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Abstract
Let X be a finite set of cardinality n. If L = {ll , . . ., l,} is a set of non-
negative integers with 1 1 < 1 2 < . . . < lr , and k is a natural number, then
by an (n, L, k)-system we mean a collection of k-element subsets of X such
that the intersection of any two different sets has cardinality belonging
to L. We prove that if d is an (n, L, k)-system, with I ~V I > enr -1 (c = e(k)
is a constant depending on k), then

(i) there exists an l1-element subset D of X such that D is contained
in every member of Q,

(11) (12 - 11)1(13 - 12)1 . . .I(lr - lr-1)I (k-l r),
(iii) ni=1 (?,-li)/(k- li) > ICI (for n > n,(k)) .
Parts of the results are generalized for the following cases : (a) we

consider t-wise intersections, where t > 2 ; (b) the condition I A I = k is
replaced by I A I E K where K is a set of integers ; (c) the intersection
condition is replaced by the following : among q + 1 different members
A 1 , . . ., Aq+1 there are always two, A i ,Aj , such that I A i n A, I E L.
We consider some related problems . An open question : let L' - L ;

do there exist an (n, L, k)-system of maximal cardinality (s2/) and an
(n, L', k)-system of maximal cardinality (,') such that d ::) a'?

1 . Introduction
Throughout this paper lower case latin letters denote integers,

capital letters stand for sets, and capital script letters for families of
sets .

Let L = {l l , . . ., l,}, where 1 < 12 < . . . < l r , and K be sets of integers .
By an (n, L, K)-system we mean a family Q of subsets of a set X, with

I X I = n, such that for A t , A 2 E d we have IA1 1, A 2 I E K, I A 1 n A 2 I E L.
If K = {k} then the notation (n, L, k)-system is applied, too .

A family B = {B1, B 2 , . . ., B.} of sets is called a 0-system of cardinality c
if there exists a set D - Bi , with i = 1, . . ., c, such that the sets
B1\D, . . .,B,\D are pairwise disjoint . D is called the kernel of the
0-system .
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THEOREM 1. (Erdős and Rado [7] ) . There exists a function T,(k) such
that any fancily of 9,(k) distinct k-element sets contains a A-system of
cardinality c .

An old conjecture of Rado and the second author is that there exists an
absolute constant c' such that 9,(k) < (cc')k . The best existing upper
bound (of order about ckk !) is due to Spencer [16] .

THEOREM 2 (Erdős, Ko, and Rado [8] ) . If is an (n, {l, l + 1, . . ., k - 1}, k)-
system of maximal cardinality, then for n , no(k, l) there exists a set D of
cardinality l such that for every A E a'l, D A holds . In particular, for
l = 1, no (/,, l) = 2k + 1 is the best possible value for n o(k,1) .

(For l , 2 the best existing upper bound on no(k,1) is due to Frankl [10] .)

THEOREM 3 (Deza [1] ) . An (n, {l}, k)-system of cardinality more than
k2 -k+1 is a A-system .

The object of this paper is to generalize Theorems 2 and 3 for (n, L, K)-
systems. In the proofs heavy use is made of Theorem 1 .

The next four theorems express properties of (n, L, 7c)-systems .
Throughout the paper we assume that n > no(k, s) for e > 0. Let us

set c(k,L) = max(k-h+1, 1 22 -12 +1)+s . sI is an (n, L, k)-system .

THEOREM 4. If s1 c(k, L) 11i_ 2 (n - li)/(k - l i ) then there exists a set
D of cardinality 11 such that D A for every A E sV .

THEOREM 5 . If

	

, k22r-lnr-1 then

( 12 - 11) 1(1 3 -12)1 . . . I (lr - lr-1) I (k - I,)-

TimOREM 6 .

I~I
5
i=1k-

l i .

The following result is a generalization of Theorems 4, 5, and 6 for
(n, L, K)-systems . Let K = {k l , . . ., k,}, with kl < . . . < k, Let us define
Ko = K n {0, . . . . h}, Ki = {li + 1, . . .,1i+1} n K, for i = l, . . ., r -1, and

Kr = Kn{lr+1, . . .,k3} .
Let us set k2 = min{k I k c- Ki}, for i = 0, . . ., r .

THEOREM 7 . Let sl be an (n, L, K)-system .
(i) If I sa'l I > Icsc(ks , L) YV=2 (n - l i )/(k* - l i ) then there exists a set D of

cardinality 11 such that D A for every A E Q/ .
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(ü) If I (z/ I > k,S 3 2r-inr-1 then there exists a k e Kr such that

( 1 2 -11) 1(13-12) 1- 1 ('r - lr-1) I

I~EE~ n	-l1
i <

i=o j=1 ki -lj
1j kj .

where s i = 0 if Ki = 0, s i = 1 otherwise .

The next theorem is a common generalization of Theorems 4 and 6 and
a theorem of Hajnal and Rothschild [11] .

