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Given a linear recurrence integer sequence U={u,,}, U-1 =U-1+ u,,, na1, u,=1, uz>ul,
we prove that the set of positive integers can be partitioned uniquely into two disjoint subsets
such that the sum of any two distinct members from any one set can never be in U . We give a
graph theoretic interpretation of this result, study related problems and discuss possible
generalizations.

1. Introduction

The aim of this paper is to prove that given a linear recurrence sequence
U = kb u„ +z = u„ + , + u„, n w 1, u t =1, uz > u l , then the set of positive integers
can be partitioned uniquely into two disjoint subsets such that the sum of any two
distinct members from any one set can never be in U and study related problems .

We prove our main result in Section 2. In Section 3 we give a graph theoretic
interpretation of this, and look at such recurrence sequences as extremal solutions
to certain problems relating to the partition of the set of integers . In Section 4 we
make a brief study of some special properties of partitions generated by such
recursive sequences . Finally in Section 5 we mention related problems and
possible generalizations of our results .

The theorem mentioned in the first paragraph has been proved simultaneously
and independently, [2, 4, 6], by Evans, Silverman and Nelson for the case u z =2,
(Fibonacci Numbers) . But we bave learned that their methods are quite different .
Moreover in this paper we study the same problem in a more general setting .

The explicit theorem originated by Silverman is [7] :

Theorem . The positive integers have a unique division into two disjoint sets with the
property shat a positive integer is a Fibonacci Number if and only if it is not the sum
of two distinct members of the same set .
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Let A, and Az be sets of positive integers such that

A, U A, = N (the set of positive integers),

A, U A z = 0 (the empty set),

then

A, ={l, 3, 6, 8, 9, 11, 14, 16, 17, 19 . . . . }

A2 =12, 4, 5, 7, 10, 12, 13, 15, 18, . . .}

are examples of the first few terms of such sets . No two distinct elements from the
same set sum to a Fibonacci Number but every non-Fibonacci Number is the sum
of two distinct elements from the same set . Every rn = 2F is uniquely representa-
ble in this way .

2. The main theorem and its proof

Definition 2.1 . Consider a set of positive integers A. Denote by N=
11, 2, 3, 4 . . . . 1 . So A c N . We say that A generates an additive partition of N if
there exists A,, Az s N with N= A, U A 2i A, n Az = 0, such that for any distinct
positive integers a and b with a, b E A, or a, b c A 2 we have a + b Lt A .

It is the aim of this section to prove the following :

Theorem 2.2. If U={u„} is a linear recurrence sequence with u„_2=u,,,,+U-
11 -1, u, = 1, u 2 > 1, then U generates a unique additive partition of N .

Proof . (Existence .) We shall give an explicit construction of two sets A,, A,
which generate this additive partition . First observe that it is absolutely necessary
to have u l , u n , u 5 . . . . in the same set and 142, u4, U6 . . . . in the other set . So let

A, 2{u,, un, us, u7, . . , u2n11 . . . .1

	

(1)

A2 ? 1u2, n4, a6, . . , u2n. . . . } .

Let u,= b, so that U={1, b,b+1,2b+1 . . . . 1 .

Case l . b=2a (even) .
Consider two consecutive positive integers c, c+ 1 where c < a. Now c and c + 1

must lie in the same set, because otherwise the number d defined by c + d = 2a =

U2 and c + 1 + d = 2 a + 1= u 3 cannot lie in either set because d c and d # c + 1 .
So this forces 1, 2, . . . , a-1, a to lie in the same set . That is,

A ,= fl, 2, . . . , a -1, a . . . . } .

	

(2)

Now since

U=11,2a,2a+1,4a+1 . . . . }



we should have

A22{a+1,a+2, . . . . 2a-1,2a, . . . } .
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(3)

So far we have had no trouble and have constructed the sets up to u2 =2a . Now
let's go to :

Case 2 . It = 2a + 1 (odd) .
As in Case 1, if c<a, then c and c+1 must lie in the same set because

otherwise if d is defined by d+c=2a+1=u2 and d+c+1=2a+2=u; then
d 0 c or d # c + 1 and hence d does not get a place . So this forces

A,= {1,2,á	a-1, . . .}.

Where do we put a? If a E A2 then a + 1 E A, because 2a + 1 E U. But then
a+a+2=2a+2E U and a+2+a-1=2a+1E U and so a+2 has no position .
Thus we must have a c A, . So

A, _ {1, 2, . . . , a -1, a . . . . }.

	

(4)
This clearly forces

A 2 ={a +1, a+2, . . .,2a-1,2a,2a+1, . . .} .

