A Note On Ingham's Summation Method

P. Erdös
The Hungarian Academy of Sciences, Budapest, Hungary
AND
S. L. Segal
Department of Mathematics, Untuersity of Rochester, Rochester, New York 14627

Commanicated by H. Zassenhaus
Received September 1, 1977

Ingham's (nonregular) summation method (1) is closely connected with prime number theory. An easy limitation theorem for (I) (observed by Hardy) is if $\Sigma_{c_{n}}$ is summable (1) then $c_{n}=o(\log \log n)$. We show this result to be best possible,

Ingham's summation method (l) [2] (also discovered independently by Wintner [6]) may be defined as follows: A series Σc_{n} will be said to be summable (I) to A if

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{n \leqslant=} \sum_{d \mid n} d c_{d}=\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{d \leqslant w} d c_{d}\left[\frac{x}{d}\right]=\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{d \leqslant \infty} \sum_{m \leqslant \infty / d} m c_{n}=A
$$

where $[x]$ as usual is the greatest integer in x and the three forms of the limit are clearly equal. (I)-summability is closely connected with prime number theory, and was used by Ingham to give an original proof of the Prime Number Theorem (for further details of such connections see [2; 1; Appendix IV; and 5D.

Let

$$
I(x)=\frac{1}{x} \sum_{n \leqslant \mathbb{N}} \sum_{d \mid n} d c_{a} .
$$

Then, if $I(x)=A+o(1)$, multiplication by x, subtraction, and Möbius inversion show that:

$$
\text { If } \Sigma c_{n} \text { is }(l) \text {-summable, then } c_{n}=o(\log \log n) \text {, }
$$

as observed by Hardy [1, Theorem 265]. We show this is best possible.

Theorem. There exists a series Σa_{n} which is (I)-summable and for which $a_{n} / \log \log n \rightarrow 0$ arbitrarily slowly as $n \rightarrow \infty$.

In the proof p will always denote prime numbers, and $\mu(n)$ and $\theta(n)$ their usual meanings in prime number theory.

Proof. Define the sequence $\left\{n_{k}\right\}$ by

$$
\begin{equation*}
n_{0}=1 ; \quad n_{1}=5 ; \quad \text { for } k \geqslant 2, \quad n_{k}=\prod_{p \leqslant n_{k-1}} p \tag{1}
\end{equation*}
$$

Let

$$
\begin{equation*}
\mathscr{S}=\left\{n_{k} / d: d \text { divides } n_{k}, 1 \leqslant d \leqslant n_{k-1}, k \in \mathbb{N}\right\} . \tag{2}
\end{equation*}
$$

Let $S(n)$ be the characteristic function of \mathscr{F}; that is,

$$
\begin{align*}
S(n) & =1, & & n \in \mathscr{F} \\
& =0, & & \text { otherwise. } \tag{3}
\end{align*}
$$

Let $\epsilon(r)$ be a positive function tending monotonically to 0 arbitrarily slowly as $r \rightarrow \infty$.

Let the sequence a_{n} be defined by

$$
\begin{equation*}
b_{r}=\frac{1}{r} \sum_{d \backslash \mid r} d a_{d} \tag{4}
\end{equation*}
$$

and define b_{r} by

$$
\begin{equation*}
b_{r}=\mu(r) \in(r) S(r)-\mu(r-1) \in(r-1) S(r-1) . \tag{5}
\end{equation*}
$$

We may note that since for $k \geqslant 2, n_{k}=e^{e\left(n_{k-1}\right)}$, and $\theta\left(n_{k-1}\right)>2 \theta\left(n_{k-2}\right)$ for $k \geqslant 3$ (cf. [3]), that

$$
\begin{equation*}
n_{k} / n_{k-1}>n_{k-1} \tag{6}
\end{equation*}
$$

and so each element of \mathscr{S} has a unique representation as $n_{k} / d, 1 \leqslant d \leqslant n_{k-1}$.
Clearly Σb_{r} converges to 0 and so $\sum_{r \leqslant a} r b_{r}=o(x)$ as $x \rightarrow \infty$, whence Σa_{n} is (I)-summable by (4). On the other hand from (4) and (5), by Möbius Inversion,

$$
\begin{align*}
a_{n_{i}}= & \sum_{d \leqslant n_{i}} \frac{\mu(d)}{d} \mu\left(\frac{n_{l}}{d}\right) \in\left(\frac{n_{i}}{d}\right) S\left(\frac{n_{i}}{d}\right) \\
& -\sum_{d \mid n_{i}} \frac{\mu(d)}{d} \mu\left(\frac{n_{i}}{d}-1\right) \in\left(\frac{n_{l}}{d}-1\right) S\left(\frac{n_{i}}{d}-1\right) \tag{7}\\
= & \Sigma_{1}-\Sigma_{2}, \quad \text { say. }
\end{align*}
$$

For Σ_{1}, we have, since n_{l} is square-free,

$$
\Sigma_{1}=\mu\left(n_{i}\right) \sum_{d \mid n_{i}} \frac{\mu^{2}(d)}{d} \epsilon\left(\frac{n_{l}}{d}\right) S\left(\frac{n_{l}}{d}\right) .
$$

Hence, by definition of S, and ϵ,

$$
\begin{equation*}
\mu\left(n_{i}\right) \Sigma_{1} \geqslant \sum_{\substack{d \neq n_{i} \\ d \leqslant n_{l-1}}} \frac{\mu^{2}(d)}{d} \varepsilon\left(\frac{n_{t}}{d}\right) \geqslant \varepsilon\left(n_{i}\right) \sum_{\substack{d, n \\ d \in n_{1} \\ d}} \frac{\mu^{2}(d)}{d} . \tag{8}
\end{equation*}
$$