THEOREM 8 . Let sl be a family of k-element subsets of the n-element set X
such that whenever A 1 , . . ., Aq+1 are q+ 1 different sets belonging to we can
find two of them Ai , A j such that I Aí n Aj I E L (q > 1 is fixed) .

(i) There exists a constant c = c(k, q) such that

r n-1 •
IVI >

(q-1) H k-li +cnr-1

implies the existence of sets D 1, D 2 , . . ., D s such that for every A E a there
exists an i, with 1 < i < s, satisfying Di c A, IDl I = . . . = J DJI = 11 .
Further, if qi denotes the maximum number of sets A,, . . ., Aq, such that, for
1 < j < qi, D i - Aj but for i' i, Di Aj , and I Aj, n Aj2 1 0 L for
1 < .%1 < ,l2 < qi, then Es =1 qi = q •

(ü)

Ic~/ < q1I n-1i +0(nY-1) (n > no(k,« .
i=1 k -li

In the next theorem we generalize Theorems 4, 5, and 6 for the case
of t-wise intersections .

THEOREM 9 . Let ,71 be a family of k-subsets of X. Suppose that, for any t
different members A 1 , . . ., A i of (l, I A1 n . . . n A, I c L . Then

(i) there exists a constant c = c(Ie, t) such that

I ,d I > cnr- 1

implies the existence of an l1-element set D such that D A for every
AEI,

(ü) I

	

I > cnr-1 implies that (l2 -l1 )1 . . .1(lr-l.r-1)I (k - 1r),
(iii) IdI < (t-1)IIi=1(n-li)/(k- l i ) (n > no(k,t)) .

First versions of Theorems 4, 5, 6, and 7 were announced in [2], the case
where I L I = 2 was considered in [4] .
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2. The proof of Theorems 4, 5, and 6
In the case where r = 1 the statements of the theorems follow from

Theorem 3 .
Now suppose r > 2 . We apply induction on k . The case where k = 1 is

trivial .
Let us first consider the case where 11 = 0. Then the statement of

Theorem 4 is evident . Let x be an arbitrary element of X. Let us define
ax = {A\{x} I x E A} . Then ax is an (n-1,{1,- 1, . . ., l r -1},k- 1)-system .
Hence, by the induction hypothesis,

r (n- 1)-(li -1)

	

r n-li
Iáx 1

	

-
(k-1)-(li-1 )- 11 k-li

	

( 1 )

Counting the number of pairs (x, A), for x e A e c/, in two different
ways we obtain

kIW1= E I~x1 .

	

(2)
XEX

From (1) and (2) it follows that

IX I r n-li - r14 n-li
ICI <	k n k-li - k-l i '

which proves Theorem 6 for this case .
Now we wish to prove Theorem 5 . So we may suppose that

I

	

I > k22r-1nr-1 .

Let us set d = k 22r-2nr-2 and mil° _ c/~ . If Q/j is defined and there exists
an element x e X such that 0 < I c_,/x I < d then define

~dj+1 =cY;\{AEdiIxeA} .

After finitely many steps the procedure stops, that is, we obtain a
family mil' in which every element of X has either degree 0 or degree more
than d, and

I ,Ql' I > l c7/1 -nd > k22r-2,r-1 .

Let X' be the set of elements of X which have non-zero degree in (V' . If
x c- X' then cV' is an (n -1, {1 2 - l, . . . , l r -1}, k -1)-system, and

I ax I > d = k22r-2nr-2

whence by the induction hypothesis there exists a set Dx - X \ {x}, with
I D x I = 12 -1, such that Dx c A for every A e q/x .
We assert that for any y c- Dx , DY _ (Dx \ {y}) u {x} .
Suppose that for some y it does not hold. As any member A of mIX

contains y so it has to contain D„ as well and consequently
A 2 ((Dx u D,) \ {x}) . I (Dx u D„) \ {x} I > 12 , which implies that any two
elements of sVx intersect in at least 12 elements . Hence ax is an
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(n-1, {1 3 -1, . . ., lr -1}, k-1)-system. So Theorem 6 implies that

r n-1 •
I ,4x I'< H k_h< nr-2 '

i=3

	

i

a contradiction. So we have proved that, for x y, Dx u {x} and
D y u {y} coincide or they are disjoint .

Consequently the sets Dx u {x}, for x c- X', form a partition of the set
X' such that any member A of sl' is the union of some of them . Hence
12 I k . We assert that for any 3 < i <, r there are two sets A, B E V' such
that J A n B J = li. Indeed, otherwise a' is an

	

k)-
system, so by Theorem 6

1

	

<1
n-liI I'

l ,

	

nr-1

.7oi k-l,

	

'

a contradiction . Now if I A nB I = li then that 1,
I li follows from the fact

that A and B, whence A n B too, are the unions of some of the pairwise
disjoint l 2-element sets Dx u {x} . In particular it follows that

12 = ( 12 - 11) 1 (13 -12) •

Applying the induction hypothesis to q/x we obtain that

((13 -1 ) - ( 12 -1))1((14 - 1) - (13 - 1 ))I . . .I((k-1)-(1r-1)),

that is, ( 1 3 -12)1( 1 4 -13_101 . . . I (k-lr ), which finishes the proof for the case
where 11 = 0 .
Now we need a lemma .

