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Introduction

Let F, G and H be finite, undirected graphs without

loops or multiple edges . Write F- *(G,H) to mean that it

the edges of F are colored with two colors, say red and

blue, then either the red subgraph of F contains a copy of

G or the blue subgraph contains a copy of H . The class of

all graphs F (up to isomorphism) such that F- .(G,H)

will be denoted by R'(G,H) . This class has been studied

extensively, for example the generalized Ramsey number

r(G,H) is the minimum number of vertices of a graph in

R' (G,H) .
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p, graph r is (G,H) -minimal if r c R' (G,H) but no

proper subgraph of F is in R'(G,H) . Denote the class of

(G, H) -minimal graphs by R(G,H), Since each graph in RI(G,H)

has a subgraph which is in R(G,H), it is natural to study the

smaller class R(G,H) .A pair (G,H) is Ramsey-finite if R(G,H)

is finite . Otherwise the pair (G,H) is Ramsey-infinite .

There are large classes of graphs which are Ramsey--ínfinite .

For example, Nesetril and Rödl, [6],have shown that the pair

(G,H) is Ramsey-infinite if both G and H are 3-connected

or if G and H are forests neither of which is a union

of stars . By comparison the class of pairs of graphs (G,H)

which are known to be Ramsey-finite is small . Trivially

the pair (K2 ,H) is Ramsey-finite since R(K2 ,H) _ {H) .

If G and H are both disjoint unions of edges then (G,H)

is Ramsey-finite, [4), or if G and H are stars with an

odd number of edges then (G,H) is Ramsey-finite [3] .

is Ramsey-

finite for m > 1 and H an arbitrary graph will be given .

This will be accomplished by giving an upper bound on the

number of edges of any graph in R(mK 2 ,H) .

The Main Result

The notation used within this paper will be fairly

standard . The edge set and vertex set of a graph G will

be denoted by E(G) and V(G) respectively . As usual

in this paper a proof that the pair (mK 2,H)



Kn , Cn and Kl n will denote a complete graph on n ver-

tices, a cycle with n vertices, and a star with n edges re-

spectively . The graph consisting of n disjoint copies of a graph

G will be written nG . If H is a subgraph of G, then G-H will

be the graph obtained from G by deleting the edges of H .

If v is a vertex of G, then the graph obtained by

deleting v and its incident edges will be denoted by G-v .

Notation not specifically mentioned wí11 follow Harary (5] .

The central result of the paper is the following theorem

and its corollary .

Theorem : Let G be an arbitrary graph on n vertices and

m a positive integer . Then for F e R(mK2' G),

b
~ E(F) I <

	

nl
i=1

where b = (m-1) ((221 ) + 1) + 1 .

An immediate consequence of this is the following .

Corollary : For m a positive integer and G an arbitrary

graph, the pair (mK2 ,G) is Ramsey-finite .

The next two lemmas will be needed in the proof of the

theorem .

Lemma 1 : If mK2 (1 H, then

J E(H) I < max{ ( 2 1) , (m-1)A (H) )

Proof : With no loss of generality it can be assumed that

(m-1)K2S H . This implies that H is isomorphic to a sub-

graph of



Ks +
~i 1R2ni+1 )

where s > R and s + ~i=1ni = m - 1,

R

	

2ni+1
Therefore I E (H) I < sA (H) + Ii=1 ( 2 )

Since (Z) + (2) < (a+2-1 ) for positive integers a and b,

2n .+1k ( i ) < ( 2 (m-s-1)+1 ) . If f (s) = sA(H) + (2 (m-s-1) ) I
~i=1

	

2

	

-

	

2

	

2

then JE(H) J < f(s) . Since f(0) _ 2m-1 ) and

f(m-1) _ (m-1)A(H), JE(H) J <
max[(2m21), (m-1)A(H))

Lemma 2 : If mK2 '~H, then each vertex of H of degree

at least 2m - 1 is contained in any maximal matching of H .