But if $d \leqslant n_{l-1}$ and square-free then d is a distinct product of primes $\leqslant n_{l-1}$ and so $d \mid n_{l}$. Hence (8) yields

$$
\begin{align*}
\mu\left(n_{l}\right) \Sigma_{1} & \geqslant \epsilon\left(n_{l}\right) \sum_{d \leqslant n_{2-1}} \frac{\mu^{2}(d)}{d}=\frac{6}{\pi^{2}} \epsilon\left(n_{l}\right) \log n_{l-1}+O(1) \\
& \sim \frac{6}{\pi^{4}} \epsilon\left(n_{l}\right) \log \theta\left(n_{t-1}\right) \\
& =\epsilon^{\prime}\left(n_{l}\right) \log \log n_{l} \tag{9}
\end{align*}
$$

as $l \rightarrow \infty$, where $\epsilon^{\prime}\left(n_{t}\right) \rightarrow 0$ arbitrarily slowly as $l \rightarrow \infty$.
To estimate Σ_{a} we need to compute when $\left(n_{L} / d\right)-1$ can be of the form $n_{2} / r, 1 \leqslant r \leqslant n_{k-1}$. There are three possible cases.

Case I. $k \geqslant l+1$.
Then, since $\left\{n_{k} / n_{k-1}\right\}$ is clearly a monotone increasing sequence, we have, if this case should hold,

$$
n_{t}>\frac{n_{2}}{d}-1=\frac{n_{k}}{r} \geqslant \frac{n_{k}}{n_{k-1}} \geqslant \frac{n_{t+1}}{n_{t}},
$$

contradicting (6).
Case II. $k=l$.
Then, if $\left(n_{l} / d\right)-1=n_{l} / r, r \geqslant d+1$, and

$$
n_{l}=\frac{d r}{r-d} \leqslant\left(\frac{1}{r-1}-\frac{1}{r}\right)^{-1}=r(r-1)<\left(n_{l-1}\right)^{2},
$$

again a contradiction to (6).
Case III. $k \leqslant l-1$.
Then, if $\left(n_{k} / d\right)-1=n_{k} / r \leqslant n_{l-1}$, we have $d \geqslant n_{l} /\left(n_{l-1}+1\right)$. Since only in Case III are there possibly nonzero values of S in Σ_{2}, we have

$$
\begin{equation*}
\left|\Sigma_{z}\right| \leqslant \sum_{\substack{d / 1 \\ d>n_{2} /\left(n_{i-1}+1\right)}} \frac{1}{d} \epsilon\left(\frac{n_{t}}{d}-1\right) \leqslant K \frac{n_{i-1}}{n_{t}} \sum_{\substack{d>n_{3} \\ d>n_{2} /\left(n_{i-1}+1\right)}} 1 \tag{10}
\end{equation*}
$$

where K is a positive constant. However,

$$
\sum_{\substack{d, n_{1} \\ d \geqslant n_{l} /\left(n_{l-1}+1\right)}} 1=\sum_{\substack{d, i_{1} \\ a_{<} n_{l-1}+1}} 1=O\left(n_{l-1}\right) .
$$

Hence by (10), we get

$$
\begin{equation*}
\left|\Sigma_{y}\right|=O\left(\frac{\left(n_{l-1}\right)^{2}}{n_{l}}\right)=O(1), \quad \text { as } \quad l \rightarrow \infty \tag{11}
\end{equation*}
$$

Putting (11) and (9) into (7) we get

$$
\left|a_{n_{l}}\right|=\left|\mu\left(n_{l}\right) a_{n_{l}}\right| \geqslant(1+o(1)) \epsilon^{\prime}\left(n_{l}\right) \log \log n_{l}
$$

as $l \rightarrow \infty$, which proves the theorem.
On the other hand, as noted earlier, we must have $a_{n_{t}}=o\left(\log \log n_{l}\right)$.
Omitting the function \in we have an example of an (I)-bounded series (not (I)-summable) for which $a_{n}=\Omega(\log \log n)$.

It is perhaps worth making two further remarks.
(1) Although it was known to Ingham and Wintner that (I)-summability did not imply convergence (see [2, p. 180]; [6 p. 13]); the above is apparently the first explicit example of an (I)-summable series which is not convergent. The effective construction of such an example is a question apparently raised in Ingham's posthumous papers.
(2) With $\left\{a_{n}\right\}$ as constructed in the theorem, and $\sum_{n \leqslant x} \sum_{d \mid n} d a_{d}=$ $x I(x)$, we have an example of a function $I(x)$ such that $I(x) \rightarrow 0$ as $x \rightarrow \infty$, but $\sum_{d \leqslant x}(\mu(d) / d) I(x / d) \nrightarrow 0$ as $x \rightarrow \infty$ (compare [4]).

References

1. G. H. Hardy, "Divergent Series," Oxford, Univ, Press, London/New York, 1947.
2. A. E. Ingham, Some Tauberian theorems connected with prime number theorem, J. London Math. Soc. 20 (1945), 171-180.
3. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, I 11. J. Math. 6 (1962), 64-94.
4. S. L. Segal, On convolutions with the Mobbius function, Proc. Amer. Math. Soc. 34 (1972), 365-372; Erratum, 39 (1973), 652.
5. S. L. Segal., Ingham's summability method and Riemann's hypothesis, Proc. London Math. Soc. 30 (1975), 129-142, Erratum 34 (1977), 438.
6. A. Wintner, "Eratosthenian Averages," Baltimore, 1943.