LEMMA 1 . (i) Let the sets A,, . . .,AC forma 0-system with kernel D, where
ID I = l 1 , and c ,> k - l 1 + 2 . Then for any set B, with IB I ,< k,
I B nA i I >, 1 1 for i = 1, . . ., c implies B D.

(ü) Let the sets Fi1, F2, . . ., Fi form a 0-system with kernel Ei , where
Fi J = k for i = l	j = l, . . ., t .
Suppose that the sets Ei form a 0-system with kernel D, where ID 1 = l,

and that t > (s-1) (k-1) . Then there are indices 1 < ji <, t for i = 1, . . .,s
such that the sets Fis form a 0-system with kernel D.

Proof. Let us set IBnD I = l' < 11 . Then I B nAi 1 11 implies that
I B n (Ai\D) I > l1 - l' for i = 1, . . ., e. As the sets A i \ D are pairwise
disjoint we obtain

k = CBI

	

l'+c(l1-l') >, l'+(k-11+2)(l1-l')

or equivalently (k - 11 ) , (k - 11 + 1)(1 1 - l'), which yields 1 1 = t' as desired.
Now we prove (ü) . Suppose that for i = 1, . . ., s' we have chosen

indices 1 < ji 5 t such that the sets F s form a A-system with kernel D.
Now we wish to choose the index j = js+1 in such a way that Fs . n Fis = D
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for i = 1, . . . , s' and Fs.+, n Ei = D for i = s'+ 2, . . ., s . An index j does not
satisfy the conditions if and only if Fs •+,\D is not disjoint from the set

HS = (U (F2\D)) u ( . U (EZ\D))
x>s'+1

As the sets Fs.+, \ Es •+ , are pairwise disjoint, for j = 1, . . ., t, and
IHS I = s'(k-l)+~ =s+2l~Ei\DI < (s-1) (k-1) < t, the appropriate
choice of Fs •+ 1 is always possible, which proves the lemma .

Now we turn to the proof of Theorem 4 for the case where l, > 0 . If we
can find k-1,+2 sets A„ . . . , Ak_a1+2 belonging to Q/ which form a A-
system with kernel D, where I D = 11, then it follows that D c A for
every A e q/, since I A n A Z 11, for i = 1, . . . , k -11 + 2, and from the
lemma .

So we may assume that such a A-system does not exist . Now let us
choose a set D2 of cardinality 12 such that D2 is the kernel of a A-system
formed by k2 members of s4l (A1 1 , . . ., A,• '), and let us define
'd1= {Ae_c/ID1(-A} .

Now we choose a set D2 of cardinality 12 which is the kernel of a A-system
formed by k2 different members of t and define 2 = {A E ~2I D2 A},
and so on. After a finite number of steps, say q2 , we cannot find a set
Die+1 of cardinality 12 which is the kernel of a A-system formed by P
different members of X1 42
Now we choose a set D3 of cardinality 1, which is the kernel of a A-

system formed by k3 different elements of 'C~/2Z and define
'CV1 = {A E ~QZ I D3 A} ;

after say q3 steps we cannot find such a Dq3+ , . Then we look for an l4 -
element set which is the kernel of a A-system formed by k4 members of
'q/q3 , and so on. At last we obtain a family dr, which does not contain
any A-system with kernel D1 , where ID, I = h, and of cardinality ki
(j = 1, . . ., r) . As -qh is an (n, L, k) -system it means that SlI Q, does not
contain any A-system of cardinality at least kr, implying that

I`V4 .I < Tkr(k) •

	

(3)
Now we assert that

q; < <Pk;_1(l,) (j = 3, . . ., r)

	

(4 )
and that

q2 < c(k,L) •

	

(5 )

If it is not true then we could find among the kernels of cardinality h a
A-system of cardinality k 2 and kernel D i , with I D i I = li , for some 1 < i < j,
or, for j = 2, a A-system of cardinality k - l, + 2 and with a kernel D, of
cardinality l, .



contains a 0-system consisting of ki sets and having a kernel Di , with
I Di I = li , for 1 < i < j, or for j = 2 that cl contains a A-system of
cardinality k -11 + 2 and with kernel Dl , with IDl I = 1 1 .

The first possibility contradicts the choice of qj_, while the second one
is contrary to our assumptions. So (4) and (5) are proved .

If 1 < u < qj then define _,V(j, u) _ {A\Di I A E &Y, Dú A}. Then
,n/ (j, u) is an (n-lj , {0,1j+1 -lj , . . ., l,.-lj}, k-lj)-system .