	

(S)

So again we have determined the two sets up to u 2 without trouble . .
Choose an integer n > u2 . We will explicitly say whether n E A, or n EA2 by the

following construction .

Construction . If n c U then the position of n has already been determined by (1) .
If ne U then there exists a unique integer m such that u„, < n < u„, + , . Denote by
i = n - u„,. Observe i < u,, +,-u. = u, n , < n . So now inductively assume that i has
been assigned a position . Now if i is never half a member of U then we assign n
to the same set . If i = 2 , (then m % k - 1), we assign n to the same set as i if
m # k and to the opposite set if m = k.

We claim that the two sets A,, A 2 constructed thus give an additive partition of
N .

We prove this by induction . That is, assume that no two distinct members
from 11, 2, 3, . . . , n - 1} from the same set add up to a member of U. We show
this is true for {1, 2, 3, . . . , n} . We have shown it is true for n = u 2 . So now n > u 2 .
Moreover by the induction assumption it suffices to consider sums a+n where
a < n . There exists a unique integer m such that

Clearly n = u,,, does not cause any trouble because if a < n and a + n e U then
a = u,,, ,, but then by (1) a and n lie in opposite sets . So we have

u,,, < n < u,,,_, .
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But then
á+n<2n<u„+ 3

so we can only have a + n = um+, or a + n = u m +2 . We show both these are not
possible by our construction .

Case 1. a+n=um+ , .
As before let i=n-um <n. Observe a+i=(un)+(n-uu m _, . - Both

a and i are <n and so are in 11, 2, . . . , n - ..11 . By our induction assumption .if 'a # i
then a and i lie in-opposite sets. But then i = 2u, and so by our construction i and
n = u,,, + i liein the same set . So n and a lie in opposite sets .
If a = i = 2 um , then again by our construction a = i and n = um + i lie in

opposite sets .

Case 2 . a+n=um+2-
In Case 1 above we showed that n and u m ,,-n lie in opposite sets . But then by

our construction um+ , - n and um + (u,„ + , - n) lie in the same set unless

um+t- n=5u;,, ,=i(u,,,-t-u ..,)

	

(6)

which means
2n=um+2 =a+n.

This would force a = n which violates our assumption a <-n. So (6) does not hold
and consequently u,, + ,'- n and um + (u„, + , - n) = u m+2 - n ='a lie in the same set .
But then by Case 1 since n and um+i -n lie in opposite sets we conclude that n
and a lie in opposite sets .

So we have shown that if a < n, then a + n# U if a and n lie in the same set and
that proves existence.

(Uniqueness) . We show that there is at most one partition possible . We already
observe that (1) is necessary . Now if nO U then there exists a unique integer m
such that u,,, < n < um+ , . Set j = u,„+, - n. Observe j < um+, - um = u,„ , < n, so
that if j has been assigned a set then n must go to the opposite set . So if j has at
most one position, so does n. But then at the beginning of the existence proof we
showed that the numbers j ~- u 2 occupied unique positions, namely (2), (3), (4) and
(5) . So by induction there is at most one partition possible . That completes the
proof of our main theorem .

We can combine the uniqueness and construction in Theorem 2 .2 into the
following .

Theorem 2.3 . The unique additive partition generated by U in Theorem 2 .2 has the
following property : Given n U, n > u 2, pick m so that um < n < u,,, + , . Set i =
n-u,,, . Then if i# 2 u .- j , n and i lie in the same set. If i =?um , then n and i lie in
opposite sets .

We shall use Theorem 2 .2 quite often in later sections of this paper.



3. Extremal solutions

In this section we show that the sequences U discussed in Theorem 2 .2 are
extremal solutions to certain problems about additive partitions of N . We begin
by giving a graph theoretic interpretation of our result . For that we need

Definition 3 .1. Consider a set A c N. Define a graph on N as follows : Two
distinct points of N are joined by a line if they sum up to a member of A . We call
such a graph the additive graph generated by A.

If the additive graph generated by A is two colorable then let A, be all points
of N of one color and A2 the other set. Clearly A, and AZ generate an additive
partition of N . Conversely if A generates an additive partition of N with sets A,
and Az, then coloring all points of A, with one color, and points of Az with the
other gives a two coloration of the additive graph of A .

It is well known that a graph is two colorable if and only if it is bipartite . (For
these definitions about graphs see [1] .) So let us record this analysis in the
following :

Proposition 3 .2 . A set A S N generates an additive partition of N if and only if the
additive graph generated by A is two colorable, that if and only if the additive graph
generated by A is bipartite .

