
The size of the values assumed by the function F provides a meas-
ure of the nonmonotonicity of f. In particular, F is identically zero
if and only if f is strictly increasing .

Here we shall take f to be (p, Euler's function, and study the
associated function F 4„ which we henceforth call F.

We shall show that F(n)/n is asymptotically representable as a
function of T(n)/n . Then we shall prove that F(n)/n has a distribu-
tion function. We shall study max,,, F(n) and min,,,, F(n) and in-
vestigate conditions on (p(n)/n which lead to large and small values
of F(n)/n .

We express our thanks to Professor Carl Pomerance for a number
of helpful comments and suggestions, and to Dr. Charles R. Wall
for his unpublished data on the density function of Euler's function .

2 . An asymptotic formula for F. For 0 < a, b < -, let

0(a, b) = #{n a : rp(n) <_ b} .

We have
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1 . Introduction . Let f be a real valued arithmetic function
satisfying lim n,--f(n) = +- . Define another arithmetic function
F = Ff by setting

Ff(n) = #{j < n: f(j) > f(n)} + #{j > n : f(j) < f(n)} .

#{j < n : p(j) > (p(n)} = n - 0(n, (p(n)) + ~{j < n: q)(j) = (p(n)} ,

rr{j > n : (p(j)

	

(p(n)) - 0(n, ~p(n))

Thus

F(n) = n + 0(-, (p(n)) - 20(n, q?(n)) + -"{j < n : rp(j) = cp(n)} .
It is known that

83

0(°°, Y) = cy + 0(ye- '/ ' Og y ) ,

where 5 denotes the constant 1,(2)C(3)/C(6) ti 1.9436 [1] ; and

0(x, v) = xg(y/x) + 0(ye - „°g ') ,

where g is a continuous, increasing function on [0, 1] which is de-
termined by a contour integral [2] .
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Moreover, g is strictly concave, as we now indicate . We have
from [2, Eq . (12)] that

(0)

	

ag'(a) = g(a) - Ds,(a) , 0 < a < 1 .

Here

It is known that this limit exists and defines a continuous function
of a (cf. [6, Ch 4], [7, § 5]) . Clearly Ds, is nondecreasing. In fact,
it is known to be strictly increasing on (0, 1) [8, pp. 319, 323] .

If we integrate the differential equation for g and use the fact
that g(1) = 1, we obtain

and differentiating again, and differencing, we get for 0 < u < v _< 1

Thus g
Noting that

we have

D,(a) = lim 1#{n <--_ x : q)(n) < an} .
X-- x

lg(a) = a + a
J
t-ZD4 (t)dt ,

g'(v) - g'(u) _ -
v
Dy,(v) + 1D„ (u) - ~ u t -2D s,(t)dt

is strictly concave on (0, 1) .

_ -
~
v t -1dD,(t) < {&(u) - D,(v)}/v < 0 .
U

#{j < n: (p(j) _ ~p(n)} < 0(-, (p(n)) - 0(-, cp(n) - 1)
= 0{<~>(n)e J1ogp(n)} '

F(n) = 1 + ~ T(n) - 2g(T(n)) + 0{q)(n) e-~'°gscn)~
n

	

n

	

n

	

)n

If we set

(1)

	

h(u) = 1 + Cu - 2g(u)

and enlarge the error we obtain the asymptotic formula

(2)

	

F(n) = h«p(n)/n) + 0(e-rl°g ° )n

Below is an approximate graph of h. Note that h is strictly
convex .
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h o

3 . A distribution function.

THEOREM 1. F(n)/n has a continuous distribution function .

Proof. Let h, denote the minimal value of h and u, the point
at which the minimum is achieved . Let h* denote the branch of
the inverse function of h which maps [ho, 1] onto [0, u.], and let h**
denote the branch which maps [ho , C - 1] onto [uo, 1] . Also, let
h**(a) = 1 for C - 1 < a < 1. Note that Ja* and h** are well de-
fined, even at u,, on account of the strict convexity of h .

