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EMBEDDING THEOREMS FOR GRAPHS
ESTABLISHING NEGATIVE PARTITION RELATIONS

by

P. ERDŐS (Calgary) and A . HAJNAL (Calgary)

§ 0. Introduction. Notation

We started to work on this paper with the following observation . If 4
is a graph on J~ 1 vertices and establishing the negative partition relation

tt l ]) 2 then 4 is universal for countable graphs . This last statement
means that every countable graph N is isomorphic to a spanned subgraph
of q .

We have stated a number of results and problems of the above type in
our paper [4] written in 1971 . (See Problems VIII, IX, X on pp . 285-286 .)
Quite a few of these problems will be solved or modified by the results of this
paper .

S. Shelah has made an important remark concerning our problem. He
has shown that our starting result cannot be generalized for higher cardinals .

THEOREM (S . SHELAH [8], Th. 4.1, p . 11) . Let M be a countable trasitive
model o f ZFC -F- GCH. Assume M = "x, 2, T are cardinals, each o f co f inality
greater than w, q is a graph establishing x +- ([%, r])2" . Let N be the model
obtained from M by adding one Cohen real. Then N 1= "q establishes x -+-
+- ([7, c])2 and there is a graph 2C on tZ, vertices isomorphic to no spanned
subgraph of q" .

This result explains why most of this paper deals with embedding
countable graphs into graphs of cardinality R1 . We will discuss the problems
left open by Shelah's result at the end of § 6 . In what follows we work in ZFC.

Set theoretic notation will be standard . In particular, ordinals are identified
with the set of their predecessors, and cardinals with their initial numbers .
All Greek lower case letters but cc, V, denote ordinals, x, ) always denote car-
dinals, i, j, n, m denote non-negative integers .

We use the well-known partition relations, the "ordinary partition rela-
tion" the "polarized partition relation" and the "square bracket partition
relation" as defined e .g. in [3] .

AMS (MOS) subject classifications (1970) . Primary 04A60. Secondary 05C40 .
Key words and phrases . Partition relations, graphs .
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We collect the main graph theory notation below :

DEFINITION d.l .

(a) A graph q is an ordered pair (g, G) where G C [g]2 . g is the set of
vertices of q, G is the set of edges of q .

(b) Where q _ (g, G), X _ (h, H) are graphs, X is a subgraph of q if
h C g and H C G . We denote this by X C q if there is no danger of
confusion .

(c) Where q_ (g, G) is a graph, (g, [g] 2\G) is the complement of q and
is denoted by ~ q .

(d) Where q _ ( g, G) is a graph, h C g, (h, [h]2 n c,) is the subgraph
of G spanned by h and will be denoted by q(h) .

(e) A complete x-graph is a graph of the form (g, [g] 2 ) where Jg J = x .
A complete x, ~-bipartite graph is a graph _ ( g, G), where

g = go u gI , go n gi = o, i go i = x, gi = ;~,
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G= Ego,gi .1 1" = {{x,y} : xEgoAyEgi} •

We often speak about "the" complete x-graph or (x, ;.)-bipartite graph
and we denote them by [x], [x, ;,], respectively. Whenever we write [x] C q
we mean that q contains a complete x-graph as a subgraph . We use this short-
hand for other classes of graphs as well .

(f) Whenever q _ (g, G) is a graph, h C g, x E g, we put q(x, h) _
_ {y E h : {x, y} E G} • q(x, h) is the set of vertices of q lying in
h and adjacent to x. q(x, h) is said to be the valency of the vertex
x in q for h . We briefly write q(x) for q(x, g) if there is no danger of
confusion .

(g) A half (x, x)-bipartite graph is a graph G = (g, G) where g

	

go U gl ,

go n gi = o, I go _ I gi = x and there are one-to-one enumerations
of go and gl, go = {x.: a < x}, gl = {y~ : (x < x} such that q(x« , gi) _
_ {yp : a < fl < x} for a < x . We denote "the half (x, x)-bipartite
graph" by [x/x] .

DEFINITION 0 .2 . A mapping f : [g]2 -i- y is said to be a 2-partition of g
with y colors . There is a canonical isomorphism between the set of graphs
with vertex set g and the set of 2-partitions of g with 2 colors given by the
relation

a = {{x, y} : f({x, y}) = o} .

We will sometimes allow us the liberty to identify 2-partitions with 2
colors to the corresponding graph .



DEFINITION 0 .3 .

(a) Assume fo, f, are 2-partitions of go and gl with y colors. We say that

fo embeds into f 1 if there is a set h C gl such that f o is isomorphic to fI~ h. By
this we mean that there is a one-to-one mapping cp of go onto h such that

holds for all {x, y} E [go ] 2 • If fo embeds into f, we write f o N fI
As a special case of the above we state

(b) Assume = (go , Go) , qI = (go, Gl) are graphs. We say that qo embeds
into qI if qo is isomorphic to a spanned subgraph of Ő, We write qo >-a

qI

to denote this fact .

(c) We say that qo weakly embeds into qI if either qo r-a qI or qo i `ől
We denote this fact by qo > i qI .

DEFINITION 0.4 . (Establishing negative partition relations) .

(a) Assume = (g, G) is a graph, and A o , 4 1 are either [x] or [x, ~] or
[xlx] for suitable cardinals x, ; . We say that q establishes the negative partition
relation x _4- (Ao, J J)2 if 40 q, dl

	

-1 q and I g I = x .
The reader at first may skip the following more general definition which

we will only use to give hints to possible generalizations of the theorems we
will state .

(b) Assume f is a 2-partition of g with y colors . Assume further that
A„ : v < y are symbols like A, 4 1 appearing in definition (a) . We say that f
establishes the negative square bracket relation

x ~- [Av]v

if g I = % and A„ qXv for v < y where 9t, = g and

Gi. _ {{x, y} E [g] 2 : 1({x, y}) 74- v} .

Assume that Ao, A1 are one of the following symbols :

NJ, [RI, RI] , [ I/Ri]' No, R1] .

Our main aim in this paper is to characterize the class of all countable graphs

which embed in to all graphs 4 establishing ) -+- (Ao, A l) 2 .

To have short notation we make the following definitions .

DEFINITION 0 .5 .

(a) CQ(A,, Al , x) _ I% : X is a graph of cardinality less than Ra and X NG
for all graphs G establishing x -t- (Ao, A I )2 } .

3 Perodica Mat. 9 (3)
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fo({x , A) = fI({,P(x),T(y) })
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(b) Cwa(4 0, 4 1 , x) _ {X : X is a graph of cardinality less than Ra and
X N q for all graphs q establishing x -+- (0 , 41 ) 2 } .

(c) Sub aO _ { C : X is a graph of cardinality less than , and X N } .

Since we have a special interest in the case a = 1 we briefly write

Q,J0, 41, x) = C(40 , 41, x), Cwa,(4 o , 4,., x) _-= Cw(4 o, 41 , x) and Suba(q) _
Sub(q) .