Consider A = fan ) a strictly increasing sequence of positive integers, and the
simultaneous equations

a+b=an

b+c=a„,

c+a=a, .

We then get

a n -a,n +a,

	

an,-a,+an

	

a,-an + an,
a-

	

2

	

b=

	

2

	

c=

	

2

	

(7)

The necessary and sufficient condition for the three solutions in (7) to be positive
is that

max (an, a„„ a,) < a; + ai

	

(8)

where i# j and i, j= n, ni, l. We may assume without loss of generality that
an < an, < a, so that (8) is equivalent to
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an + a,„ > a, . (9)

If we want all the solutions in (7) to be integers then we need an + a,n + a, _=
0(mode 2). So in such a case the additive graph generated by A contains a triangle
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(a, b), (b, c), (c, a) and so is not bipartite . Thus by Proposition 3.2, A does not
generate an additive partition of N . So we have

Theorem 3 .3 . Let A={a n ) be a strictly increasing sequence of positive integers such
that for some indices n, m, l, we have a„ + a n, + a, =0(mod 2) (n < m < l) . Further
if an, aa, lie closer together than the two term recurrence sequence in Theorem 2 .2,
that is a n + a„, > a,, then A does not generate an additive partition of N .

Remark. What Theorem 3 .3 essentially says is that if {an)=A grows slower than
a two term recurrence sequence U and contains even numbers (a n +a n,+a,=-
0(mode 2)) then A does not generate an additive partition of N . For the sequence
U itself the simultaneous equations have non-negative integer solutions in (7)
only when m = n + 1, and l = n+2 but one solution is zero which we do not
accept .

Theorem 3 .3 tells us that Theorem 2 .2 won't hold with arbitrary initial
conditions u, and u,. For instance u = 2p + 1, u, = 1, where p > 0 is an integer
does not work . Similarly u, = 2p, u, = 2 does not work also .

The condition a„ + an, + a, = 0(mod 2) is absolutely essential because if all a„
were odd then

A, = {neN n=1(mod2))
Az = {neN it =- 2(mod2)}

is an additive partition for A .

Example . Let A ={n 2 1 n eN). Then A satisfies the conditions of Theorem 3 .3
and hence the additive graph generated by A is not two colorable . What is the
chromatic number of this graph? We feel it is infinite!

If a sequence grows faster than U discussed in Theorem 2 .2, it generally
generates an additive partition and possibly more than one . We can however show

Theorem 3 .4. If A= {a n } is a strictly increasing sequence of positive integers which
grows faster than a power of 2, that is, an ,,>2an then A generates infinitely mány
additive partitions of N .

Proof . First of all the elements of A can go in either of two sets . Because if
n < an, then an, < n + an, < 2an , -- a„, : , . So we have infinitely many choices for the
positions of {an ) . If n OA. then pick m so that an, < n < an,, ., . Now let j =
a n, , I - n . If j < n, assign n to the set opposite to that of j which by induction is
assumed to have been assigned a position . If j, n then n can occupy any position
because if n'< n then n'+ n < 2n < 2a„,,, < an72 . That proves Theorem 3 .4 .
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We will conclude this section by showing that recursive sequences U in
Theorem 2 .2 are an extremal solution to a certain additive partition problem .
First we need

Definition 3 .5. A set A s N is defined to saturated if A generates an additive
partition of N and no set B that properly contains A U {1, 21, and B S N generates
an additive partition of n. In other words if any pEN-A then if A,, A, is an
additive partition for A, we can find distinct integers a, b e A, or a, b c A, with
a+b=p (p>2) .

The reason why we consider A U f 1, 21 in Definition 3 .5 is because 1 and 2 are
never the sum of distinct positive integers .
We are now in a position to prove :

Theorem 3.6. Let U= ju„1 be a recursive sequence as in Theorem 2 .2 . Let
u, = b > 1 . Then if b is even. U is saturated . I f b is odd then U * = U U {b -11 is
saturated. Moreover b-1 can be made a member of the sequence by setting
u„ = b- I , and the recurrence relation is still satisfied .

We require

Lemma 3.7. Consider the unique partition A,, A2 of N as in Theorem 2 .2,
generated by U. Then if i=2um ,, i and u„, lie in the same set.

Proof. Observe that by (1), (2), (3), (4) and (5) this clearly holds for the first such
value of i namely i = b12 or i = ( b + 1)/2 . Our proof will be induction on the
subscript . If Lemma 3 .7 is true for i=zu„, ,, then the next even member of the
sequence is u„, +2 . So consider j = Zu„, +2 . Now observe u„ + i = j, because

U, , u„,+, + u„, 2 u,„ + u„, ,
j

	

2

	

2

	

2

	

+ i.