Since D, and h are continuous, for h, 5 a 5 1 we have

D,(h**(a)) - D,(h*(a)) = lim 1 #{n 5 x: h*(a) < A(n)/n < h**(a)}x__ x

	

-

uo
FIGURE 1

= lim 1 #{n <_ x : h(p(n)/n) <_ a} ,

a continuous function of a which vanishes at a = h, and equals 1
for a = 1 .

Given s > 0 we have

Km 1#{n S x : h(~ (n)) <- a - El < lim 1 #{n < x: F(n) = a}X-- x

	

n

	

}

	

x-- x

	

n

< lim 1#{n 5 x : F(n) < a} < lim 1 #{n <- x : h(7(n» 5 a +
- z--x

	

-

	

n = --_ x

	

-

	

n

It follows that if ho <_ a <_ 1, then

D,,(a) = lim1 {n <_ x : _F(n) < a} = D,(h * *(a)) - D,(h*(a))-~ x

	

n

Further, DI;(a) = 0 for a < ho and DF(a) = 1 for a > 1 . Thus F(n)/n
has a continuous distribution function .
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4. Upper estimates . We shall exploit the observation, based
on the graph of h, that F(n)/n is near its largest when (p(n)/n is
near 0 .

LEMMA 1 . For all large x there exists an integer n, = n,(x)
such that x - x log - ' x < n, < x and

(3) T(na)/n o - e-7/log log x - min p(m)/m .
1<m~x

Proof. Let p,, denote the rth prime (in the usual order) and
P(r) the product of the first r primes. Choose r' = r(x) to be the
largest integer for which P(r') <_ x/log x . The prime number theorem
implies that

E log P - P, ,
PSP,.i

and hence, by an easy calculation, p,., - log x .
Set n, = [x/P(r')]P(r') . Then x - P(r') < n, <_ x and

T(n,)<lI(1-1)	e
-r	

e
-r

no

	

PSP,r

	

p

	

log p r .

	

log log x

It is known (cf . [5, Th . 328]) that

min (p(m)/m -v e-r/log log x .1<.<x

THEOREM 2. As x - -,

max F(n) = x - (Ce -- r + o(1))x/log log x .

Proof. Let a, (presently to be specified) be a small positive
number such that h(a) <--_ h(aj < 1 for ao < a < 1 . Suppose first
that T(n)/n >_ a, . Then there exists an s > 0 such that F(n) < (1- s)n
for all sufficiently large n and if x is large, F(n) < (1 - s)x for all
n S x and satisfying g9(n)/n ? a. .

For small positive values of a we use the approximation

g(a) _ Ca + 0{exp (-exp 1/(ka))} ,

which holds for some absolute constant k [2, Lemma 4] . If we
combine this estimate with (1) and (2) we obtain

(4)

	

F(n) = 1 - ~`)(n) + 0{ exp (- exp
kp
n(n))} + 0(e-~``°g") .

The function a f-> 1 - Ca + c exp {-exp 1/(ka)} is decreasing for small
positive a. Choose a., to be positive but so small that the function
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is decreasing for 0 < a < a o and h(a,) > C - 1.
Now for p(n)/n < a, we use the inequality

,p(n)/n >- (e l + 0(1))/log log x , 1 < n <- x,

to obtain the bound

F(n) x{1 - (Ce- + 0(1))/log log x} , 1 n x .

The o(1) term tends to zero as x -> o- (independently of n) .
On the other hand, taking n, as in the lemma yields

F(n,) = nJ1 - (Ce- 1 + 0(1))/log log x}
= x{1 - (ce- Y + 0(1))/log log x} .

Define a sequence {nd of "new highs" of F by the condition
F(n) < F(n k ) for all n < n k .

We note for later use that cp(n k)/n k - e-/log log nk as k - - .
We can see this by noting first that T(n k)/n k -> 0 by the first para-
graph of the proof of Theorem 2. Then we write (4) with n = n k
and Theorem 2 with x = n k and equate the expressions to obtain

1 - CP(nk) (1 + 0(1)) + 0(e-J '°gn) = 1 -
Ce-Y+°(1) .

nk

	

log log n k

Theorem 2 has two immediate consequences .