Clearly

Ca(40, dl , x) - n {Suba(6,) : q establishes x __j - (4 0 , J1)2},

Cwa(4 0, d l , x) = n {Sub,() U Sub,(] q) : q establishes x +• (40, dl ) 2 } and

Ca(40, 41 , x) U Q./d, 40, x) C Cwa(40 , 4i , x) .

We will see that in the last line proper inclusion holds in some cases .
We will concentrate our main efforts on the investigation of the classes
Ca(,, 41 , x) since the classes Cwa do not seem to lead to genuinely new pro-
blems .

To give some information we describe a typical situation in advance .

DEFINITION 0.6 .

(a) We say that a graph _ (g, G) is a Sierpinski graph if there exist
a well-ordering -<0 and an ordering 1 of g such that

G={{ x,y} :x { 0 g (=> x-< l yj.
(b) q is said to be an o), real-Sierpinski graph if g consists of reals, -<0

is an w1-type well-ordering of g and -< 1 is the natural ordering .
It is a well-known fact that all wlreal-Sierpinski graphs establish 1 +-

([R1, RI]) 2 . This is the strongest relation of type s -+- (4 0, 4 1) 2 known to be
true in ZFC. In § 2, Theorem 2.1 we are going to prove that

C([ v I], [ v 1], R1) = The class of countable Sierpinski graphs =
Sub(q), for all w1 real-Sierpinski graphs q .

Since Sub(q) = Sub (-1q) holds for all a), real- Sierpinski graphs, the above
class is equal to Cw([R1 , 1], [R1 , RI] , I) as well. The theorem mentioned
gives a positive solution of Problem X . (1) of [4] .

In fact there are only two more graphs q known to establish a partition
relation of type R1 _j-- (40 , 41)2 and nice enough to restrict Sub(q) .

One of them is "the Souslin tree" (see 3 .1) which exists under the assump-
tion that Souslin's hypothesis is false, and the other "the Shelah graph"
constructed by Shelah in [8] under the assumption that CH holds
(see Def. 5.4) .



In the main line of the paper we will prove embedding theorems in ZFC,
and we will try to show them to be "best possible" assuming CH or the exis-
tence of a Souslin tree or both . However we will prove embedding theorems
assuming Souslin's hypothesis and Martin's axiom as well .

In §§ 1-- 6 we treat the cases C(4,, 4 1 , 1) . We will summarize the
results and problems concerning to the different special cases in the respective
chapters . In § 7 we summarize all the results concerning the embedding of
finite graphs. In § 8 we give some results concerning weak embeddings and
correct the result (4) (a) on p . 286 of [4] which was incorrectly stated there .

At the end of the paper we give a list of special notation we use for graphs
and classes of graphs .

1. The case 40 = [Al l], 41 = [ 1, ~1]

THEOREM 1 .1 . Assume x

	

w is a regular cardinal . Then C([xf x], [x, x] ; x)
is the class o f all countable graphs, hence

C([xlx], [x, x], x) = C([x, x], [xlx], x)
holds as well.

COROLLARY 1 .2. C([ 1/R1], [ 1, 1] , 1] is the class of all countable graphs ;
hence

holds as well .

This is a stronger result then the one we claimed in [4] (p . 285) .
First we should mention that if CH is true then Corollary 1 .2 does not

hold vacuously because of

PROPOSITION 1.3 ([5], Theorem 17/A) . Assume x > cu and 2" = x+ .
Then x+ -4- [[x, x + ]] x + .

On the other hand to the best of our knowledge it is not known if j

Í[ 1~ 1], [ v X1])2 is consistent with ZFC. Nor doe we think that x 4-

I-

	

x]) 2 has been proved in ZFC for any x > w .
The following generalization of Theorem 1 is true as well .

Assume x i w is a regular cardinal, 2 G n < w. Assume further that
f: [x] 2 - n establishes

Then h N f holds for all 2-partitions h with n colors of a countable set .
We omit the proof of this .

For the proof of Theorem 1. .1 we will need a sequence of easy lemmas .

3*
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DEFINITION 1 .1 . Assume q _ (g, G) is a graph, x a cardinal, A, B C g .
The pair (A, B) is said to be x-good for q if for all A' E [A]', B' E [B]" there
is an x E A' such that I q(x, B') J = x .

LEMMA 1 .3 . Assume _ (g, G) is a graph, cf(x) > co, I g~ = x. Assume
further that

yC E [g]" A, B E [C]" ((A, B) is x-good for both qX and -1~) .

Then X >--> q holds for all countable graphs .

PROOF . Let us first remark that if (A, B) is x-good for q, A' E [A]' and
B' E [B]" then (A', B') is x-good for q as well .

Define sequences A,,, B„ of subsets of g by induction on n E o) as
follows. Ao = g . Assume A11 E [g]" has already been defined . Pick disjoint
subsets B,,, A„+IE [AJ such that (B,,, A,,+I) is x-good for both q and q .
Then B„ E [g]", the B„ are pairwise disjoint and (8,,, B„,) is x-good for q and
-1 q for all n < m (< co) . We may now assume that X = (c), A). Claim : There
is an xo(E Bo ) and a sequence Bn(E [B„ ]x) for 1 < n < o) such that Bn C
S q(xo , B„) if {0, n} E H and Bn C -1 G(xo , B„) if {0, n}E H .

If this is not true then, because of cf(x) > (o, there are an n (1 < n < co)
and a subset A' E [Bo]" such that either q(x, B„) I < x for all x E A', or
q(x, B n ) I < x for all x E A' . This contradicts the fact that (Bo, B„) is x-good
for q and -I q .

By repeating this procedure we can obtain a sequence x„ E B;, such
that {x,,, xm } E G iff {n, m} E H .

Hence X N q.

LEMMA 1 .4 . Assume q _ (g, G) is a graph, x > o), x is regular . Assume
further that [x, x]

	

4. Then

V AoBo E [g] x 3 A E [Ao]x 3 B E [BJ

either (A, B) is x-good for G or (B, A) is x-good for q .

PROOF . If (Ao, Bo ) is x-good for q then we are home. We may assume
that the are AI E [A,]", BI E [Bo]" such that q(x, B,) I < x for all x E Al .

If (Bl, A,,) is x-good for G then we are again done . We may assume that
there are A2 E [A,]" and B2 E A]" such that 19(y, A2) 1 < x for y E B2 .
Using the fact that if x > w is regular and X is a graph all whose vertices have
valency < x then all components of X have cardinality < x, this would imply
that there are A3 E [A2 ]x, B3 E [B2 ]x such that [A3 , B3] C q; a contra-
diction .
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LE1%MA 1 .5 . Let

	

(g, G) be a graph, x > w a regular cardinal . Assume
that [x/x] q. Then

VA, B E [g]" ((A, B) is x-good for ~) .

PROOF. Assume there are A', B' E [g]" such that I ~ q(x, B') I < x for
all x E A' . Using the regularity of x we can pick sequences x,, E A', yQ E B'
so that x., y,, are all different and ya 0 U { -1 q(x,) : fl < a} holds for all a < x .
This in view of Definition 0 .1 (g) would mean [x/x] S q, a contradiction .

