COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 18. COMBINATORICS, KESZTHELY (HUNGARY), 1976.

INTERSECTION PROPERTIES OF SYSTEMS OF FINITE SETS

M. DEZA - P. ERDŐS - P. FRANKL

ABSTRACT

Let X be a finite set of cardinality n. If $L = \{l_1, \ldots, l_r\}$ is a set of non-negative integers $l_1 < l_2 < \ldots < l_r$, and k is a natural number then by an (n, L, k)-system we mean a collection of k-element subsets of X such that the intersection of any two different sets has cardinality belonging to L. We prove that if \mathscr{A} is an (n, L, k)-system, $|\mathscr{A}| > cn^{r-1}$ (c = c(k)) is a constant depending on k) then

(i) there exists an l_1 -element subset D of X such that D is contained in every member of \mathcal{A} ,

(ii) $(l_2 - l_1) | (l_3 - l_2) | \dots | (l_r - l_{r-1}) | (k - l_r),$ (iii) $\prod_{i=1}^r \frac{n - l_i}{k - l_i} \ge | \mathscr{A} |$ (for $n \ge n_0(k)$).

Parts of the results are generalized for the following cases:

(a) we consider t-wise intersections, $t \ge 2$,

-251 -

(b) the condition |A| = k is replaced by $|A| \in K$ where K is a set of integers,

(c) the intersection condition is replaced by the following: among q+1 different members A_1, \ldots, A_{q+1} there are always two subsets A_i, A_j such that $|A_i \cap A_j| \in L$.

We consider some related problems. An open question:

Let $L' \subset L$. Does there exist an (n, L, k)-system of maximal cardinality (\mathscr{A}) and an (n, L', k)-system of maximal cardinality (\mathscr{A}') such that $\mathscr{A} \supset \mathscr{A}'$?

RESULTS

Throughout, lower case latin letters denote integers, capital letters stand for sets and capital script letters for families of sets.

Let $L = \{l_1, \ldots, l_r\}$, $l_1 < l_2 < \ldots < l_r$ and K be sets of integers. By an (n, L, k)-system we mean a family \mathscr{A} of subsets of a set X, |X| = n such that for $A_1, A_2 \in \mathscr{A}$ we have $|A_1|, |A_2| \in K$, $|A_1 \cap A_2| \in L$. If $K = \{k\}$ then the notation (n, L, k)-system is applied, too.

A family $B = \{B_1, B_2, \ldots, B_c\}$ of sets is called a Δ -system of cardinality c if there exists a set $D \subsetneq B_i$ $i = 1, \ldots, c$ such that the sets $B_1 - D, \ldots, B_c - D$ are pairwise disjoint. D is called the kernel of the Δ -system.

Theorem 1 (Erdős – Rado [7]). There exists a function $\varphi_c(k)$ such that any family of $\varphi_c(k)$ distinct k-element sets contains a Δ -system of cardinality c.

An old conjecture of Rado and the second author is that there exists an absolute constant c' such that $\varphi_c(k) < (c \cdot c')^k$. The best existing upper bound – of order about c^k . k! – is due to Spencer [15].

Theorem 2 (Erdős – Ko – Rado [8]). If \mathscr{A} is an $(p, \{l, l+1, \ldots, k-1\}, k)$ -system of maximal cardinality then for $n \ge n_0(k, l)$ there exists a set D of cardinality l such that for every -252 -

 $A \in \mathcal{A}$, $D \subseteq A$ holds. In particular for l = 1 $n_0(k, l) = 2k + 1$ is the best possible value for $n_0(k, l)$.

(For $l \ge 2$ the best existing upper bound on $n_0(k, l)$ is due to Frankl [10]).

Theorem 3 (Deza [1]). An $(n, \{l\}, k)$ -system of cardinality more than $k^2 - k + 1$ is a Δ -system.

The object of this paper is to generalize Theorems 2 and 3 for (n, L, K)-systems. In the proofs heavy use is made of Theorem 1.

The next four theorems express properties of (n, L, k)-systems.

Troughout we assume $n > n_0(k, \epsilon)$ $\epsilon > 0$.

Let us set $c(k, L) = \max(k - l_1 + 1, l_2^2 - l_2 + 1) + \epsilon$. \mathscr{A} is an (n, L, k)-system.

Theorem 4. If $|\mathscr{A}| \ge c(k, L) \prod_{i=2}^{r} \frac{n-l_i}{k-l_i}$ then there exists a set D of cardinality l_1 such that $D \subseteq A$ for every $A \in \mathscr{A}$.

Theorem 5. If $|\mathscr{A}| \ge k^2 2^{r-1} n^{r-1}$ then $(l_2 - l_1) |(l_3 - l_2)| \dots |(l_r - l_{r-1})| (k - l_r).$

Theorem 6. $|\mathscr{A}| \leq \prod_{i=1}^{r} \frac{n-l_i}{k-l_i}$.

The following result is a generalization of Theorems 4, 5, 6 for (n, L, K)-systems.

Let $K = \{k_1, \ldots, k_s\}$ $k_1 < \ldots < k_s$.

Let us define $K_0 = K \cap \{0, \dots, l_1\}, K_i = \{l_i + 1, \dots, l_{i+1}\} \cap K$ for $i = 1, \dots, r-1$ and $K_r = K \cap \{l_r + 1, \dots, k_s\}.$

Let us set $k_i^* = \min \{k | k \in K_i\}$ for i = 0, ..., r.

Theorem 7. Let \mathscr{A} be an (n, L, K)-system.

- 253 -

(i) If $|\mathcal{A}| > k_s c(k_s, L) \prod_{i=2}^r \frac{n-l_i}{k^*-l_i}$ then there exists a set D of cardinality l_1 such that $D \subseteq A$ for every $A \in \mathcal{A}$.