COROLLARY 1 . F(n) < n for all sufficiently large n .

COROLLARY 2 .

nk}i - nk = o(nk/loá log nk) , k -->

Proof. For n k < x < nk}1 we have

max F(n) = F(nk )
nSz

or

x 1l - Ce-Y
	+0(1) - n 1 - Ce	Y	 + °(1)log log x

	

k{

	

log log n k

Let x nk+i- to obtain the corollary .

REMARK . The size of n or nk plays a vital role in the two
corollaries. The first corollary is false for small n as the examples
F(13) = 13 and F(73) = 75 show .

The proof of Theorem 2 implies that (p(n k)/n k -> 0 as k -> - .
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Numerical computation shows that the nk's are primes for all nk
500 (the limit of the calculation) . The explanation of this anomaly
(apart from the effect of the error term) is as follows . Let ul be
the number in (0, 1) for which h(u,) _ C - 1 (cf . (Fig . 1)) . It appears
from (4) that u, .03 . Simple estimates show that p(n)/n > .03
for all n G ee 18 . Thus for n of modest size, the largest values of
h(p(n)/n) occur for (p(n)/n near 1 .

We conclude this section by establishing a lower bound inequality
for nk+L - nk.

THEOREM 3 . For any s > 0

nk+1 - nk > nk- f

Proof . Given s > 0 and nk , let p* = p*(k) denote the largest
prime such that rj,; P . p < nk . The prime number theorem and
simple estimates imply that p* - log nk . We shall show that at
most ap*/log p* primes p < p* fail to divide nk . Similar estimates
apply for nk, and thus nk and nk -, have at least 7c(p*) - 2[sp*/log p*]
prime factors in common .

Let w be an integer such that

k

	

- .

7r(w) _ 7r(p* ) - 2[Ep */log p *]

ve

nk+l-nk>_ TIP= UP H P-'-
p5_w

	

PSP- w<PSP-

log p < (log p* )[7c(p* ) - 7r(w)] < 2sp* ,
w<PSP•

nk+1 - nk > * exp [-lep*] > nk̀
2

We introduce the integer

N= nk H P-'P<P` 11P •P<P*

Since N <_ nk we have F(N) <--_ F(n k) . We can estimate F(N) and
F(nk) because of the special form of N and nk . Also, N is not much
smaller than nk . These facts will enable us to show that

#jp < p * : p, nk} < Ep*/log P* .

Let v denote the number of primes p < p* such that p , n k .
We suppose that v > sp*/log p* and shall deduce a contradiction .
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At most v + 1 prime divisors of n k (counting multiplicity) can exceed
p*, as we now indicate . Suppose that there were at least v + 2
prime divisors of n,4 exceeding p* . For each of the v primes p i S p*
with p i , n k associate a prime p i > p* with pi I n k . Each of the p"s
can be used at most as many times as it occurs in the factorization
of nk . We have

nk>n'=nk A/Pi ;

further n' is divisible by each prime not exceeding p* and by at
least two primes exceeding p* . Thus nk > n' > p*' 11P-P* p • On the
other hand the definition of p* implies that nk < 2p* H P, P . p, con-
tradicting the last inequality .

Let y and z denote composite numbers such that 7r(p*) - 7r(y) = v,
z(z) - z(p*) = v + 1 . Then

`Pnk - -

	

-

	

1-II

	

- II

	

- I
nk

	

P=P*
1

	

p P=P*
1

	

p

	

Pi
P`n,4

	

Pink

> 11 1-

	

'
7~7 1- 1

	

~ 1
PIP .