Hence by the induction hypothesis
r (n - l •) -(li-lj) - r n-l •

I ~(j u)I

	

. (k-h)-(li-lj)

	

II k-li .
Consequently,

r n-l •
; \ _u10Qj I % 11

	

(6)i=j k - l i
for j = 2, . . ., r, where VQl = sl . From (3), (4), (5), and (6) we obtain

r
I~I= ZI vi-1

\ q,I+I q > Ij=2

r n-l. r+1

	

r n-1 .
c(k,L) fl

	

~+ ~Tkj- ' (l ;) II	 z

	

( 7)j=2 IC- l i j=s

	

i=; k - li
In (7) we use the conventions that 1r+1 = k and that the empty product

is l .
From (7) we obtain

I,d I < (c(k,L)+o(1)) rl n-li,i=2 k - 1i '
which is a contradiction as n > n,(k) . Now the proof of Theorem 4 is
finished. So in proving Theorems 5 and 6 we may suppose that there
exists a set D, with I D 1 = 1, such that D si A for every A E V.
Let us define l(D) _ {A\D ;A E } . It follows then that /(D) is

an (n - h, {0, 1, -	l r - h}, k - l, )-system. We know that k - l, < k as
h > 0. Hence both Theorem 5 and Theorem 6 follow from the induction
hypothesis .

Equality in the estimation of Theorem 6 (briefly 'equality') is realizable
by the hyperplane-family of any perfect matroid-design (ef. [14]) of rank
I L I + 1, such that for any j-flat Fj we have I F'LI I = k , I I+' JLJ+1 I = n,
I P I = lj+1, 0 < j < I L I . For example, in the case when L is an arithmetic
progression with difference d = l 2 -11, we may obtain equality by an
(l2 - h)-inflation of an S(I L I , lc/d, n/d,) if this Steiner-system exists. The
affine and projective geometries provide other examples when equality
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is possible . (The collection of all the j-flats Fj with I P I = k* for some
0 < i < IL I gives equality in the estimation (iii) of Theorem 7 .)

In the case where L = {0, 1, 3} the equality implies the existence of an
S(2, 3, k), whence 2 1 (k -1), 6 1 (k -1)k . In the first case, Ic = 5, equality is
not possible, moreover it can be proved that no (n, L, 5)-system has more
than 2n 11 / 4 =o(njLj) elements though (1-0)1 (3-1)1(5-3) . The collec-
tion of the 2-dimensional subspaces of PG(s, 2), AG(s, 3), respectively,
provide equality for the cases where k = 7, 9. The first open problem is to
decide whether there are infinitely many values of n for which we can have
equality in the case where k = 13 .

REMARK 1 (on Theorem 4) . Without changing the argument we can
prove the following : if k' >_ k and

1,2/1 > c(k , , L) ÍI
n-li

j=2 k-li

then there are sets A,, ._ Ah, -11+2 E

	

which form a 0-system with a
kernel of cardinality 11 .

REMARK 2 (on Theorem 5). For the case where L = {0,1} in [4] it was
shown that I q/ I > n implies 11 Ic and this estimation is the best possible
(this is a generalization of the Fisher-Majumdar inequality [15] ) .

REMARK 3 (on Theorem 6). In [16] it was shown by Ray-Chaudhuri

and Wilson that I a S (L)I I for any (n, L, k)-system

	

(this is another

generalization of the Fisher-Majumdar inequality [151) . This estimation
does not depend on k, but it is weaker than Theorem 6 for
I a I > C(k)n 1 L 1-1 . Its proof (using, a propos, linear independence of
certain systems of vectors) will be interesting to extend for the cases of
Theorems 7, 8, and 9 .

3. The proof of Theorem 7
We apply induction on r . If n/' denotes {A Ec A I > 1,1 then it

follows from the induction hypothesis that

n-1 •
i=u j= 1 ki - j

when r > 2, while the same inequality holds trivially for r = 1 as well .
Hence

r

i \ ,P/'I%i i-r11
n - 1 •

j=1 r - tj
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First we prove (i) . As IKr 5 k,-l,. 5 1c,-r and c(k s,L) >, 1, there
exists a k E Kr such that

{A c d i I AI = k} _ ~(k)I > c(Ic„L) 11
-l2 %

c(k,>L) II
n-li

i=2 k r - li

	

i=2 k - li

Hence by Remark 1 there exist k,,-11 +2 elements A,,

	

Ake-h+2 C- 2/(k)
such that for D = A, n A 2 , ID I = h and the sets A, \ D, . . ., Akg_i1+2\ D are
pairwise disjoint . So by Lemma 1, for every A E V, A D and hence (i)
holds .