(ii) If $|\mathcal{A}| > k_s^3 2^{r-1} n^{r-1}$ then there exists a $k \in K_r$ such that $(l_2 - l_1) | (l_3 - l_2) | \dots (l_r - l_{r-1}) | (k - l_r).$

(iii)
$$|\mathscr{A}| \leq \sum_{i=0}^{r} \epsilon_{i} \prod_{j=1}^{r} \frac{n-l_{j}}{k_{i}^{*}-l_{j}}$$
 where $\epsilon_{i} = 0$ if $K_{i} = \phi, \ \epsilon_{i} = 1$ otherws

erwise.

The next theorem is a common generalization of Theorems 4, 6 and a theorem of Hajnal, Rothschild [11].

Theorem 8. Let \mathscr{A} be a family of k-element subsets of the n-element set X such that whenever A_1, \ldots, A_{q+1} are q+1 different sets belonging to \mathscr{A} we can find two of them A_i, A_j such that $|A_i \cap A_j| \in L$ $(q \ge 1$ is fixed). Then

(i) there exists a constant c = c(k, q) such that

$$|\mathscr{A}| > (q-1) \prod_{i=1}^{r} \frac{n-l_i}{k-l_i} + cn^{r-1}$$

implies the existence of sets D_1, D_2, \ldots, D_s such that for every $A \in \mathscr{A}$ there exists an $i \ 1 \le i \le s$ satisfying $D_i \subset A, \ |D_1| = \ldots = |D_s| = l_1$. Further if q_i denotes the maximum number of sets A_1, \ldots, A_{q_i} such that for $1 \le j \le q_i$ $D_i \subset A_j$ but for $i' \ne i$ $D_i \not\subset A_j$ and $|A_{j_1} \cap A_{j_2}| \not\in L$ for $1 \le j_1 < j_2 \le q_i$, then $\sum_{i=1}^s q_i = q_i$.

(ii)
$$|\mathscr{A}| \leq q \prod_{i=1}^{r} \frac{n-l_i}{k-l_i} + O(n^{r-1}) \quad (n > n_0(k,q)).$$

In the next theorem we generalize Theorems 4, 5, 6 for the case of *t*-wise intersections.

Theorem 9. Let \mathscr{A} be a family of k-subsets of X. Suppose that for any t different members A_1, \ldots, A_t of $\mathscr{A} | A_1 \cap \ldots \cap A_t | \in L$. Then (i) there exists a constant c = c(k, t) such that $|\mathcal{A}| > cn^{r-1}$ implies the existence of an l_1 -element set D such that $D \subset A$ for every $A \in \mathcal{A}$,

(ii)
$$|\mathcal{A}| > cn^{r-1}$$
 implies $(l_2 - l_1) | \dots | (l_r - l_{r-1}) | (k - l_r)$

(iii)
$$|\mathscr{A}| \leq (t-1) \prod_{i=1}^{r} \frac{n-l_i}{k-l_i} \quad (n > n_0(k, t)).$$

First versions of Theorems 4, 5, 6, 7 was announced in [2], the case |L| = 2 was considered in [4].

The proofs of the theorems will appear in the Proceedings of the London Math. Soc.

REFERENCES

- M. Deza, Solution d'un probleme de Erdős Lovász, J. Comb. Theory B, 16 (1974), 166-167.
- [2] M. Deza P. Erdős, On intersection properties of the systems of finite sets, Notices of the AMS, 22-6 (1975), A-657.
- [3] M. Deza, Matrices dont deux lignes quelconques coincident dans un nombre donne de positions communes, J. Comb. Theory A, 20, 3 (1976), 306-318.
- [4] M. Deza P. Erdős N.M. Singhi, Combinatorial problems on subsets and their intersections, to appear in Advances in Math.,
- [5] M. Deza P. Frankl, Maximum number of permutations with given maximal and minimal distance, to appear in J. Comb. Theory A.
- [6] M. Deza P. Frankl, Sur L-configurations, to appear.
- [7] P. Erdős R. Radó, Intersection theorems for systems of sets, Journal London Mat. Soc., 35 (1960), 85-90.

- [8] P. Erdős Chao Ko R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford, (2), 12 (1961), 313-320.
- [9] P. Frankl, Sperner systems satisfying an additional condition, J. Comb. Theory A, 20 (1976), 1-11.
- [10] P. Frankl, The theorem of Erdős Ko Rado holds for $n \ge ck(r+1)$, this volume.
- [11] A. Hajnal B. Rothschild, A generalization of the Erdős – Ko – Rado theorem of finite set systems, J. Comb. Theory, (A), 15 (1973), 359-362.
- [12] A.J.W. Hilton E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser., 18 (1967), 369-384.
- [13] K.N. Majumdar, On some theorems in combinatorics relating to incomplete block designs, Ann. Math. Statist., 24 (1953), 52-75.
- [14] D.K. Ray-Chaudhuri R.M. Wilson, On t-designs, Osaka J. Math., 12 (1975), 737-744.
- [15] J. Spencer, Intersection theorems for systems of sets, to appear.
- [16] V.T. Sós, Some remarks on the connection of graph theory, finite geometry and block designs, Proc. Combinatorial Conf. Rome, 1976, 223-233.
- [17] P. Young J. Edmonds, Matroid designs, J. of Res. of the Nat. Bureau of Standards, 77 B (1973), 15-44.

M. Deza

Centre National de la Recherche, Scientifique, 3. Rue de Duras 75008 Paris, France.

P. Erdős

The Hungarian Academy of Sciences, Budapest, Hungary.

P. Frankl

Eötvös L. University, Budapest, Hungary.

- 256 -