	

p v<n1P*(

	

p) ,P<z

Letting v = 7)p */log p*, s < 72 <_ 1, we have

lc(y) _ lu(p * ) - v = (1 - )2 o(1))p*/log p*

and so y = (1 - )2 + o(1))p* . Similarly z = (1 + 72 + o(1))p * . Thus

H (1 - 1) ' 11J, - 1) _ (logp*)z (1 + 0(e-J'Og n)ü<PSP*

	

p

	

P*<Pp

	

(log y)(log z)

Differentiation shows that, for fixed q, the function

log' q	
log ((1 - )I)q) log ((1 + YI)q)

is increasing for 0 < - < 1 . Thus

	(logp*)' 	>

	

(log p*)'
(log y)(log z) - log ((1 - s)p*) log ((1 + s)p * )

> 1 _ s + s'/2 +0(s3) _1
1 + s -- s'/2 + 0(s3 )

log p*

	

log p*

1 +	6' 	

+ O(
~3

	

}	
Ez

	 )
'log p*

	

log p*

	

log' p*
Thus

v

-1

	

2

Y<P P* (1 p ) P .11<P<2 (1 - p) ? 1 + 2 log p*
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provided that k is sufficiently large and s sufficiently small. It
follows that

,P (n x)
> (1 + 2 log p*) P?P"

(1

	

1
P

We have p(N)IN - e--/log log N because of the form of N, and
T(n l,)/n x - e-1/log log nx by the argument following the proof of
Theorem 2. It follows from (4), that for some a > 0,

nx>N=

F(x) = 1 - 5P(x) + 0{exp (-log" x)}
X

	

x

holds for x = N and x = n x .
We combine the formulas for F(nx) and F(N) with the bound

we obtained for (p(n x)/n x , the inequalities

nx
R p

and p(N)/N < TIP<P* (1 - p- ') to obtain

F(nx) < N { 1 - 5(1 + s2 ) II (1 - I ) + ce- '° g" ` }
1 _ 1

	

2log p* P<P*

	

p

P *

< N{1 - II (1 - ) - c exp (-log" N)} <_ F(N) ,
P<P*

where c is a positive constant . This inequality is impossible, since
the nx's are the new highs of F. It follows that at most sp*/log p*
primes p < p* fail to divide n, and hence our lower bound for
n,-, - nx holds .

5 . Small values of F(n)/n . We have shown in § 2 that F(n)/n -
h(T(n)/n) . The function h attains a minimal value ho at an interior
point uo of (0, 1), as we presently shall show . The point uo is unique
by the strict convexity of h . Thus F(n)/n is, asymptotically, near
its minimal value ho when cp(n)/n is near uo .

Numerical data suggest that u o is near 1/2 and ho is near 1/3 .
We shall show that .473 < u o < .475 and .321 < h o < . 324 .

LEMMA 2 . h'(0) _ -C, h'(1) _ C .

Proof. We have by (1) that h'(u) _ - 2g'(u) . The estimate
(cf . [2], Lemma 4)

TI p > nx - H p > ? 2 x(1

	

* )
P<P*

	

P<P*

	

p

g(u) _ Cu + 0{exp (-exp 1/(ku))}
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implies that g'(0) =

	

and hence h'(0) _ -

	

Equation (0) implies
that g'(1) = 0, and hence h'(1) _ C .

Thus the minimum of h is achieved in the open interval (0, 1) .
We shall now establish a formula which will lead to estimates

for g(1/2) . This will be useful because of the close connection be-
tween g and h and the proximity of u, to 1/2 .

LEMMA 3 .

g(1/2) = 2 + 6 - l ~ 4 - gC 4 » - 8 - gC 8 »

6 - g(16» -
. . .

J

Proof. We estimate

{n < x: n odd, p(n) < y} ,

a problem closely related to the main theorem of [2] . The generating
function

F(s, z) def n 3~(n)
n=1

= 1 111 + P I(p - 1)-3(1 + p-,-= + P", + . . .)}
P

= 11 {1 - p-3-'
+ p-3(p - WIC(s + z)

P

def
11 (s, z)C(s + z)

was used in [2], and the function g was represented by

g(a) = 1 r"2+i_ 11(1 - z, z) a'dz , 0 < a < 1 .2Zi 1/2 -i- z(1 - z)

The formula is valid at the end points by uniform convergence
the integral .

We delete the even integers and write

F,(s, z) _

	

n- q)(n)- z
n=1
n odd

= II (s, z)C(s + z){	1- 2-8-2

	

}
.