Now let us prove (ü) . Now we can find a k e K,, for which

IV(k) I > k,,2 2r-lnr-1

holds. As a(k) is an (n, L, k)-system, Theorem 5 implies that (ü) is true .
To prove (iii) observe first that, for x E X \ D, dx = {A \ D I x c A E a'}

satisfies the hypothesis of the theorem with

n' = n-11 , K' _ {k-hl k E Kr}, L={12-1P-Jr-111,

so by the induction hypothesis it follows that
r n-1 •

I ~' I s 11

	

1x

	

j_2 kr - ,

Counting the number of pairs (x, A), where x c A, x c X \ D, and A E a',
in two different ways we obtain

Z I'Q/xl %I(kr - 11)
xcX\D

and consequently
r n-l .(n-11)11k

l % I~'I(kr - 1
7=2
7=2k,'-

7
and (iii) follows .

From the estimation (iii) of Theorem 7 it follows that in the case where
L = [l, lc -1], K = [g, h], and n > no(k), any (n, L, K)-system satisfies

k n-1
I~I < iZ (2-l)'

which generalizes Theorem 2 of Hilton [13] for the case where l > 1 .

4. The proof of Theorem 8
We apply double induction on k, q . Let us first consider the case where

h = 0. In this case (i) holds automatically. To prove (ü) observe that if we
define Qx = {A \ {x} I A c 9/, x c- A}, then x satisfies the hypothesis of the
theorem with n' = n-1, L' _ {1 2 -1, . . ., lr k' = k-1, and q' = q .
Hence by the induction hypothesis IslxI qfV=2 (n-li)j(k-li), and this
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equality holds for the case where L = {l,} too. As J d I - k = ExE x

	

it
follows that ICI < glj2-,(n-li)/(k-li) .

Now suppose that li > 0. Let us choose a set Dl , with I D, = 1,, such
that there exist A,', . . ., AJ.q E satisfying A? n AJ = D, for 1 < i < j S kq .

Then let us set c/ 1 = {A E -d I A 2 D l} . Now we choose D2 in the same
way and define 5V 2 , and so on . After a finite number, say p, of steps ~4p
does not contain any 0-system of cardinality kq and with kernel D, where

I D I = l, . We assert that p < q . Otherwise we have at least q+ 1 0-systems
Ail, A2, . . ., Ak q with kernels D i , where I D i I = 1,, for i = l, . . ., q+ l. As the
sets Ai \ D l , . . . , Akq \ D, are pairwise disj oint and

we can find an index j, such that (A,1 , \ D,) n Di = 0 for i = l, . . ., q + 1 .
If we have chosen A!,-, A~ then we want to choose A~+1 in such a way

that (A~ +i \D,,+,) n (Ai \ Di ) = 0 = (A~+1\D .,+,) n Di , for 1 < i < s,
s+2<i'<q+1. As

s
U (A,;\Di)
i=1

q+1
U Dii=2

q+1
U Di,i'=s+2

,<l,q<kq,

S s(k-11)+(q-s)l, < qk

and the sets As+1 \Ds+1 are pairwise disjoint, for j = 1, . . ., kq, such a
choice of As+i is possible . But if 1 < s < s' S q+ 1, thenb+1

Ale n Ass, g DS nDS.,
which implies that

I A?s n A,: ' l 0 L,
a contradiction .

Now we want to show that J a/p I = 0(nr-1 ) . We proceed in essentially
the same way as in the proof of Theorem 4 for the case where l, > 0, so
the proof will only be sketched .
Let us choose D2 , with I Dl = 12, in such a way that there exist

A„ . . ., AV ,, belonging to Q/p which form a 0-system with kernel D21 1

Now define 'q/1 = {A E 2/P A Dl} . Then choose D2, and so on .
When there are no more l 2-element sets which are kernels of a 0-system
of cardinality qk2 then try to find an l3-set which is the kernel of a 0-
system of cardinality qk3 , and so on .

By Lemma 1, among the A-systems of kernel l i there are no gk2-1 which
form a 0-system, whence their number is less than If Dí is an
li-element set, then sYD .. _ {A \ Dí I A E V, Dí - A} satisfies the hypo-
thesis of the theorem with n' = n - li , k' = k - l i, L' _ {0,1i+1 - li , . . ., lr - li},
and q' = q .
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The induction hypothesis yields

r n l • _
I~D(I < (q + 1) k - h - 0(nr-1 ) for i 2,

j= i

	

j
from which it follows that I q/p I = 0(nr- 1 ) .