PROOF of Theorem 1.1. Assume q _ (g, G) is a graph establishing x +~
-+- ([x/x], [x, x])2 . Assume C E [g]" . By Lemma 1.4, there are A, B(E [CT
such that (A, B) is x-good for q. By Lemma 1 .5, (A, B) is x-g ood for -1 q as
well. Then, by Lemma 1 .3, all countable graphs embed into q .

§ 2. The case d o =,A, = [X 1 ,141 1

DEFINITION 2.1 . Let S denote the class of all countable Sierpinski
graphs .

THEOREM 2.1 . Assume x > w is a regular cardinal . Then

S S C([x, x],

	

x) .

If in addition x is not weakly compact, then S = C([x, x], [x, x], x) .

COROLLARY 2 .2 . C([R1, R1], [R1, 1] , RI) = Cw[Rv RI] , [RI , R1] , R1) = S =
= the class of all countable Sierpinski graph .

The second part of Theorem 2 follows from the following observations .
If x -t- (x)2 then, by a theorem of HANF [7], there is an ordered set (x, ~ I)
not containing well-ordered and reversely well-ordered subsets of cardinality
x and from

PROPOSITION 2 .3 . Assume (x, -~<1) is an ordered set satisfying the above
condition and let 4 _ (x, G) be the Sierpinski graph obtained by choosing -<o as
the natural well-ordering of x . Then q establishes x -F- ([x, x1)2 .

PROOF . Assume A, B E [x]" . It is easy to see that because of the assump-
tion imposed on (x, -<1) there is an x E x such that both A -G 1 x and A Il} x
are of cardinality x .

Then we may assume that B II } x has cardinality x . Obviously Al-<1x
-<,BI} 1 x and there are y E A I 1 x, z E B 1 } x satisfying either of the condi-
tions y -<o z, z -<o y .
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As to the generalization of the result for 2-partitions with more than
two colors we could not even formulate a conjecture .

PROBLEM 1 . Characterize the class of those 2-partitions h, of countable
sets with 3-colors for which h

	

f for all f establishing , -- ([ v X1])3
We mention that if g = 3, h({0, 1}) = 0, h({0, 2}) = 1 h({1 . 2}) = 2,

then h is a member of the above class .
Finally we remark that "most" countable graphs are not Sierpinski

graphs . E .g ., a pentagon without a diagonal is not a Sierpinski graph .

PROOF of Theorem 2.1. Let

	

G) be a graph establishing x -i-
x])2 . We may assume that there is a countable graph X which does not

embed into q. Then, by Lemma 1 .3, there is a C E [g]K such that no pair
(A, B) with A, B E [C]" is x-good for both q and q. We may as well assume
that C = g .

As a corollary of this, and Lemma 1 .4 we may assume that for all
G E [g]'{ there are A, B E [C]x such that

(1)

	

A n B = 0, yx E A( 1 -1q(x, B) J < x) and yy E B( q(y, A)I G x).

Call. such a pair A, B(E [g]") a convenient pair. Notice that if A' E [A ]"
B' E [B]" and (A, B) is convenient then so is (A', B') . Let now Q be the set
of diadically rational numbers r(E(0, 1)) . We claim that for r E Q we can
select a set A, E [g]" in such a way that for all r, s E Q, r C s, the pair (A,., AS)
is convenient .

We outline the construction . Applying (1) twice we can select sets
Bo, B t , B2 E [g]" such that (B;, Bj) is convenient for i < j G 3 . Call Bl
AV2 . Repeat this procedure in both Bo and B 2 . Call the sets in the middle
A114 , A314 respectively and repeat the procedure in the remaining four sets,
and so on. This procedure obviously leads to the required system .

Using that x is regular, by an easy transfinite recursion we can define
a subset D(E [g]") and a well ordering -< of type x of D satisfying the follow-
ing conditions :

Ar=A,nDE[D]" for rEQ and

for all x E Ar, y E A s', r G s ; r, ,3 E Q we have

x-<yr*{x,y}EG .

Let now X be a countable Sierpinski graph . We may assume that X = (a, H)
for some a < wl and there is a one-to-one mapping cp of a into Q such that for
all i4<y<a

{P, yÍ E H r-a qP(M G 9g(y) .
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Using that of (x) > 0J, we can select a sequence xs (~ < a) in such a way
that x. E A' (s ) and xy -< xs holds for all y < fl < a .

Then {x y , x .} E q a (W) < (P(y) a {P, y} E H for all f3, y (< a) . Hence

§ 3. Preliminaries . A characterization of Sierpinski trees

First we recall some well-known definitions .

DEFINITION 3 .1 . A poset (T, -<) is a tree if the set T -< x = {y E
y -< x} is well-ordered by -< for all x E T . tp x(-<) is called the height of
x in T. It T is a fixed tree, we will denote T x by x, T I } x by x and tp x(-<)
by ht(x) . The a-th level of T is the set T~ _ {x E T : ht(x) = a} . The length
ofT is the smallest ordinal a for which T a = 0 .

A chain of a tree is a subset X(C T) ordered by -< . A branch of a tree
is a chain of A such that y -< x E A implies y E A . An antichain of a tree is a
subset X(9; T) such that no two different elements of X are comparable in T .

A Souslin tree is a tree of length w I in which every chain and antichain
is countable. Souslin's hypothesis = SH says that there are no Souslin trees .
Results of Jensen say that SH holds in L and that SH is consistent with ZFC
ZFC -}- 2x° _ I . ( See [1] .)

DEFINITION 3.2 . Given a tree (T, -<), we denote by qT the graph with
-vertex set T, and whose edges are the pairs {x, y} for which x and y are com-
parable in T. We call qT the projection of (T, -<) . We say that q _ ( y, C)
is a p-tree if it is the projection of a tree . We use the expression p-tree because
the word "tree" is used for graphs in a different sense .

The reader will easily verify the following well known fact :

PROPOSITION 3 .1 . If (T, -<) is a Souslin-tree, then 4T establishes , -i-
4-

	

121)2 .

This is best possible since if (T, -<) is a Souslin tree then No, 1] S qT
and [Ri, I] C qT-

DEFINITION 3 .3 . From now on we denote by 9 the class of countable
p-trees .

For every ordinal a, 9. is the class of graphs which are projections of
trees of length S a.

The elements of s n g will be called countable Sierpinski trees . As a
corollary of 3 .1 we have
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PROPOSITION 3 .2 . Assume SH. Then

(a) c([RIIRI] , [RI] , RI) C 9

(b) c([R,,

	

RI) g s n ff .

We do not know if equality holds in any of the above cases . We will
prove partial results in both cases .

First we give a characterization of Sierpinski trees, which is of some in-
dependent interest .

DEFINITION 3.4 .

(a) Assume Z is a class of trees . Let Z' be the class of all trees (T, )
which contain a countable branch B such that, for all y E T\B, y = {x E T
y -< x} is a subtree of T which belongs to Z .