1 - 2-3— + 2 -3

The functions F(s, z) and F,(s, z) have the same singularities in the
region

{(s,z)eCx C:Res+z>0},

of
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because any singularity of the new factor (1 - 2-8-z)/(1 - 2_8-z + 2- s)

is cancelled by a zero of H (s, z), and the new factor has no zeros
in this region .

It now follows, mutatis mutandis, that

go(a)
def lim 1#{n < x: n odd, q)(n) < ax)

x-.w x
1 ( 1 2+"° 11(1 - z, z) az(1 + 2z)- 'dz

2zi 1i2-i

	

z(1 - z)
1 f1'2+i- rj (1 -	Z Z) (

	

( a)' + a x

2zi J1/2- íLO z(1 - z)
~(a)'_

2

	

4

	

( 8 )

	

} dz

= g(a12) - g(a/4) + g(a/8) - . . .

If we note that go(1) =1/2 and sum the series C/4 - C/8 + C/16 -
we obtain the lemma .

Now g is concave and g(s) - Cs as s --> 0. Thus the series in
the formula for g(1/2) is alternating with terms decreasing to zero,
indeed at a geometric rate . To further exploit our formula we
must first estimate D4,(t) for t near 0 .

LEMMA 4 . D,,(t) < 1213 , 0 < t < 1 .

Proof. By Chebychev's inequality

and we estimate the last sum by writing

(n/T(n)) 3 = (1 *,G)(n)

where * denotes multiplicative convolution and R is a nonnegative
multiplicative function satisfying G(p)=(p3-(p-1)3)/(p-1)3, 6(p')=0
for all primes p and all exponents a >- 2 .

Thus

Now

t-3# {n<x : (p(n) <t~=t-3

	

1<~(n
3

	 )n

	

)

	

nsx

	

ns_x ~(n)

( n
\ 3
=

	

x ]R(n)
n,5_x ~(n)

	

n=.x - n

x /9(n) = x rl (1 + G(P)
=1 n

	

p

	

13
= x n ~

1 + 1 p3_(p_ 1)3 def 7x .
p

	

p (p - V
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We have

and

is easy to check that for all p >_ 3

6p'+4p3 -3p2 -p+1 <7p' .

It follows that

32

	

1-.y

	

~ p	3p

	

(

	

1
p

	

p(p - 1+, 3 } 1

	

p2
}

=~(2) 3 11 1+ 6p'+4p3 -3p2 -p+1
p ~

	

p 7

7
< C(2)3(1 + 128/ l(l

+ 3)(1 + 53 )(1 } 73)}exp { P 1 7p-31

7

	

p-3 < 7 ~~t-3dt = .035 .
p~:11

	

10

Thus 7 < 12, and D,(t) satisfies the claimed bound .

We combine the last two lemmas with numerical data of Charles
R . Wall [10] on the density function D, to obtain upper and lower
estimates for g(1/2) .

LEMMA 5 .

2 + 6 - .00154 < g(1/2) <2 + 6 - .00075 .

Proof. The alternating series representation of g(1/2) leads to
the inequalities

2 + 6

	

-g\4» (8 -gC8 » +(16-g(6»

g(1/2) 2 + 6 - ~ (-~4- - g \ 411 - g - g( g M

The differential equation (0) has the solution

(5)

	

u-Vu) _ C - ~ 0D,(t)t-'dt .

The constant is evaluated here by noting that g'(0) _ C. The integral
converges at zero by the preceding lemma . Thus we have

2 k2-kC - g(2-k) = 2-k
J D~,(t)t 2dt .

o
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(4 -g(4» - (8 - g( 'S » + (16 - g(16»
__ 1 1/4

	

dt

	

1 1~8

	

É

	

3 ` 1~1o

	

dt
4 ~vsDs'(t) t 2 + 8 1/16D

,(t)
t2 + 16 Jo

D<,(t) t2

We estimate the three integrals from above, using the bound of the
preceding lemma for 0 < t <- .007 and the upper bounds of Wall for
.007 < t < .25 . We obtain the upper bound .00154 .

Similar treatment of

(4 -g(48 -g(8//

leads to the lower bound .00075 .