If E is a set of cardinality more than h then the family

'VE ={AE IESA}

satisfies the assumptions of the theorem with n' = n - I E ~, k' = k - I E ~,

L' _ {l 2 - IE I , . . ., lr - IE I } n {0,1, 1,-, 1.1, and q' = q.
Hence it follows by induction that I aE I = 0(nr-1 ) . Let us set

'~qi = {A E I D2 A, Dj $ A for j i} . Now it follows that

2,
\U-qjj=1

= 0(nr-1)

as this family can be written as the union of the families

D1,2 = Di, u D ie , for 1 < i1 < i2 < p, and IDi. u Die I > 1,
Let c' be a sufficiently large constant and let us set

qi -1 = [{I9iI
-c'nr-1}/~,jj n-lj +co(k,q)nr-1~]=1 k - l

	

lll(j

([x] is the greatest integer not exceeding x) .
As I V 15 IaP I + I V \ Up 1 Ij I + Ep1 I -qj I, it follows for c > co (c', k, q)

that ~p1 qj >- q . Let qi denote the greatest integer such that there exist
Ai, . . ., AQ ,, c- 9i satisfying I Ail n A' 10L for 1 j1 < j2 , qi.
As -4i = {B \ Di I B E .qi} satisfies the assumptions of the theorem with

n' = n - 1 1 , k' = k - 11 , L' _ {0, 12 - 113 . . . , lr - l1}, and q' = q, by induction
we obtain qi , q i . If q i = qj for i = 1, . . ., p and Zp 1 qj = q then we are
done. So we may suppose that either qj > q or, for some 1 5 j < p,
q,' > qj . In the latter case we may assume that ql > q1 . Hence in any case

qi+E 2qj > q.
Let us choose qi sets A1 , . . ., AQí e -1, such that I A jl n Aj2 I O L for

1 ~ < j 1 < j2 S qi . Suppose that AQí+,, . . ., AQí+q2+ . . .+q,_1 are defined already .
Let us set

9i = 2i \ {B E Ri I there exists j,

1 5 j 5 q1 + q2 + . . . + q i-1 , such that I B n Aj I > l1 } .

It can be seen as above that I-qiI = I ° iI +0(nr-1 ) . Hence by the
induction hypothesis we can find q j sets

AQí +q2+. • . +Qi-i+1, . . ., Aqí +q2+ . . .+qt-i+qt
such that the cardinality of the intersection of any two different sets

,QID12 , where
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among them does not belong to L . Moreover, if

1 < j, < qí+g2+ . . . +qi-1 < ja < qí+q2+ . . . +qi

then I A,, n Aj2 < 11 , implying that I Ail nAh JOL. Finally we obtain

qi + Ef=2 qi > q sets A1, . . . , A q l +q2+ . . .+qy such that lA7i n Aj2 IOL for
1 < j1 < j 2 < q+1, a contradiction . So necessarily q~ = qi, q = 1 qi, and
by the induction hypothesis

yielding

r n-l •
~` ~

	

q H k-h _+-cO (k, q)nr-1

for an appropriate choice of c 0 (lc, q), which proves (ü) .
To finish the proof of (i) we have to show that .2/p = 0. Suppose it is

not the case and let A0 E 21p . We define A i recurrently . If, for some
i > 0, A0, A,, .- Aql, Aql+1, . . ., Aql+ . . .+q,_1 are defined then first define

194,. _ Ri \ {B E RL I there exists j,

0 < j < ql + . . . + qi_ 1 , such that I B n A~

'then 199 _ _qi I + 0(nr-1 ) . So by the induction hypothesis we can define

ql+q2+ . . .+qi-,+1, • • •' Aql+ . . .+q;-,+qi
such that, for q1 + . . . + qi-, + 1 < j1 < j 2 < q l + . . . + qi, Ail n Aj2 L . But,
as ~ 1 qi = q, this means that in the end we find q+ 1 sets A0 , . . ., A q E -Ql
such that J A,, n Aj2 J O L for 0 < jl < j2 ,< q, and this final contradiction
concludes the proof of the theorem .

REMARK 4. We conjecture that the assumptions of Theorem S imply
that

r n - l i
I~I < q

	

k-li '

that is, we may omit the last term in (ü) . If this conjecture is true then
it is the best possible in certain cases .

Let k > 2r and X = {1, . . ., n} . Let =1 , . . . I TiT q be q random permutations
of X and let be an (n, L, k)-system of cardinality 11 á_ 1 (n - l i)/(k - li ) if
such a system exists . If i e X then =(i) is the image of i by -r . Further,
set =(A) _ {z7(a) I a E A} for A - X and z7( Z) _ {-u(A) J A E Ql} . Then
zs1 ( Rl)	l(d) are (n, L, k)-systems, and if n > n0(E) it can be easily seen
that they are pairwise disjoint with probability not less than 1-E . So for

r n-l •
1`Wi1 = 1 Wi1 < qi rl	 '- + co(k -11,gi)nr-1-1 k-h
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an appropriate choice of zrl , . . .' ur,q the family

-4 ='C-J(V) uzu-'(V) U . . . U'A q ('-Q)

satisfies the assumptions of Theorem 8 and has cardinality
r n-li

q 11 k-li

REMARK 5 . In the case where L = {11,11 + 1, . . ., k- 1} Theorem 8 yields
that for a system 5V, of maximum cardinality there are q different 1,-sets
Dl , . . .,Dq such that every element of d contains at least one of the Di's .
The maximality of V implies that V = {A c X I there exists i, 1 < i < q,

such that Di - A}, and the sets D 1 , . . . 'D q are pairwise disjoint, that is,
Theorem 8 is indeed a generalization of the Hajnal-Rothschild theorem
[11] .

