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Ingliam's (nonregular) summation method (I) is closely connected with prime
number theory. An easy limitation theorem for (I) (observed by Hardy) is if
Xc, is summable (I) then c„ = o(loglog n) . We show this result to be best possible .

Ingham's summation method (1) [2] (also discovered independently by
Wintner [6]) may be defined as follows : A series Ecn will be said to be
summable (1) to A if

lim 1

	

Y dc, = lim 1

	

cd [ x l = lim i

	

mc,n = A,
x- x nz x din

	

x- x

	

d

	

x dcx m(x/d

where [x] as usual is the greatest integer in x and the three forms of the limit
are clearly equal . (I)-summability is closely connected with prime number
theory, and was used by Ingham to give an original proof of the Prime
Number Theorem (for further details of such connections see [2 ; 1 ; Appen-
dix IV ; and 5]) .
Let

I(x) = 1 I Y cdc d .
X n<_x din

Then, if I (x) = A + o(l), multiplication by x, subtraction, and Möbius
inversion show that :

If Ec,, is (I)-summable, then cn = o(log log n),

as observed by Hardy [1, Theorem 265] . We show this is best possible .
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THEOREM. There exists a series Za n which is (I)-summable andfor which
a,llog log n , 0 arbitrarily slowly as n -- oo .

In the proof p will always denote prime numbers, and µ(n) and 0(n) their
usual meanings in prime number theory .

Proof. Define the sequence {nk} by

n o = 1 ;

	

nl = 5 ;

	

for k > 2,

	

n k = fj p .

	

(1)
p<nk-i

Let

Y _ {nkld: d divides nk , 1 < d < n k_ 1 , k c N} .

	

(2)

Let S(n) be the characteristic function of .5°; that is,

S(n) = 1,

	

n e Y,

	

(3 )

= 0,

	

otherwise .

Let E(r) be a positive function tending monotonically to 0 arbitrarily slowly
as r

	

oo.
Let the sequence a n be defined by

and define b,, by

a n ,

b r = 1 Y, dad ,

	

(4)
r der

b,, = µ(r) E(r) S(r) - µ(r - 1) E(r - 1) S(r - 1) .

nklnk-1 > nk-1

dn, µd)µ \ d ) E ( d ) S ( jd )

-
I t

µdd) F .' ( d - I) E ( 	- 1) S (
á - 1)

d

~1 - Z2 ,

	

say.

(5)

We may note that since for k >- 2, n k = e e(n k -1) , and 0(n k_1) > 20(nk_2)
for k >, 3 (cf. [3]), that

(6)

and so each element of Y has a unique representation as n kld, 1 < d < nk_1 .
Clearly Zb r converges to 0 and so ~rcx rb r = o(x) as x --* oo, whence

Zan is (I)-summable by (4) . On the other hand from (4) and (5), by Möbius
Inversion,

(7)



For El , we have, since n 1 is square-free,

Hence, by definition of S, and E,

INGHAM'S SUMMATION METHOD
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1 = 14(na)
µ ád) E( ") S ( á ) ."~(

d 1 n Z

µ(na) ~1 >

	

µ
d(d) E ( ad )

> E(n1)

	

µdd) *

	

(8)dln a

	

dlnl
d <ni_1

	

d <_n y_1

But if d < n 1_1 and square-free then d is a distinct product of primes
<nZ_1 and so d I n 1 . Hence (8) yields

µ(n,) Z, > E(na) Y
t,2(d)

-
6

E(na) log na 1 + 0(l)
d<11 1-1 '7T 2

^~
62 E(n1) log 9(n1-,)

= E'(n,) log log n,

as l - oo, where E'(n 1 ) -> 0 arbitrarily slowly as 1- oo .
To estimate Z2 we need to compute when (n zld) - 1 can be of the form

n klr, 1 < r < n k_I . There are three possible cases .

Case I . k > I + l .
Then, since {n k ln k_1 } is clearly a monotone increasing sequence, we have,

if this case should hold,

n > na - 1 = nk >nk

	

na+1a

	

d

	

r -- n,-, - n, '

contradicting (6) .

Case 11 . k = 1 .
Then, if (n l/d) - 1 = n1/r, r > d + 1, and

n	dr <( 1 - 1 ) 1a r - d

	

r - 1

	

r

	

- r(r - 1) < (n 1_1) 2 ,

(9)

again a contradiction to (6) .

Case III. k < 1- 1 .
Then, if (n,ld) - 1 = n klr < n 1 _, , we have d > n,l(n 1_, + 1) . Since

only in Case III are there possibly nonzero values of S in Z 2 , we have

1
Z 1 <

	

I

	

I E( na- 1) < Kna-1

	

1

	

1

	

(10)Z2

	

d

	

d

	

n

	

'dln a

	

a

	

dlny
d>_na/(ny_1+l)

	

d>.n,/(na_1+l)
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where K is a positive constant . However,

1 =
dln,

	

den y
d_>nzl(nd-i-11)

	

d<_n y _ i}1

Hence by (10), we get

Putting (11) and (9) into (7) we get

I a ny I _ I µ(n l ) a ., I >, (1 + 0(1)) e'(n l ) log log n i

as I -->- oo, which proves the theorem .
On the other hand, as noted earlier, we must have and = o(log log n l ) .
Omitting the function e we have an example of an (I)-bounded series

(not (I)-summable) for which an = D(log log n) .
It is perhaps worth making two further remarks .

(1) Although it was known to Ingham and Wintner that (I)-summa-
bility did not imply convergence (see [2, p . 180] ; [6 p . 13]) ; the above is
apparently the first explicit example of an (I)-summable series which is not
convergent . The effective construction of such an example is a question
apparently raised in Ingham's posthumous papers .

(2) With {an} as constructed in the theorem, and Ensx y_dl n dad =
xI(x), we have an example of a function I(x) such that I(x) -~ 0 as x -* Go,

but fdsx (µ(d)/d) I(x/d) -~ 0 as x ---> oo (compare [4]) .
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