LEMMA 6 . (Main formula .)
1/2

2D~J/2) - 1 + ~/6 + 2R =

	

t-'dD~(t) ,
uo

where .00075 < R < .00154 .

Proof. We have by (5)

g(uo) _ g(1/2) _ ( 1/2
D,,-(t)t -2dt .

U,

	

1/2

	

uo

From (1) and the fact that h'(uo) = 0 we get g'(u,) = s/2 . Combining
this with (0) we obtain

g(u.) = </2 + D,.(uo)

This expression, Lemma 5, and the preceding integral yield

	( )

	

Y

	

1/2
	 u °

	

1 + s + 2R - D,(t)t-2dt .
u o

	

6

	

uo

Integrating by parts we get the desired expression .

THEOREM 4 . u, > .473 and ho < . 324 .

Proof. Starting from Lemma 6, we write
5

	

('

	

l
2D,(1) - 1 +

	

+ 2R = {

	

.}_ / . 4751 t -1dD (t)
2

	

6

	

.475

	

u0

>_ 5{Ds,( .5) - D,(.499)} + 499 {D,( .499) - D,,(.498)}

+

	

476
	{D,( .476) - D,(.475)} +

.475
	 {D4,(.475) - D (zi,)} ,
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Note that this inequality is valid regardless of whether u o _<_ .475
or not .

We rearrange terms, isolating D,(u,) :

.475
) 1 - 6 - 2R + (

.499

	

5 )D,( .499)

+ . . .

	

( 1 - 1 )&(.475) .
475

	

.476

If we use the upper estimate for R and the lower estimates of [10]
for D,á ( .475), . . •, D,(.499), we find that Ds,(u,) > .3380 .

The stated inequalities follow at once from this bound. First,
we have from [10] that D,(.473) < .3362, and thus u, > .473 . Next,
it follows from Equations (0) and (1) that h, = 1 - 2D s,(uo ) . Thus,
h, < .324 .

We also have bounds for u o and h, in the opposite directions .

THEOREM 5 . ua < . 475 and ha > .321 .

Proof. Using Lemma 6 again, we write

2D,(1) - 1 + 6 + 2R = 1 - 47 +
J
"" t-VD4,(t) .

This time we express the first integral as an upper Riemann-Stieltjes
sum and sum by parts to obtain

Thus

(6)

~ .5
t- dD,(t) <

D.499,(.) + (.498

	

1
	 )D,( .499)47 .499

L
. . . + ( .475

	

1
	 )D,-(.476) - D,(.475)

.476

	

.475

475t_'
dD~(t)

> D,(.475) - I ,J ..0

	

.475
where

I = 1 - 6 - 2R + (
.499

	

5)D` (.5) + . . . ( .475

	

476
	 )D

`
,( .476) .

We estimate I from above by using the upper bounds for
D} (.476), • • •, D,( .500) from [10] and the lower bound for R from
Lemma 6. We obtain the inequality

47 o

uo
t dD,(t) >_ D~475
	 475)

- •7145 ,
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from which both assertions of the theorem will follow .
The bound D,(.475) >_ .33969 from [10] implies that

476
t-'dD,(t) > .0006 > 0

uo

and hence uo < .475 .
Next, since uo > .473, we obtain from (6)

.473
	{DS,(.475) - DS,(uo)} > D,( .475)

- .7145 .
.475

This inequality and the bound D,,( .475) < .34166 from [10] yield
D,(uo) < .3394 . Thus, we finally obtain ho = 1 - 2D,(u o) > .321 .

6. Lower estimates for F. The sequence F(n) tends to infinity
with n, since

F(n)/n - h(T(n)/n) >_ ho > 0 .

In this section we are going to establish

THEOREM 6 . As x --> -,

min F(n) -V h,x .
n>2

This estimate follows easily from the following

LEMMA 7 . Let a e (0, 1) and let s > 0 be given . Then there
exists an X (depending on s and a) such that for each x >_ X, the
interval (x, x + sx] contains an integer j with I T(j)/j - a I < s .

