triangle T contained in F_{r} that $F_{r}-V$ and $F_{r}-T$ contains a complete graph on n vertices. Therefore $\mathrm{F}_{\mathrm{r}} \rightarrow\left(2 \mathrm{~K}_{2}, \mathrm{~K}_{\mathrm{n}}\right)$. Let f be an arbitrary but fixed edge of F_{r} and consider the graph $F_{r}-f$. There exists an edge e of $K \subseteq F_{r}$ such that f is in the unique complete graph on n vertices which contains v_{e}. Select a triangle T of $K \subset F_{r}$ which contains e but does not have all of its vertices in the same term of the partition. One can check directly that $F_{r}-\mathbf{f}-\mathbf{T}$ does not contain a subgraph isomorphic to K_{n}. This implies $F_{r}-f \nrightarrow\left(2 K_{2}, K_{n}\right)$ and proves $F_{r} \in R\left(2 K_{2}, K_{n}\right)$.

For $3 \leq t \leq n$, let L be a completely disconnected graph on t vertices. For each vertex w of L associate distinct vertices $v(w), v_{1}(w), \ldots, v_{n-t+1}(w)$ not in L. Let $v(w)$ be adjacent to precisely the vertices

$$
v_{1}(w), v_{2}(w), \ldots, v_{n-t+1}(w)
$$

and the vertices of L except for w. Denote this graph by F_{t}. Thus F_{t} has $t+t(n-t+2)$ vertices, $t n$ edges, and is the union (not vertex disjoint) of t stars with n edges. One can check directly that $F_{t} \in R\left(2 K_{2}, K_{1, n}\right)$ for $3 \leq t \leq n$.

Conjectures

For an arbitrary graph H, the pair ($\mathrm{mK}_{2}, \mathrm{H}$) is Ramsey-finite. In [3] it was proved that if H is a 2 -connected graph then the pairs ($\mathrm{K}_{1}, 2, \mathrm{H}$) and ($\mathrm{K}_{1,3}, \mathrm{H}$) are Ramsey-infinite. This leads one to the following conjecture.

Conjecture 1: If G is a graph such that for any graph H, the pair (G, H) is Ramsey-finite, then G is isomorphic to mK_{2} for some positive integer m .

A more difficult problem is to determine which pairs (G,H) are Ramsey-finite. Known results give support to the following conjecture.

Conjecture 2: The pair (G,H) is Ramsey-finite if and only if either

1) G or H is isomorphic to mK_{2} or
2) G and H are both forests of stars with an odd number of edges.
[1] C. Berge, Sur le Couplage Maximum d'un Graphe, C. R. Acad. Sciences, Paxis 247, 1958, 258-259.
[2] S. A. Burr, A Survey of Noncomplete Ramsey Theory for Graphs, to appear in the Proc. of the Nat. Acad. of Sciences of New York.
[3] S. A. Burr, P. Erdös, R. J. Faudree and R. H. Schelp, A Class of Ramsey-Infinite Graphs, to appear.
[4] S. A. Burr, P. Erdös and L. Loväsz, On Graphs of Ramsey Type, Ars Combinatoria, 1, 1976, 167-190.
[5] F. Harary, Graph Theory, Addison-Wesley, Reading Mass.,1969.
[6] J. Nésétril and V. Rödl, The Structure of Critical Ramsey Graphs.