(b) Define a transfinite sequence of classes of trees as follows . Za con-
sists of the empty tree and of the one point tree . Assume O > 0 . Let Z e =
= Zz for z + 1 = e and let Ze = U Z, for limit 2 .

z<e
(c) We say that the tree (T, -<) embeds into the Sierpinski graph

G = (g, G) determined by -< o and -<, if

x-<y-(x-<oyAx-<Iy)
holds for all x, y E g .

(d) We denote by S e the class of graphs which are projections of elements
of Ze .

(e) We denote by To the complete binary co-tree . T o is a tree of length co
with a smallest element called root and such that each element of T o has
exactly two immediate successors .

THEOREM 3 .3 .

(a) Assume e < wl and (T, --<) E Ze . Then (T, -<) embeds into a Sierpinski
graph .

(b) Assume that the projection of the countable tree (T, -<) is a Sierpinski
graph. Then (T, -<) E Ze for some e < co l . As a corollary of these 9 n S = U Se .

e<W ,
First we prove

LEMMA 3 .4 . The projection of To is not a Sierpinski graph .

PROOF . Considering that a confinal subset of To contains a tree isomor-
phic to To , if the statement is not true then the tree T o embeds into a Sier-
pinski graph . Let Go be such a Sierpinski graph with the smallest well-order-
ing. Let q, = (a, Go), -<I is an ordering of a, -< 2 a tree ordering on a isomorphic
to To, and such that

Rl ,y«(P-<Ynp-<1Y) for P, y < a .
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Assume fl, y are two incomparable elements of a in the tree. ~ _
_ {S E a : P ~2 S), y = {S E a : y -52 S) . Then are isomorphic to T o as
well. We may assume e .g . P -<1 y .

Then 0 -<I y -<I S for S E y, hence _< 2 being a tree, S < P holds for
S E y . Then y S fl < a a contradiction to the minimality of a .

PROOF of Theorem 3 .3 .
(a) Let 5s denote the class of countable trees which embed into Sier-

pinski graphs . It is obviously sufficient to see that Z e S 5s for e < wl . Assume
Z S 6s . Let (T, <) E Z'. Let B C T be a countable branch such that (y, <) E Z
for y E T \ B . Let C = (y E T: y is a minimal element of T \ B). Let
Obviously T = B U U {y : y E C) where the summands are disjoint . By
the assumption, there are well-orderings <y° and orderings -<'Y for Y(E C)
such that

•

	

< v (u < y° v n u <y v) for u, v E y, yEC.

For y E C there is a section By of B such that By = {u E B : u < y) .
Define the orderings < o , -<1 of T by the following stipulations :

•

	

<o vau<y° v for u,vEy ; yEC

•

	

< o v-UEBY for uEBnuEy; yEC .

Choose an auxiliary well-ordering _<2 of C and put

u<ovp(By(-- BzA(By=Bzny-<2z)) for uEy,vEz;y zEC.

Clearly -< 0 is a well-ordering .

u<1 vr=>-u-<yc for u,vEy, yEC

u< l v for uEBnvEy; yEC

u< l ve~v<o u for uEy, vEz, y zEC .

It is easy to check that -< 1 is an ordering of T and

•

	

< v « (u <a v n u -<I v) holds for u, v E T .

Hence Z' C 85 . Ze S ffS follows by transfinite recursion on e < col .

(b) By (a) U Ze S is , and so u Se C S n g.
e<-,

	

e<w,
We claim that if (T, <) is a countable tree and (T <) 4 U Z e then (T, )

e< W,

contains To. First we prove that every such tree contains two incomparable
elements x, y with x, y 4 U Ze . If this is not the case then let B = {x E T

Q<%
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(x, -<) a U Ze } . By the indirect assumption, B is a countable branch of T,

and (y, ~) E U Z e for y(E T\ B) . But then (T, -<) E U Ze , a contradiction .

This proves our last claim . By a repeated application of this it follows
that all such trees contain T o indeed .'

Assume now that the projection of (T, -<) is a Sierpinski tree . By the
claim just proved and by Lemma 3 .4 (T, -<) E U Zo This implies s5 n s = U Se
as well .

	

a<-i

	

P<-3

§ 4. The cases 40 =

	

or [ 1 , ttJ 41 = [át1] • A consequence of SH

TI3EOREM 4.1 .

(a) Assume q establishes 1 ~- ([tZl 1], RJ)2 . Then either S C Sub(q)

Or qTo E Sub (q) .
(b) Assume q establishes,

	

~ti)2 . Then either Sub (q) is the
class of all countable graphs or qT. E Sub (4) .

COROLLARY 4.2 .

(a)

	

gw n s S C([ v 1 ],

(b)

	

jw C CURI/ Rl], [Rill RI)

PROBLEM 2 . Is it true (in ZFC) that

(a)

	

g.., n s C C ([ v ttl],

	

ttl) ?

(a)

	

9.71 , C C(Ni/tM, Ni], ttl)?

By 3 .2, if SH holds, then g n S and $T include the respective classes .
We will see in Theorem 4 .5 that SH C

	

RI) J- . First we prove

LEMMA 4.3 . Assume q _ (c ) l , G) is a graph such that [ 1 ] T q and

VC E [coil" 3A, B E [C]" with [A, B]'°' n G = o .
Then qT, N q.

PROOF . To establish that the projection of T o embeds into G it is obviously
sufficient to see that for all D E [w,]" we can find x E D and two disjoin
subsets A, B C [D]'~ such that A U B C q(x) and [A, Bill , n o = tl .

Assume now D E [o), ]" . Then, because of [ 1] q there is an x E D
with I q(x, D) I _ 1 . Then, by the assumption on q, there are A, B(E [q(x, D) ]II)
such that A n B = O and [A, B]"' n G = O .
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PROOF of Theorem 4 .1 . Let q _ (c)l G) be a graph establishing t~l -+-

+- ([tw Rl], tZ1) 2 or RI -+ . ([ ,,/R1], X 1 ) 2 . It follows from Theorems 2 .1 and 1 .1
respectively that either S S Sub(G) or Sub(G) contains all countable graphs or

VC E [tod" 3A, B E [C]" [A, B] 1 '1 n G = 0 •

Since [ 1 ] T -l q holds in both cases, it follows from Lemma 4 .3 that

To see the effect of S .H. on our problems we prove first

LEMMA 4.4 . Assume q _ (o), G) establishes ,

	

Then one of the
following assertions (1) (2) holds :

(1) There are a

	

< w1 with {a, ~3} G and g-o n q(fl, wl)I = t~I
(2) Putting a - a (a < ~ n {a, P} E G), there is a T E [Cod" such

that (T, -<) is a Souslin tree .

PROOF. Assume (1) is false . For X 9; (t), let

N(X) =fq(a, c),) n q(fl, co,) : {a, i4} E [X] 2\G} .