Proof. The argument proceeds in two steps . First we obtain
some integer jo (not necessarily in (x, x + sx]) composed of at least
two distinct prime factors, for which j gp(jo)/jo - a l < s . Then we
show that a suitable multiple of jo lies in (x, x + sx] and satisfies
the same T estimate .

Let a = a, . Let q, be the smallest prime p. for which 1 -
py' > ao . Set a, = ao(1 - q l- ') - ' and j, = q, . Repeat the foregoing,
choosing q, to be the smallest prime p, exceeding q, for which
1 - py1 > a, . Let j, = q,q, and a2 = a,j - q2')- ' . If 1 > a2 > 1 -
s/(a + s), we can stop here. Otherwise we continue until we obtain
an integer jT = q,q2 • • • gr, r = r(a, s), such that

a<<p(j,)/j,<a+s .

This is possible to achieve since 1 - p,' -

	

as v --

	

and
H'- ' (1-pvl)=0 .
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Set j y = j* and consider the sequence {j*glg2 : a, b = 0, 1, 2, 3,

	

}.
Clearly

p(j~)Ij* _ (p(j*qla2)l(j *qlq2)

It suffices to show that for each large x the interval (x, x + sx]
contains some giq2, a, b > 0 .

It is well known that the sequence (q,q2 : a, b e Z} is dense in the
positive real' for q,, q 2 distinct primes . Choose a > 0 and -b < 0
such that 1 < gig2-b < 1 + s . Given x, set

and ak = ql l k¢g2
_kb '

(0 < k < t)
We have

and
1 < ak+,lak = giq2 b < 1 + s .

Thus there exists some k e [1, t] such that x < q, ~ "q'-kb < x + sx .
Finally, we must insure that the exponent s - kb >--_ 0 . This we

do by noting that a, b, and t depend only on s and are fixed, while
s ->

	

with x.

LEMMA ó . Given s > 0 there exists an X = X(s) such that for
each x >_ X the interval (x, x + sx] contains an integer j with
h(cp(j )/ j) < h o + 2s .

Proof. Since h is convex and differentiable we have

I h(x) I <_ max {I h'(0) 1, I h'(1)1} _ C , 0 < x < 1 .

The mean value theorem and Lemma 7 imply that there exists an
integer j in each far out interval (x, x + sx] such that

I h(T(j)lj) - ha I < 5 `p(j) - uo < Cs < 2s .

Proof of Theorem 6 . On the one hand,

min F(n) = min {nh(cp(n)/n) + 0(ne - "log n)
n>x

	

n>z

>_ xh o - cxe - "o- = hax + o(x) .

On the other hand, for given s > 0 and all sufficiently large x there
exists an integer m such that

s = [(log x)/(log q~qA
t = [(log q ,q2)/(log giq2 b )] + 1 ,

ao = (giq2' < x < (q,q2)' -'' < a,
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x < m < x + sx, h(T(m)/m) < h, + 2s .

For this integer m we have

F(m) < (h a + 2s)m + cme- °'°g m ,

and hence

min F(n) < F(m) < (h o + 2c)(x + sx) + 2cxe -
n>u

h,x+o(x) .

Let {mk},,, be the sequence of discontinuities of x H min,,,, F(n) .

(Set m, = 2 .) We can deduce from Theorem 6 the following

COROLLARY 3 . Mk I
,/mk - 1 as k > .

Proof . For Mk <_ x < mk+, we have

min F(n) = min F(n) .
n>mk

	

n>x

Thus homk - h,x . Let x ' mk+l-- •

7 . General arithmetic functions. We conclude by showing that
rather general arithmetic functions * possess an associated mono-
tonicity measuring function F = F~ . Our argument is related to
one occurring in [¢] . It appears unlikely that there are general
analogues of our numbered theorems in §§ 3-6 which are valid with-
out more specific arithmetic information .

It is convenient to estimate the two components of F separately .
Let

F,(n) _ #{m < n: (m) > y (n)} ,
F2(n) _ #{m > n: ,y-(m) <_ yr(n)} .

In both cases we assume that * is positive valued and that ,~(n)/n
has a distribution function D.,~ .