5. The proof of Theorem 9
We proceed in essentially the same way as with the proof of Theorems 4,

5, and 6 . Therefore the proof is only briefly sketched . We apply induction
on k ; the case where k = 1 is trivial .

(a) h = 0. In this case (i) holds automatically with D = 0 . In proving
(ü) we may suppose that r > 2 as otherwise we have nothing to prove .
Choosing the constant e(k, t) in such a way that it satisfies

c(k, t) > 2c(k -1, t)

we may, as in the proof of Theorem 5, successively omit the elements of
X which are contained in at most c(k-1, t)nr -2 members of -q/ . Finally,
we obtain a family Q/' which consists of subsets of a set X' - X, where
every element of X' has degree greater than c(k-1, t)nr-2 and
V'J > e(k - 1,t)nr-1

Now using the induction hypothesis we obtain that for every x e X'
there exists a set Dx such that I Dx I =

12
-1, for x

0
Dx , and A c Q/', for

x c A' imply Dx A . It follows, as in the proof of Theorem 5, that the
sets {x} u D x form a partition of X' and, by the induction hypothesis,

I V' I > e(k-1, t)nr-1

implies that for any l E L there exist A,_ ., A t E mil' such that

JA 1 n . . .nA,J=l .

But A, n . . . n A, is the disjoint union of some of the l 2-element sets x u D x ,
and it follows that 121 l i and 1, 1 k . The property 11 1141 . . . I l r I k follows from
the induction hypothesis applied to one of the families

dx = {A \ x Jx E A E mil'}, for x E X' .
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Now we prove (iii). Let x c X . If r > 1 then we can use the induction
hypothesis for the family qlx = {A\ x I x e A E -d} and obtain

9~l

	

r n-li
x1 (t-1)H k-li

If r = 1, that is, L = {0}, then it is obvious that l cv'x ( < t - l . Counting the
number of the incident pairs (x, A), where x c- A E sal, in two different
ways we obtain that I lx I = k j .Q1 I, yielding

la I S (t - 1) lI
n-lip

i=~ k -1j
as desired .

(b) h > 0. First we prove (i) . If there are k + t sets A,, . . .,Ak+t C_ 'd
which form a 0-system with kernel D, where I D I < h, then by the assump-
tions of the theorem I D I = h and it follows that D c A for every A E '~V .
So, in the case where r = 1, the assertion follows from Theorem 1 for
c = Pt+k(k) •

Now we do the same thing as in the proof of Theorem 3 . We select all
the l 2-element subsets of X which are kernels of a A-system of eardinality
(k+t) 2 , consisting of members of z,// .

As we may suppose that no (Ic+t)-element 0-system with an l i-element
kernel exists, Lemma 1 yields that there are at most Pk+t(l2) such l 2-element
sets. Then we omit all the sets containing some of these l 2-element sets
and look for 0-systems of eardinality (k+t) 3 and with a kernel of ear-
dinality 1, and so on .
Finally, using the fact that by the induction assumption a given

li-element subset of X is contained in at most (t-1)Ij,r=i(n-lj)/(k-lj)
members of jI, we obtain that

~r n-l •
99k+t(l2) _ (t-1) 11 k	 h +O(nr-2 ),

7=2

	

j
which is a contradiction, for c sufficiently large .

To finish the proof of (ü) and (iii) it is sufficient to apply the induction
hypothesis to the system 5VD _ {A\ D I A E _4} .

REMARK 6 . It is possible to prove Theorem 9 when the condition I A i = k
is replaced by I A, n . . . n A 1_, I S k for any t -1 different members of a.

REMARK 7 . Let us introduce the following two functions

fk,t(n) _

9k,1(n) _

max{

	

1 21 satisfies the assumptions of the theorem
with L = {l}, and i n ., E , A i < ii ;

max{ szl I satisfies the assumptions of the theorem
with L = {0, l} and lX k} .
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We know only that fk,,(n) ~< ck (c k = k 2 -k+ 1 in the case where t = 2)

and 9k i ( n) <- ckn K' = i in the case where t = 2), where ek , ck are constants
depending only on k .

REMARK S . It is proved in [9] that in the case where L = {1, 2, . . ., k -1}
(iii) holds already for k >, (t-1)t-tn . It would be interesting to obtain
better bounds for the general case as well .