Then N(X) I < R o for all countable subsets X of w l. We define the sequence
Ta : a < co l by recursion on a so that Ta is a maximal independent subset of
col\sup N( U T~) . By the assumption [t~1] ~F -1 q, 0 < Ta i < iZj holds for all

#<a
a < co l . We claim that T = U Ta satisfies the requirement, and in fact Ta

a<m,
will be the a-th level of the tree .

First we see that 1 , 7j -< ~

	

~ -< ri V <

	

Indeed, ~,

	

implies
ri < ~. Hence if E Ta then Td being independent, ~, ri E U Tp , and { , ~} 4 G

<a
would imply ~ E N( U T~), a contradiction . Next we see that for all < a

and E Ta there is a unique rl E T. such that n -< a . Indeed, by the maximal-
ity of T,, there is an ri E T p such that {q, ~ } E G . Then q -< ~ since < 5 .
The uniqueness of ri follows from the statement proved previously and. from
the fact that T, is independent .

To see that (T, -<) is a tree we only have to show that is a partial
order. Assume ~ E T a , n E Tp ~ E Ty and ~ -< iq -< ~ . Then a < < y . There
is a ~' E T a such that ~' -< ~ . Then ~' -< 71 . Hence ~' _ ~ and ~ -< ~ .

To conclude the proof we remark that T is a Souslin tree indeed because
G establishes , -j- (t~1) 2 .

DEFINITION 4.1 . Let Ro be the class of countable complete graphs and
independent graphs (containing no edges) . For n E co let R7z+I be the class
of graphs 4 of the form g = { a, b} U h ;, a b 4 h, {a, b} q G, [{a, b}, h] 1 ° 1 c G
and q(h) E R, i .e ., R„+I is the class of graphs which can be obtained from a
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member G' of Rn by adding two new vertices which are not adjacent to each
other but are adjacent to all vertices of G' .

Finally put R = U R n,
n«

Clearly Wo E R where Wo is the "quadrilateral without diagonals",
i.e ., h o = 4, Ho = t {0, 1}, {1, 2}, {2, 3}, {0, 3)J .

THEOREM 4.5 . SH implies that

R C C([ 1], [ 1], 1) .

In § 6 we are going to prove a stronger embedding theorem assuming
Martin's axiom . We do not know if Theorem 4 .5 can be improved using SH
alone. The following is the simplest case :

PROBLEM 3 . Assume SH Let q establish t~, -* ( 1)2

Does then there exist three vertices xi : i < 2, {x;, xj }

	

for i < j < 3
and such that Iq(x o, g) n q(x l, g) n q(x2, g) _ 1 ?

PROOF of Theorem 4.5 . We prove Rn C C([R1] , [ 1], R1) by induction
on n E co. For n = 0 this is true because of R1 , (R1 , R0)2 . Assume the state-
ment is true for some n(E c )), and q _ ( co l , G) establishes R1 (át,,)2 . Then,
by SH and Lemma 4.4, there are a, i E co l and C E [co il" such that {a, #1 q G
and C c q(a, co) n q(fl 1 , col ) . By the induction hypothesis each member
of Rn embeds into q(C), hence each member of Rn+, embeds into q.

Since No is not a p-tree, Theorem 4 .5 shows that even for finite graphs
one cannot prove in ZFC that Theorem 4 .1 is best possible .

Nothing we have said up to now prevents the following to be true

PROBLEM 4. Is there a nice consistent extension of ZFC in which

C([R, , tt1], [ 1]> ,) = C([R11R1] , [R1], R1) = the class of countable graphs

and

C([ 1, 1], [ 1], R1) = C([ 1], R1) _ C([ttl], [R1], 1) = s?

§ 5. The case do = dl = [x] . Preliminaries

In this case we will be able to prove genuine embedding results for un-
countable graphs as well . First we need some preliminaries concerning the
classes of graphs which will appear in the main result . We start with the
simpler one.



DEFINITION 5.1 .

(a) Let P be the class of graphs q such that both q and q are p-trees .
(b) We briefly denote by C*(x) the class of graphs W, JXJ < x, which

embed into all q establishing x -t- (x)2 .
Note that C*(x) = CJ[x], [x], x) where Ra = x .
First we need an easy characterization of the elements of P .

LEmmA 5 .1 . Assume that for an element q E P, q and -1 q are the projec-
tions of the trees (g, -<o) (g, -< 1 ), respectively, Then there is a unique well-ordering

of g and a partition g = go u gI , g o n gI = 0 such that

holds for all a, fl E g, a E gi , i < 2.

PROOF. For all pairs a

	

E g exactly one of the relations a
a I fl holds. An easy discussion shows that

( 1 )

	

(a-<f1'n~-<1-iY)-a-<iY

	

®

	

~`

since all the cases

	

yet~:i .~

Y ~i a, a -<1-i Y , Y <I-i a

	

r„
are excluded .

Define a -< 14 as Eli E 2(a -< 14) . Then by (1), -< is transitive, hence is
a well-ordering of g . (1) also tells us that for all a y, a ~i 14 a a ~i y,
and this yields the required partition of g .

DEFINITION 5 .2. We denote by P~ the class of graphs q(E P) for which
there is a well-ordering -< of g of type at most ~ satisfying the requirements
of Lemma 5.1 .

In [8] answering a problem of us SHELAH proved that if G .C.H. holds
and x = A+ = 2A for some regular A(> c)) then there is a 2-partition f of x
with A colors establishing x -+- [x]2 and such that all three vertices span a two .
colored subgraph, i.e ., the function h mentioned on p. 212 does not embed into f.
This result certainly shows that only very weak embedding results can be
proved for 2-partitions with at least 3 colors . However we will make further
use of it since the 2-partition f constructed by Shelah has some very strong
properties even in case of 2-colors . For the convenience of the reader we will
restate Shelah's result for this special case with detailed proofs .

DEFINITION 5.3 . For A(> (o) we denote by R;, the set { f Ez 2 : f is not
eventually 1}, and by Q ;t the set {f E RA : there is a largest a(< A) with
f(a) = 11 . If there is no danger of misunderstanding we will denote the usual
lexicographical order by < .

ERDSS, HAJNAL : EMBEDDING THEOREMS FOR GRAPHS 219
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Clearly R., Qw are the set of teals and rationale, respectively . It is well
known that quite a few properties of teals and rationale remain true for these
general sets . We need the following well-known results .

PROPOSITION 5 .2. Assume Z(> co) is regular . Then

(a) IRAI = 2'~, Q ;, = 2~ _ Z 2'T<A
(b) QA is a dense subset of R, .
(c) For all subsets A, B(E [QAII") A < B implies that there is an r E QA

with A < {r} < B .
(d) Assuming 21 and 2~ there is a "Luzin set" ~_a C R~

such that, E, = x and for all subsets A(E A is dense in some non empty
intervall of R,, . We may assume ~, n Q, _ o .

DEFINITION 5 .4 . Assume > co is regular . 2~

	

2~
Define a graph q. _ (R;L, G,) as follows .
Let Q;, _ {r . : a < ~be a one-to-one enumeration of Q, Let Q° U

U QA = Qa be two disjoint subsets of Q, both . dense in R, . For x, y E R2
let %(x, y, 7) = a(x, y) = min {a : r, E (x, y)} and put {x, y} E Q, if r, E QA
for a = a(x, y) .

