INTERSECTION PROPERTIES OF SYSTEMS OF FINITE SETS

M. DEZA - P. ERDÖS - P. FRANKL

ABSTRACT

Let X be a finite set of cardinality n. If $L=\left\{l_{1}, \ldots, l_{r}\right\}$ is a set of non-negative integers $l_{1}<l_{2}<\ldots<l_{r}$, and k is a natural number then by an (n, L, k)-system we mean a collection of k-element subsets of X such that the intersection of any two different sets has cardinality belonging to L. We prove that if \mathscr{A} is an (n, L, k)-system, $|\mathscr{A}|>c n^{r-1}$ ($c=c(k)$ is a constant depending on k) then
(i) there exists an l_{1}-element subset D of X such that D is contained in every member of \mathscr{A},
(ii) $\quad\left(l_{2}-l_{1}\right)\left|\left(l_{3}-l_{2}\right)\right| \ldots\left|\left(l_{r}-l_{r-1}\right)\right|\left(k-l_{r}\right)$,
(iii) $\prod_{i=1}^{r} \frac{n-l_{i}}{k-l_{i}} \geqslant|\mathscr{A}|$ (for $n \geqslant n_{0}(k)$).

Parts of the results are generalized for the following cases:
(a) we consider t-wise intersections, $t \geqslant 2$,
(b) the condition $|A|=k$ is replaced by $|A| \in K$ where K is a set of integers,
(c) the intersection condition is replaced by the following: among $q+1$ different members A_{1}, \ldots, A_{q+1} there are always two subsets A_{i}, A_{j} such that $\left|A_{i} \cap A_{j}\right| \in L$.

We consider some related problems. An open question:
Let $L^{\prime} \subset L$. Does there exist an (n, L, k)-system of maximal cardinality (\mathscr{A}) and an (n, L^{\prime}, k)-system of maximal cardinality (\mathscr{A}^{\prime}) such that $\mathscr{A} \supset \mathscr{A}^{\prime}$?

RESULTS

Throughout, lower case latin letters denote integers, capital letters stand for sets and capital script letters for families of sets.

Let $L=\left\{l_{1}, \ldots, l_{r}\right\}, \quad l_{1}<l_{2}<\ldots<l_{r}$ and K be sets of integers. By an (n, L, k)-system we mean a family \mathscr{A} of subsets of a set $X,|X|=n$ such that for $A_{1}, A_{2} \in \mathscr{A}$ we have $\left|A_{1}\right|,\left|A_{2}\right| \in K$, $\left|A_{1} \cap A_{2}\right| \in L$. If $K=\{k\}$ then the notation (n, L, k)-system is applied, too.

A family $B=\left\{B_{1}, B_{2}, \ldots, B_{c}\right\}$ of sets is called a Δ-system of cardinality c if there exists a set $D \varsubsetneqq B_{i} \quad i=1, \ldots, c$ such that the sets $B_{1}-D, \ldots, B_{c}-D$ are pairwise disjoint. D is called the kernel of the Δ-system.

Theorem 1 (Erdős - Rado [7]). There exists a function $\varphi_{c}(k)$ such that any family of $\varphi_{c}(k)$ distinct k-element sets contains a Δ-system of cardinality c.

An old conjecture of Rado and the second author is that there exists an absolute constant c^{\prime} such that $\varphi_{c}(k)<\left(c \cdot c^{\prime}\right)^{k}$. The best existing upper bound - of order about c^{k}. $k!$ - is due to Spencer [15].

Theorem 2 (Erdős - Ko - Rado [8]). If \mathscr{A} is an ($p,\{l, l+1, \ldots, k-1\}, k)$-system of maximal cardinality then for $n \geqslant$ $\geqslant n_{0}(k, l)$ there exists a set D of cardinality l such that for every
$A \in \mathscr{A}, D \subseteq A$ holds. In particular for $l=1 \quad n_{0}(k, l)=2 k+1$ is the best possible value for $n_{0}(k, l)$.
(For $l \geqslant 2$ the best existing upper bound on $n_{0}(k, l)$ is due to Frankl [10]).

Theorem 3 ($\mathrm{Deza}[1]$). An ($n,\{l\}, k)$-system of cardinality more than $k^{2}-k+1$ is a Δ-system.