6. Concluding remarks
(1) Let L' - L. Is it then true that there exist an (n, L, k)-system

and an (n, L', k)-system Q/', both of maximum cardinality, such that
a' 91(n > no(k))? It is easy to prove that this is true whenever

In the case where L = {0, 2, 3, . . ., k- I} and
L' _ {2, 3, . . ., k-1} this is equivalent to a conjecture of Sós and the
second author stating that for k > 4 an (n, {0, 2, 3, . . ., k -1}, k)-system has

cardinality at most n-2(k-2 In the case where k = 3 it is not true, which

shows that the answer is negative in the case where L' _ {2} and L = {0, 2} .
(2) In the case where L = {1, 2, . . ., k-1} a theorem of Hilton and

Milner [12] gives that Theorem 4 holds already for

I_Q/1' (k- 1) - (n kkl l) +l,

and this bound is the best possible . It would be interesting to obtain best-
possible bounds in the general case, too. The third author can prove that
in the case where L = {l, l+ 1, . . ., k-1} the optimal bound is

n-l

	

n-k-1
(k-l) - ( k-l ) +l for k > k o (l), n > n o(k) .

(3) Let s be a positive integer . Let B be an m x k matrix with entries
0, l, . . ., s. Suppose that any two rows of B coincide in at least l positions .
The authors can prove that, for s > so (l), m < (s+ 1)k-a They conjecture
[3] that if s = k-1 and every row of B is a permutation of {0, 1, . . ., k- l }
then is < (k-l)! for k > k,(l) . This was proved by Deza and Frankl in [5]
for the following cases : l = 1, k arbitrary ; l = 2, k = q ; l = 3, k = q+ 1
where q is the power of a prime .

(4) It is possible to generalize Theorems 7 and 9 simultaneously, that is,
for families of sets / such that, for i t < i 2 < . . . < it , ;Ail I e K,

lAil n . . .nAi,IEL .
Such families are called quasi-block-designs by Sós in [17] where the

problem of studying these objects was raised .



384

	

INTERSECTIONS OF SYSTEMS OF FINITE SETS

REFERENCES
1 . M. DEza, `Solution d'un probl6me de Erdös-Lovast', J. Combinatorial Theory

Ser. B 16 (1974) 166-67 .
2 .	 and P. ERDŐS, `On intersection properties of the systems of finite sets',

Notices Amer . 3lath . Soc . 22-6 (1975) A-657 .
3 .	 `Matrices dont deux lignes quelconques coincident daps un nombre donne

de positions communes', J . Combinatorial Theory Ser . A. 20 (1976) 306-18 .
4 .	P. ERDŐS, and N. M. SiNCiii, `Combinatorial problems on subsets and their

intersections', Advances in Alath ., to appear .
5 .	 and P. FRANKL, `Maximum number of permutations with given maximal

or minimal distance', J . Combinatorial Theory Ser. A 22 (1977) .
6 .		`Pavage généralis© parfait', Coll . Int . C.N.R.S . 260-ProWntes

combinatoires, to appear .
7. P. ERDŐS and R . RaDo, `Intersection theorems for systems of sets', J . London

Math. Soc . 35 (1960) 85-90 .
8 .	 CHAO Ko, and R. RADo, `Intersection theorems for systems of finite

sets', Quart . J . 11lath. Oxford (2) 12 (1961) 313-20 .
9. P. FRANKL, `Sperner systems satisfying an additional condition', J . Combinatorial

Theory Ser . A 20 (1976) 1-11 .
10 . - `The theorem of Erdös-Ko-Rado holds for n >- Ck(r+ 1)', to appear .
11 . A. HAJNAL and B. RoTHSCHILD, `A generalisation of the Erdös-Ko-Rado

theorem on finite set systems', J. Combinatorial Theory Ser. A 15 (1973)
359-62 .

12 . A. J. W. HILTON and E . C. MILNER, `Some intersection theorems for systems of
finite sets', Quart. J. Math. Oxford (2) 18 (1967) 369-84 .

13 .	 `Analogues of a theorem of Erdös, Ko and Rado on a family of finite
sets', ibid . 25 (1974) 19-28 .

14 . P. YOUNG, V . MuRTY, and J. EDMONDS, `Equicardinal matroids and matroid-
designs', Proceedings of the second Chapel Hill conference on combinatorial
mathematics, Chapel Hill, N.C. (1970) 498-541 .

15 . K. N. MAJUMDAR, `On some theorems in combinatorics relating to incomplete
block designs', Ann. lllath . Statist . 24 (1953) 52-75 .

16 . D. K. RAY-CHAUDHURI and R . M. WILsoN, `On t-designs', Osaka J . Math . 12
(1975) 737-44 .

17 . V. T . Sós, `Some remarks on the connection of graph theory, finite geometry
and block designs', to appear .

18 . J. SPENCER, `Intersection theorems for systems of sets' , to appear .

M. DEZA

	

P. ERDOS

Centre National de la Recherche

	

The Hungarian Academy
Scientifique

	

of Sciences
Paris

	

Budapest
P. FRANKL

Eötvös L. University
Budapest


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