THEOREM 7 . Let

	

be as above . Then, as n -- -,

(7)

	

F,(n) _ *(n)

	

{1 - D,~(t)}t-Zdt + o(n) .

Further, assume that there exist positive numbers e and 6

(8)

	

#{m e (x, 2x]: *(m)/m < y} <_ exy`+ - '

holds for all y e (0, 1) and all x >_ 1 . Then

such that



A MEASURE OF THE NONMONOTONICITY OF THE EULER PHI FUNCTION 99

y(n)/n
(9)

	

F2(n) _ (n)~

	

D (t)t-Zdt + o(n + (n» .
a o

REMARKS . A. It is a simple consequence of hypothesis (8) that
there exist at most a finite number of integers n for which ,~(n)
assumes any one value . Also, (8) implies that the integral in (9)
converges at the origin .

B . For application to the Euler (p function, the estimate

(cf . [4]) guarantees that (8) holds with a = 1 . Condition (8) is
vacuous for the sum of divisors function 6, since 6(n) > n for all
n>1 .

C. Can we replace the equal sign in (7) or in (9) by "-" and
drop the o-term? This is not generally permissible for (7) as one
can see by the case in which D,~(a) = 1 for some finite a, *(n)/n >_ a,
and there exists at least one integer m < n such that *(m) > *(n) .
The conjecture is also generally false for (9) as well, as we can see in
the case where Ds,(t) > 0 for all t > 0 . By Remark A there exists an
infinite number of integers n for which F2(n) = 0, and for these n
the asymptotic relation would fail .

Proof. We shall show that (9) holds. The proof of (7) is similar
but simpler, and is omitted .

Proof. We introduce a partition of (n, -) . Let s > 0, K e Z'
with sK > 1 and let n' = n + (n) . Write

and hence

n

Y. (m/,V (m»' < n

(n,-) =U(n+(i - 1)sn',n+isn']U(n+Ksn', -) .

For the finite intervals we use the following estimates, which
are valid f or 1 < x < y <

#{m e (x, y] : -yr(m) < ~(n)/y}
def #{m e (x, y] : ir(m) < i' (n)}

#{m e (x, y] : (m) <_ m, / ,( n)/x} ,

(y - x)D*(*(n)ly) + o(y) # < (y - x)D*(*(n)lx) + o(y)
If we set

K
= sn'

	

Dy,(,/-(n)/(n + isn'))
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and

then we obtain

Thus

Thus

F2(a, b) _ #{m e (a, a + b] : ,qr(m) < 1/r(n)} ,

+ Ko(Ksn') < F2(n, Ksn')
+

	

+ Ksn'))

+ Ko(Kcn') .

Now E, is an approximating sum for the Riemann integral

I = sn'~ t~ D*(,, (n)/(n + tsn'))dt

_ ~Ir(9a)

	

Do(s)s-'ds ,

and since the íntegrand in the first expression is monotone, we get
I I - E, I < sn' . The hypotheses on *(n)/n imply that

D,(y)~Cy"', 0<y<1 .

yr(n)/(ni-Tien')

	

l
D,(t)t-'dt 5

c
\n +Ksn' / a < (Ks)

o

	

-

	

-

Combining these estimates we find that

F2(n, Ksn'

	

n' n

	

2_ ~(n)~

	

D.~(t)t- dt
0

+ 0(sn') + Ko(Ksn') + 0((Ks)-^n') .

Now we treat the unbounded interval . For each x >_ 1 we have

F2(x, x) <_ #{m e (x, 2x]: *(m)/m < *(n)/x}
< Cx(~(72)l x)1-~-s

,

F2(n + Ksn', )

	

C<r(n)'+'(n + Ksn')-'(1 + 2- ó + 4-S + . . . )

(n)(Ks)- ° .

It follows that

F2(n) = ,r(n)~

	

D,~(t)t -2dt
a

+ 0(sn') + K2so(n') + 0((Ks)-°n') .

If we first choose s small and then K so large that (Ke)_'

we obtain the desired asymptotic .
is small,
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