TIIEOREM 5 .3. (SIIELAII's theorem) . Under the conditions of 5 .4, qA es-
tablishes x -+- (x)2 .

PROOF. Assume A E By 5.2(d), there are x < y, x, y E R, such
that A is dense in (x, y) . For i < 2 there are a < ~ and rx E Q, n (x, y) .
By 5.2(c), there are r, s E (x, y) n QA such that r < ra < s and r, 4 (r, 8}
for ~ < a. Then A being dense in (x, y) there are r < u < -r« < v < s ; u, v E A .
Then a(u, v) = a, hence {u, v} E G for i = 0 and {u, v} ~ G for i = 1 .

Note that if we split Q ;, into the union of ~ pairwise disjoint sets and
define a 2-partition with colors similarly as in Proposition 5 .4, we get Shelah's
result for colorings with colors .

DEFINITION 5 .5. We call a graph a 2-Shelah-graph if it can be embeddedd
into some q. .

We will denote by Yhe, the class of subgraphs of cardinality < ~ of ~~
for all 7 (mo o) satisfying the requirements . S/te4, will be denoted by She .

The following result contains some useful information about Shelah
graphs .

PROPOSITION 5 .4 .

(a) For all Z, and for all ~-Shelah graphs q _ (g, G) there is a partitionn
go U gv go n gI = 0 (go, gI

	

0) such that either [go, gl]l l C 0 or [go, gl]1,I (1
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nG=0. Let us call such a partition a splitting partition of q .
(b) R C Ire where R is the class of graphs defined in Definition 4 .1 .
(c) All finite Shelah graphs are Sierpinski graphs .
(d) There is a finite SierpiA81ci graph which is not, a Shelah graph .
(e) Y/e

	

S

We only give hints for the easy proofs . (a) follows from the definition .
To see (b) one proves by an easy induction that Rn C She . (c) can be seen by
induction on the numbers of elements of a Shelah graph and using (a) .

X, = (4, H2), H 2 = {{0, 1}, {1, 2}, {2, 3}}, a path of length three, is a
Sierpinski graph which is not Shelah and hence (d) is true . (e) follows from the
fact that qT, is a Shelah graph .

We remark that similarly as the class of Sierpinski trees the class SL n S
can be earaeterized as follows. Assume F is a class of graphs. Let F" be the
class of graphs q _ ( g, G) for which there is a disjoint partition g = U gna

<0
+ 1

such that gw < 1 and a function f : co - 2 such that q(g1,) E F for n < o),

[g,, gj` (? G = o

221

for ri<1<w { 1 if f(rJ)-0

for i] < ~ < co + 1 if f(ri) = 1,

Now áhe (1 S is the class of graphs which can be obtained starting from
the empty graph and the one element graph by transfinite iteration of the
operation " in less than a> I steps. Since we do not actually use this in the paper
we save the reader from the cumbersome details .

Now we come to the lemma which expresses the main restrictive effect
of Shelah graphs .

LEMMA 5.5 . Assume íl

	

Ro and let C1 = (7 + 2, G) be the "typical element"
of P,,+ 2 , i .e ., for 5 < ri < ?, + 2, ~ < .1

{~, ri} E G iff 5 is even .

Then q is not a 7-Shelah graph .

(Note that we do not specify whether { 7 ,

	

1 } E G or not .)

PROOF. Assume G, . Then there is a one-to-one sequence{x,:
< ~ 4- 219: T, such that for all a a < fl < { 2 {x., xs } E Gz

iff x is even .
Let A~ _ {x. : a < < ~, + 2}, A x the convex closure of A a in R.,

and %C = 4,(A a ) for a < ~ .
We remind the reader that Q,, _ { r . : a < 7J as in Definition 5.4 .

If y = min { 6 : ra E A te } for some a < a. then Aa = A,J< r,, U A,I > r-, is
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a splitting partition of the graph X . as defined in Definition 5 .4 (a) . Now med-
itation shows that the only splitting partition of Xa is A. _ {x.} U (A,\{x~} ) .
Let y a = min {y : r,y E A.) form < .1. Then either A.~_, < {r,.} or {rl,«} < A~-,
holds for a < ~, and as a corollary of this the sequence {y. : a < 21 is clearly
increasing . On the other hand considering that xz , xA _i_ I E A« for a < 2 it
follows that ya < min {y : r. E (x ;L , x;, + ,) or r,, E (x x + r , x,)}, a contradiction .

DEFINITION 5 .6 . For each ~ > w, let Nz = (hz , H) be the following
graph .

P _ U hl, . where the summands are disjoint,

~hl, ,, = R for n < ct) ; I hx,w ~ = 1, and

[h h;t «]h' C HR for n < a < w + 1 if n is even,

[h,, h,, a ] l,l n Hz = O for n < a < uo + 1 if n is odd .

We have

COROLLARY 5.6 . Assume . (> w) is an infinite regular cardinal, and
E U P~ is a ~-Shelah graph . Then
C«+

PROOF. By Lemma 5 .5, the "typical element" of Px+2 described in Lemma
5 .5 does not embed into q . An easy discussion shows that then G N V.

§ 6. The case d o = dl = [x] (continued)

Theorem 6.1 . Assume co < ~ < x are regular cardinalls

(a) If T1 < x for all cardinal r < x then

P;t+1 C C*(x) .

(b) If there is a x-Souslin tree then

C*(x) C U P£
f<x

(c) If there is a x-Souslin tree, ~+ = 2" = x and 24 _ .~ then

C*(x) C Sub,(V) where R. = x .

COROLLARY 6.2 .

(a) Pw+i C C* ( i) = C([RI], [RI],

(b) If -1 SH . then C*( I ) C U PC

I)
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(c) I f I S .H. and C.H. holds then

C*(tt 1 ) S Sub (%0)

where %C is the countable graph given in Definition 5 .6 .

PROBLEM 5 . Does ` w >--> q hold for all graphs 4 establishing 1 _j- (R1) 2 ?

Note that W' E s n she n Pw2+ 1 .

PROOF of Theorem 6.1 . First we prove the "negative" parts . If (T, )
is a x-Souslin tree, then both qT and qT establish x _j_ (x)2 . If q >-a qT and
q >-a qT then q >--> qT, hence q E P. Thus I q I

< x implies q EU P£ and
this proves part (b) .

	

£

To see (c) assume q E C*(x) . Then, by Shelah's theorem 5 .3 q >--> qx ,

hence q is a ;,-Shelah graph . Then, by Corollary 5.6 ., q >-> V.
The positive part (a) of Theorem 6.1 is a reformulation of an old result

of us, the proof can be carried out with the methods of [6] and will be given
in details in the book [5] . For the convenience of the reader we outline the
proof. In fact the following stronger statement is true .