Proof : Let M be a maximal matching of H . By assumption

M has at most 2m - 2 vertices . If v is a vertex of H

of degree at least 2m - 1, then there is a vertex w

H not in M which is adjacent to v . Thus v is a

vertex in M, for otherwise {vw}U M is a matching of

H which properly contains M .

Proof of Theorem : Suppose to the contrary that
b

F e R(mK2' G) and JE(F)J > E
i=lni .

It will be shown that this leads to a contradiction .

Let a be an edge of F . Since

F - e--,43(mKV G) .

Therefore the edges of F - e can be colored with the colors

red and blue such that there is no red mK 2 or blue G .

Among all such colorings, select a red subgraph with a

maximal number of edges . Denote this graph by S e . The

of

F E: R(mK2 ,G),



maximiality of Se and Lenana 2

imply that if v is a vertex

of degree at least 2m - 1 in Se, then every edge of F
incident to v is also in

is a copy of G in F, say Ge, such that E(Ge) n E(se) _ ~ .

Clearly e E E(Ge) . In fact note that for any copy G' of

G in F,

E(G') n ((e}UE(Se)) 34 ~ .

Let t = JE(F)J > Ib=0ni . Denote the edges of F by

fel,e2, . . .,et} . For each i e Tp = (1,2, . . .,t} there is a

triple (ell

will next be

I Tb-1I > n +
and each Si

since E(Gk)O E(Sk) _ 0 .

Se . Since F---),(mK2,G) , there

Gi, Si) where Si = Se

	

and Gi = Ge . It
1

	

1
shown that there is a subset Tb-1C To with

1 such that Si

	

Sj for all i, j E Tb-1

is a union of m - 1 stars .

Consider the graph G1 . For each i e To,

E(Gl)n ((ei}U E(Si)) # ~ . Thus E(Gl)n E(S .) # ¢ if
ei

	

E(Gl) . Since Gl has n edges, there are at least

t - n different is such that E(Gl)n E(Si)

	

~. In

fact there is an edge fl of Gl which is contained in

at least (t-n)/n of the graphs Si . Let

Tl = (iET0 :fIEE(Si)} .

Then JT11 > Ib-1 n1 .

For some fixed k e Tl, consider the edge ek and

corresponding graph Gk . The edge fl is not in E(Gk)

Using the graph Gk just as

G1 was used in the previous argument, one obtains an edge

f2 with the same properties as fl . Hence if



T2 - {ISTI :f2 a E(s I },

then
IT2 1 > { (IT1I-n)/n} > ~b_O ni .

A repetition of this argument yields a set of distinct edges

{fl'f2'***'fb-1} and sets

that IT j I > (iTj_1 l-n)/n

Thus ITj, > jb=~ n1 , and

Tj = { iETj_ 1 :fj eE(S i )} such

for 1 < j < b-1 .

in particular

~Tb-11 > £,=0n1 = n + 1 .

Let r = (2m-1 ) + 1 . For each

let Lk be the graph spanned by the edges

ffkr+1' fkr+2 " "' f (k+1) r } '

Therefore Lk has (Z2m-1)+ 1 edges . Also LkC Sí for

any i e Tb_1 , so Lk does not contain a subgraph isomorphic

to mK2 . Thus Lemma 1 implies that Lk has a vertex, say

wk , of degree at least 2m - 1 . Therefore for any

i e Tb_ l , Si conatins the m - 1 vertices w0' wl' . . . . wm-2'
each of which has degree at least 2m - 1 in S i . Let S

be the subgraph of F spanned by the edges of F incident

to at least one of the vertices of {w0'wl' " " wm-2 } '
Since each Si was chosen with a maximal number of edges,

Lemma 2 implies that S i = S for all i e Tb-1'

For some fixed k s Tb_l , consider the triple

(ek , Gk , Sk ) . For each i e Tb_ l , S i = Sk and therefore

E(S i ) () E(Gk) _ ~ . Since E(Gk) n ({ei }U E(Si))

ei e E(Gk ) for all i e Tb_1 . This contradicts the fact

that Gk has n edges and completes the proof .

k, 0 < k < m - 2,



Examples

In general it is difficult to determine the graphs in

R(G,H), even if the pair (G,H) is Ramsey-finite . In fact,

the problem appears to be very difficult for R(mK21 H) .