The object of this paper is to generalize Theorems 2 and 3 for (n, L, K)-systems. In the proofs heavy use is made of Theorem 1.

The next four theorems express properties of (n, L, k)-systems.
Troughout we assume $n>n_{0}(k, \epsilon) \epsilon>0$.
Let us set $c(k, L)=\max \left(k-l_{1}+1, l_{2}^{2}-l_{2}+1\right)+\epsilon . \quad \mathscr{A}$ is an (n, L, k)-system.

Theorem 4. If $|\mathscr{A}| \geqslant c(k, L) \prod_{i=2}^{r} \frac{n-l_{i}}{k-l_{i}}$ then there exists a set D of cardinality l_{1} such that $D \subseteq A$ for every $A \in \mathscr{A}$.

Theorem 5. If $|\mathscr{A}| \geqslant k^{2} 2^{r-1} n^{r-1}$ then $\left(l_{2}-l_{1}\right)\left|\left(l_{3}-l_{2}\right)\right| \ldots$ $\ldots\left|\left(l_{r}-l_{r-1}\right)\right|\left(k-l_{r}\right)$.

Theorem 6. $|\mathscr{A}| \leqslant \prod_{i=1}^{r} \frac{n-l_{i}}{k-l_{i}}$.
The following result is a generalization of Theorems 4, 5, 6 for (n, L, K)-systems.

Let $K=\left\{k_{1}, \ldots, k_{s}\right\} \quad k_{1}<\ldots<k_{s}$.
Let us define $K_{0}=K \cap\left\{0, \ldots, l_{1}\right\}, K_{i}=\left\{l_{i}+1, \ldots, l_{i+1}\right\} \cap K$ for $i=1, \ldots, r-1$ and $K_{r}=K \cap\left\{l_{r}+1, \ldots, k_{s}\right\}$.

Let us set $k_{i}^{*}=\min \left\{k \mid k \in K_{i}\right\}$ for $i=0, \ldots, r$.
Theorem 7. Let \mathscr{A} be an (n, L, K)-system.
(i) If $|\mathscr{A}|>k_{s} c\left(k_{s}, L\right) \prod_{i=2}^{r} \frac{n-l_{i}}{k^{*}-l_{i}}$ then there exists a set D of cardinality l_{1} such that $D \subseteq A$ for every $A \in \mathscr{A}$.
(ii) If $|\mathscr{A}|>k_{s}^{3} 2^{r-1} n^{r-1}$ then there exists a $k \in K_{r}$ such that $\left(l_{2}-l_{1}\right)\left|\left(l_{3}-l_{2}\right)\right| \ldots\left(l_{r}-l_{r-1}\right) \mid\left(k-l_{r}\right)$.
(iii) $|\mathscr{A}| \leqslant \sum_{i=0}^{r} \epsilon_{i} \prod_{j=1}^{r} \frac{n-l_{j}}{k_{i}^{*}-l_{j}}$ where $\epsilon_{i}=0$ if $K_{i}=\phi, \epsilon_{i}=1$ otherwise.

The next theorem is a common generalization of Theorems 4, 6 and a theorem of Hajnal, Rothschild [11].

Theorem 8. Let \mathscr{A} be a family of k-element subsets of the n-element set X such that whenever A_{1}, \ldots, A_{q+1} are $q+1$ different sets belonging to \mathscr{A} we can find two of them A_{i}, A_{j} such that $\left|A_{i} \cap A_{j}\right| \in L$ ($q \geqslant 1$ is fixed). Then
(i) there exists a constant $c=c(k, q)$ such that

$$
|\mathscr{A}|>(q-1) \prod_{i=1}^{r} \frac{n-l_{i}}{k-l_{i}}+c n^{r-1}
$$

implies the existence of sets $D_{1}, D_{2}, \ldots, D_{s}$ such that for every $A \in \mathscr{A}$ there exists an $i \leqslant i \leqslant s$ satisfying $D_{i} \subset A,\left|D_{1}\right|=\ldots=\left|D_{s}\right|=l_{1}$. Further if q_{i} denotes the maximum number of sets $A_{1}, \ldots, A_{q_{i}}$ such that for $1 \leqslant j \leqslant q_{i} \quad D_{i} \subset A_{j}$ but for $i^{\prime} \neq i \quad D_{i} \not \subset A_{j}$ and $\left|A_{j_{1}} \cap A_{j_{2}}\right| \notin L$ for $1 \leqslant j_{1}<j_{2} \leqslant q_{i}$, then $\sum_{i=1}^{s} q_{i}=q$,
(ii) $|\mathscr{A}| \leqslant q \prod_{i=1}^{r} \frac{n-l_{i}}{k-l_{i}}+O\left(n^{r-1}\right) \quad\left(n>n_{0}(k, q)\right)$.