PROPOSITION 6.3. Assume f : [X]2 , 2 is a 2-partition of x with 2 colors,
such that there is no homogeneous subset stationary in x . Assume further that,
A, x satisfy the assumptions of 6 .1 . (a) . Then all elements of P ;L +1 embed into
the graph corresponding to f.

First we can define the canonical partition tree -< on x associated with
/satisfying the following conditions :

i < 2 . It is easy to see that (2) and (3) imply

(4) L(~, i) = L(rj, i) n ~ < ,q

	

,~

	

for i < 2 .
By Lemma 5 .1 it is clearly sufficient to see that there is a ~ < x with

cf(~) = A such that L(~, i) is a cofinal subset of ~ for i > 2 .
Now start with the remark that { ~ < x : cf (~) _ ~ I = A is a stationary

subset of x . If the claim is not true, then there is a stationary B(S A) and
an i(< 2) such that sup L(~, i) < ~ for all ~(E B). Then there is a stationary
subset C(S B) and a e(< x) such that L(~, i) C Q for ~ E C. Now using the
cardinal assumption I el' < x we would get a stationary subset D(S C) such
that L(~, i) = L(ri, i) for ~, 91 E D. However this would imply by (4) that D
is a chain in -< . Then (2) would imply that there is a stationary E(C D)
which is homogeneous for 1 - i, a contradiction .

4 Periodica Math. 9 (3)

(1) ~-<~-~<n.

Note

(2) If
(3) If
that

ri

	

then f({~, rt}) = f({

	

}).
_ ~ n ~ and V~ < ~(f({~, ~}) = f({~, })) then

_ {~ E x : ~ -< ~} . Put L(~, i) = to E 5 : f({q, }) = i}
ri .

for
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PROBLEM 6 .

(a) Can one prove in ZFC+2"°=R1-{-2"= 2 that C([,t l , 2], N11 2], 2)

does not contain all graphs of cardinality R 1 ?
(b) Assume q is a graph establishing w2 -t- (c)l -}- ) 2 . Do all graphs of

cardinality 1Z 1 embed into q ?

In [8] Shelah conjectures that there is a positive answer to (a) . The
existence of graphs establishing co t -+- (cal { ca)2 is known to be consistent
with ZFC + (2" _ R,) n (2 1, = 2 ) (see e .g . [4]) and Shelah's result does
not exclude a positive answer to (b) .

§ 7. A discussion of the results for the classes Co(do , dv 1) ;

the case 4o = [ o , ,], 41 = [ 1]9 a consequence of Martin's axiom

Let us first recall our results concerning finite graphs . Assuming -1 SH
we had a complete characterization in each of the cases considered up to now .

Co([ 1l 1], [ 1 , 1], 1) = the class of all finite graphs . By Theorem 1 .1,
Co([R1 , RI] , [ 1> 1], RI) = the class of finite Sierpinski graphs, by Theorem 2.1 .

Assuming SH Co([R1/R1] , [RI] , RI) = Co([R1 , R1], [ 1] , R1) = the class of
all finite p-trees .

This follows from Theorem 4 .1 since, e .g . by Theorem 3.3, all finite
p-trees are Sierpinski graphs .

Assuming -1 SH
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We think it is time to mention some other problems for embedding
uncountable graphs. Assume 2" = l~l n 2" _ 2 . Shelah's result mentioned
in the introduction implies only that

ONP 2], [Kv 2], 2) is not the class of all graphs of cardinality 1 ,
but this does not exclude all embedding theorems . E. g. the result just proved
says that

Pwi-F1 C C([ 2], [ 2], 2) •

Co([R1], [ 1], R1) _

= the class of all finite graphs q where both q and

	

are p-trees E U Pn,
n<w

This follows from Corollary 6.2, and Lemma 5 .1 describes these graphs com-
pletely .

We turn back to problems left open in case we do not assume SH later
in this chapter .

First we want to point out that the only case not convered by these re-
sults is do = [Ro , 1], dl = NJ



In this case we have very little information, since we do not know any
graph G establishing , -* ([R O , 1C1], [ 1]) 2 (in any consistent extension of ZFC)
which is not universal for countable graph .

However we do know that Co([R, , R1], [ 1], R1) is "larger" than
Co([ 1/R1] , [t1] ; R1) since we will prove in ZFC that it contains the finite ele-
ments of R, hence it contains NO which is not a p-tree . This will be the conse-
quence of the following

and

4*
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THEOREM 7 .1 . R C C([t~,, 1], [ 1], 1) .

PROOF . Assume q _ (c)l , G) establishes , -i' ([ o , 1] , R1)2 . Theorem
4.5 tells us that either R C Sub (q) or there is a Souslin tree . But in fact the
proof of Theorem 4 .5 tells us that either R C Sub (q) or there is a T(E [OJ,] x')
such that q(T) is the projection of a Souslin tree . But this is impossible since
the projection of a Souslin tree contains [ o, 1]

The following are the simplest unsolved cases

PROBLEM 7 . Let W1 be the pentagon without diagonals, i.e ., hl = 5,
Hl = 1 {0, 1}, . . . , {1,4}, {0, 4}} . Is X 1 E Co(AK , tM, [K], Ri)? Or is

Y 2 E Q[ o , 1] , [ 1 ], 1) ?

225

X1 is the simplest graph which is not Sierpinski and N 2 defined on p . 221
is a Sierpinski graph which is not an element of R.

As we have already mentioned when stating Problem 4 it might happen
that C([ 1], [ 1] , 1) = S in some consistent extension of ZFC . However we
know that SH is not strong enough to imply this since as a corollary of Shelah's
result 5.3 we know that

2'* =R1

	

C([R1], [ 1], ,) C S n al.. .

It would be nice to prove, as a generalization of Theorem 4 .5 that

- 1 SH

	

C([ ,], [R1], ,) = S n Xte

MA + 2` > 1Z 1 C([ J , [ 1], 1) = S

but we have no hope to do so .

For MA = Martin's axiom see [9] . We will prove one more theorem work-
ing in this direction which is by no means best possible .

THEOREM 7 .2 . Assume MA + 2 1, > R1 . Then X E C([R1] , NO, R1) for
all finite Shelah graphs X .
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PROOF. We prove this by induction on JhJ . Assume X = (h, H) is a finite
Shelah graph, and we know the statement for all Shelah graphs ` C' with
Jh'I < n .

By 5 .4 (a) we know that there is a splitting partition h = ho U hl of W,
and by symmetry we may assume that [ho , hl]',' C H. Assume _ (c )l , G)
establishes Rl -+- ( 1)2

Let us call a finite function f : o), , w a good coloring of G if

da, ~ E D(f) ({a, fl} E G - f(a) fA)-

We know that the chromatic number of q is R l , otherwise [Rl] S ~. Then,
by Lemma 5.2 of [2] and by MA + 21 ° > R1 there is a sequence f a : a < wl
of good colorings of q such that f. U f~ is not a good coloring of q for a fl < (01 .