There is one trivial case and some small order cases that are

known . For example one can verify directly the following

R(K2 ,H) _ W .

R(2K2' 2K2 ) _ {C5' 3K2 1

	

(4)

R(2K2 .K 3 ) _ {K5 .2K3 .G}

where G =

Although for a fixed m and a fixed graph H,

R(mK2' H) is finite, the cardinality of the set R(mK2' H)

is not bounded as m and H vary . For H either a dense

graph or a very sparse graph this can be exhibited . First

for n > 4 a family of ((n+l)/2) non-isomorphic graphs

in R(2K2' Kn) will be described . Next for n > 3 a

collection of n - 2 non-isomorphic graphs in R(2K2' Kl,n )
will be described .

Let K be a graph isomorphic to Kn+1' Let V(K) = RU S

be partition of the vertices of K, and denote the cardinality

of R by r . To each edge e = xy with {x,y)S R or

{x,y} S, associate a vertex ve not in K and let ve be

adjacent to each vertex of K except for x and

1 < r < ((n+l) /2) , denote this graph by Fr .

- 17 7 -
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and

Clearly Fr is not

1 < r

	

r' < ((n+1)/2) .

Color the edges

2K2 ,

a triangle . It

is no red

or

Fr

any triangle

- T contains a

Fr->(2K2,Kn) . Let

Iv(Fr)2) + ( n+
1-r)

IE(Fr) , _ (n+~ + (n-1) «r, + (n+2-r)
)2

	

2

of Fr with colors red and blue .

then the red subgraph is

is

isomorphic to Fr , for

It will be shown that F r

easily checked for any vertex

T contained in Fr that Fr -

f be an arbitrary but fixed edge of

e R(2K 2 ,Kn ) .

If there

either a star or

v of F

v and
r

complete graph on n vertices . Therefore

Fr and consider the graph Fr - f . There exists an edge

e of K_( Fr such that f is in the unique complete graph

on n vertices which contains ve . Select a triangle T

of K C- Fr which contains a but does not have all of its

vertices in the same term of the partition . One can check

directly that Fr - f - T does not contain a subgraph

isomorphic to Kn . This implies Fr - f 4->(2K21 Kn ) and

proves Fr c R(2K2' Kn ) .

For 3 < t < n, let L be a completely disconnected

graph on t vertices . For each vertex w of L associate

distinct vertices v(w),vl(w), . . •, vn-t+l(w) not in L.

Let v(w) be adjacent to precisely the vertices

vl(w) .v2(w), . . .,vn-t+l(w)



and the vertices of L except for w. Denote this graph by
Ft. Thus F t has t + t(n-t+2) vertices, to edges, and

is the union (not vertex disjoint) of t stars with n edges .

One can check directly that Ft a R(2K2' Kl,n ) for 3 <t< n .

Conjectures

For an arbitrary graph H, the pair (mK2 ,H) is

Ramsey-finite . In (3) it was proved that if H is a

2-connected graph then the pairs (K,,2' H) and (K1,31 H)

are Ramsey-infinite . This leads one to the following con-

jecture .

Conjecture l : If G is a graph such that for any graph H,

the pair (G,H) is Ramsey-finite, then G is isomorphic to

MK2 for some positive integer m .

A more difficult problem is to determine which pairs

(G,H) are Ramsey-finite . Known results give support to the

following conjecture .

Conjecture 2 : The pair (G,H) is Ramsey-finite if and only

if either

1) G or H is isomorphic to mK2 or

2) G and H are both forests of stars with an odd

number of edges .
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