In the next theorem we generalize Theorems 4, 5, 6 for the case of t-wise intersections.

Theorem 9. Let \mathscr{A} be a family of k-subsets of X. Suppose that for any t different members A_{1}, \ldots, A_{t} of $\mathscr{A}\left|A_{1} \cap \ldots \cap A_{t}\right| \in L$. Then
(i) there exists a constant $c=c(k, t)$ such that $|\mathscr{A}|>c n^{r-1}$ implies the existence of an l_{1}-element set D such that $D \subset A$ for every $A \in \mathscr{A}$,
(ii) $|\mathscr{A}|>c n^{r-1}$ implies $\left(l_{2}-l_{1}\right)|\ldots|\left(l_{r}-l_{r-1}\right) \mid\left(k-l_{r}\right)$,
(iii) $|\mathscr{A}| \leqslant(t-1) \prod_{i=1}^{r} \frac{n-l_{i}}{k-l_{i}}\left(n>n_{0}(k, t)\right)$.

First versions of Theorems $4,5,6,7$ was announced in [2], the case $|L|=2$ was considered in [4].

The proofs of the theorems will appear in the Proceedings of the London Math. Soc.

REFERENCES

[1] M. Deza, Solution d'un probleme de Erdôs - Lovász, J. Comb. Theory B, 16 (1974), 166-167.
[2] M. Deza-P. Erdős, On intersection properties of the systems of finite sets, Notices of the AMS, 22-6 (1975), A-657.
[3] M. Deza, Matrices dont deux lignes quelconques coincident dans un nombre donne de positions communes, J. Comb. Theory A, 20, 3 (1976), 306-318.
[4] M. Deza - P. Erdős - N.M. Singhi, Combinatorial problems on subsets and their intersections, to appear in Advances in Math,
[5] M. Deza-P.Frankl, Maximum number of permutations with given maximal and minimal distance, to appear in J. Comb. Theory A.
[6] M. Deza - P. Frank1, Sur L-configurations, to appear.
[7] P. Erdős - R. Radó, Intersection theorems for systems of sets, Journal London Mat. Soc., 35 (1960), 85-90.
[8] P. Erdôs - Chao Ko - R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford, (2), 12 (1961), 313-320.
[9] P. Frank1, Sperner systems satisfying an additional condition, J. Comb. Theory A, 20 (1976), 1-11.
[10] P. Frankl, The theorem of Erdős - Ko - Rado holds for $n \geqslant$ $\geqslant C k(r+1)$, this volume.
[11] A. Hajnal-B. Rothschild, A generalization of the Erdős - Ko - Rado theorem of finite set systems, J. Comb. Theory, (A), 15 (1973), 359-362.
[12] A.J.W. Hilton-E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser., 18 (1967), 369-384.
[13] K.N. Majumdar, On some theorems in combinatorics relating to incomplete block designs, Ann. Math. Statist., 24 (1953), 52-75.
[14] D.K. Ray-Chaudhuri - R.M. Wilson, On t-designs, Osaka J. Math., 12 (1975), 737-744.
[15] J. Spencer, Intersection theorems for systems of sets, to appear.
[16] V.T.Sós, Some remarks on the connection of graph theory, finite geometry and block designs, Proc. Combinatorial Conf. Rome, 1976, 223-233.
[17] P. Young - J. Edmonds, Matroid designs, J. of Res. of the Nat. Bureau of Standards, 77 B (1973), 15-44.

M. Deza

Centre National de la Recherche, Scientifique, 3. Rue de Duras 75008 Paris, France.
P. Erdős

The Hungarian Academy of Sciences, Budapest, Hungary.
P. Frankl

Eötvös L. University, Budapest, Hungary.