From this we get as in Lemma 5 .3 of [2] that there exists a sequence
D. S co l(a < col) of pairwise disjoint subsets col such that [D., D,]l,l contains
an edge of G for all a < 0 < co l and ID.1 = n for some n < to and for all
a<Col .

Let D = U D., and let U be a uniform ultrafilter on col . For each

x E D, x E Da let

r(x) _ {f4 < col : a < +4 n q(x, D) n D, 0} .

Let A = {x E D: r(x) E U} . By the assumptions A meets each D., hence
JA I _ 1 .

Using that 1D.I = n for a < col it now follows that there is a B(E [A]")
such that

n {4(x, D) : x E F}1,= R l

for all finite subsets F of B.

Since q(B) establishes R1 -+- (R,)2, by the induction hypothesis, there is
an Fo(E [B]<' , ) such that W (h,) is isomorphic to q(F,) . Let now C =
_ n {q(x, D) : x E F,}. Then ICI = Rl and q(C) establishes R1 (1)2, hence
again by the induction hypothesis there is an Fl E [C]"' such that 'C(hl )
is isomorphic to q (F,) .

Then % is isomorphic to q(Fo U Fl ), hence X N q.

§ 8. On weak embeddings

DEFINITION 8 .1 . Where F is a class of graphs, let P-t~(F)

	

E 6}

We have already seen. that as a corollary of Theorems 1 .1 and 2 .1

Cw([R11 R1] , [ 1> 1] , R1) = the class of countable graphs,

cw([ I, R1 ], [R1, R1], ,) = S .
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(a) Cw([tel], [tej tel) C J U 6a (J) if SH holds,
(b) Cw([tev ] [ 1], tel) C Ae

	

if CH holds,

(c) Cw([te1], Nil RI) C S,

(d) aw n s S Cw([tm, [tm, to .
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Let us see first that the cases 4o = [tel'tel] or [tev tej, 41 = 1e1 do not
lead to genuine new problems .

By 3 .2 .

Cw([tellte], [R1], tel) e J U e (f )

Cw([tel, tel], xi, R,) s (a u e,-(j)) n
provided -i S.H. holds .

On the other hand, by Theorem 4 .1

5-w U 6?6(9w) C Cw([te,Itel] , [tel], te l ) and

(6G, n s) u c~-(j. n s) C Cw ([tel, te l ], [tel], 1) •

Note that eaww n s) = eo (F.) n S, and we are back to Problem 2 . In
fact we do not even know if

PJ wTl n s C CW([te, te1] , [tel], te1)
or

9w+1 C CW([tel{tei], [tti], 1)

holds .
However we can prove a theorem in case 40 = 41 = [tel]

COROLLARY 8 .2 . Assume SH. Then

Cwo([tt l ], [ttl], tei) = Cwo([ 11 tel], [tel], te1) = U 9n v P6( U &n) •
n<w

	

n<w

CW([tei/ i], [tei], te l)-
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i .e ., this class consists of finite p-trees and their complements .

In [4] 4 . a p . 286 we made the mistake of saying that this class consists
of the finite p-trees which is obviously impossible since it is closed under
complementation .

Corollary 8.2 . follows from Theorem 8 .1 and the remarks made about

PROOF of Theorem 8 .1 . (a), (b), (c) are restatements of earlier results .
For the proof of (d) assume that _ ( 0), G) establishes tel -~- (tel)2 If there is
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a C(E [coil") such that G(C) establishes 1

	

( v [ v X1])2, then by Theorem
4 .1 (a) either S C Sub(q) or qT. N q .

Hence we may assume that

dC E [wl]"' 3 A, B E [c]" [A, B] 1 ' 1 (1 4_ o .

Then, by Lemma 4 .3, T a N ~. This proves the stronger statement that for
all graphs q establishing , +- ( Jt,)2 either S C Sub(q) n Sub (~ q) or q To N G.

Note that (a) (b) of Theorem 8 .2 strongly restrict the class Cw([R 1 ], [R1] ,R1)

DEFINITION 8 .2. Let awl = the class of projections of those trees
(T, -<) which do not contain a chain e, such that tpP_ (-<) = w -{ 2 so that
the n-th element of the chain has incomparable successors for n < w .

COROLLARY 8 .3 . Assume SH and CH Then

PROOF. Assume

Cw([ 1], [ 1], R1) c ~w}1 U

	

(Tw+l) .

X _ (h, H) E CwQtt i], [ 1], i)-

Then by Theorem 8 .1 (a) either X or -1 X is the projection of a tree (h, -<) .
If (h, -<) E JTw+1 then (h, -<) contains a subtree whose projection is isomor-
phic to the "typical element" ofP._i l as described in Lemma 5 .5 . But then, by
this lemma, X is not a Shelah graph, and this contradicts to Theorem 8 .1 (c) .

At this point we do not try to describe the class of graphs for which the
problem remains open . We only remark that X' as defined in 5 .6 is an element
of

	

It is clear that if X' N 4 then Xw N q for all q. Hence the problem
if 'A' E CON,], [R1] , 1) is equivalent to the problem if X 0 E C([ 1], [ 1], RI)
(see Problem 6) .

A list of the graphs and classes of graphs used in the paper

[x] the complete x-graph Daf. 0.1 (e) p . 206

[x, 2] the complete (x, .l)-bipartite graph Def. 0.1 (e) p. 206

[xfx] the half (x, x)-bipartite graph Def. 0.1 (g) p. 206

Q'I" J, x), QZ1, 41 , x) Def. 0.5 (a) p. 207

CWJJ" 41 , x), Cw(J, 41 , x) Def. 0.5 (b) p . 208

Suba(G), Sub (G) Def. 0.5 (e) p . 208
Sierpinski graphs

	

Def. 0.6 (a) p. 208



ERD(3S, HAJNAL : EMBEDDING THEOREMS FOR GRAPHS

	

229

S

	

the class of countable Sierpinski graphs

qT

	

the projection of the tree (T, -<)
p-tree

Qq

	

the class of countable p-trees

9.

	

the class of p-tree which are projections
of trees of length S a

Sierpinski trees

	

s n g

ZP

	

a class of trees

8e

	

the projections of the elements of Z e

To

	

the complete binary co-tree

	

Def. 3.4 (e) p . 214

gS

	

the class of countable trees which embed into
a Sierpinski graph

No

	

the quadrilateral without diagonals

R

	

a class of countable graphs

P

	

the class of p-trees whose complement is a
p-tree as well

P£

	

a subclass of P
C*(x)

	

Q[x], [x], x) for ,, = x

qx

	

a . -Shelah graph

JGte x' 31te

	

the class of 7-Shelah graphs and Shelah
graphs, respectively Def. 55 p. 220

~C2 a 4-point Sierpinski graph 5.4 (d) p. 221

cC'

	

a special ;~-Shelah graph

	

Def. 5.6

	

p. 222

%I the pentagon without diagonals Problem 7 . P. 225

Oa(f)

	

{-l q : q E 9}

	

Def. 8 .1

	

p. 226

w ; l

	

a class of trees

	

Def. 8.2

	

p. 228
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