	

(10)

Now by Theorem 2.3, and (10), j and i lie in opposite sets . So j and u,„ lie in
opposite sets . But then since by (1), u„, and u m+3 lie in opposite sets, we infer that
j and u„, +2 lie in the same set and that proves the lemma by induction .

Proof of Theorem 3.6 . Since the additive partition generated by U is unique, one
need only look at sets A„ A 2 defined by (1) through (5) in Theorem 2 .2. One
deduces immediately that one cannot add any p < b -1 to U and still get an
additive partition .

If b is even then b -1 cannot be added because the three numbers b -1, b,
b + 1 would satisfy the conditions of Theorem 3 .6 and the additive graph would
contain a triangle . Or else by writing b = 2a, we observe in (2) that a, a-1 e A,
and a+a-1=b-1 .
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If b is odd then by straightforward inspection of (4) and (5) we see that b-1
can be added to U without any trouble .

So we will now show that for any ptt U, p > b, there exists a, b c A, or a, b E Az
with a + b = p. Clearly for such a p, we can pick a unique m with

u„,<p<um+, .
Set i = p - u„, . We have several cases .

Case 1 . '0 I2U,„ ,,

	

i#2u.a-3,

	

i#um_3 .
Without loss of generality assume u„, E A,. Then by (1), um+, E Az . If i E A,

then i + u„, = p and i < U„, because i < u„, +,- u„, = u„,_, < u„, and we will be done .
So we might as well assume i E A2 . Then by Theorem 2.3, u,„ + i E A2 . But then
(u„,+i)+(u„,_,-i)=u„,+, and so u„,_,-icA, . Observe if i#zu„_3 then
u m 2 + i E Az and u,„ , E Az . But then their sum is u„, + i = p. Moreover since
i# u m _ 3 , uni _ z+ i and u„,_, are distinct and u„,_,+(um_2+i)=p is the required
representation .

Case 2 . i=2u„ -1-
Then by Lemma 3 .7 i and u„, lie in the same set. So u„, + i = p is the required

representation .

Case 3. i=zu n 3 .
Again by Lemma 3 .7 i and U-2 lie in the same set . So by (1) i and u„, lie in

the same set and p - u„, + i .

Case 4 . i = U-3-
First note that u„, + U-3 = 2u„, _, . So we will show that numbers of the form

2u„, are representable additively . So write 2u,„ = u,„ + i + u„, - i . If this is never a
representation then that means u,„ + i and u,„ - i lie in opposite sets always . We
will get a contradiction .

(i) Let um be even . Then if i = 2 u„„ u,,, - i = i and u„, + i lie in the same set by
Theorem 2 .3 . So we get a representation . Also this is the only representation
because otherwise i and u„, - i lie in opposite sets and by Theorem 2 .3 . i and
um + i lie in the same set .

(ü) Let u,„ be odd, u,„ , even. In this case i and u„,-i lie in opposite sets
always . So for an additive representation of gu m we need u„, + i and i in opposite
sets and by Theorem 2 .3 this happens if and only if i=2u„ , .

(iii) Let u,„ be odd, u,„ + , even. Here also i and u„,-i lie in opposite sets. So
again for an additive representation we need u,„ + i and i in opposite sets . If
i , u,,-, then by Theorem 2 .3 this does not happen . So let u„,_, < i < u,„ . Then let
j be defined by u,„ + i = u,„_, + j so that j = i - u„, , . Since u,,-, is odd by
Theorem 2 .3, i and j lie in the same set always, unless j = 2u„ _ 2 , (i m_2 is even) .
Now

	

u,„ , < U-2 < 2u„, + , . So j and u„,+, + j = u„, + i lie always in the same
set . So u,„ + i and u„, - i lie in the same set it is necessary and sufficient that
j=2 2 , that is, i=u„ ,+z um 2 . So we have actually proved that 2u,„ has a
unique representation . That completes the proof of Theorem 3 .6 .
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4. Properties of the sets A, and A 2

In this section we discuss some special properties of the sets A,, A 2 of the
additive partition generated by U in Theorem 2 .2 . For instance

Theorem 4 .1. Let u2 = b and a = [b/2] where [x] is the largest integer _x . Then
neither sets A, or A 2 can contain a+2 consecutive integers .

Proof. The proof will be by induction and contradiction . One notices from (2),
(3), (4) and (5) that this is true up to b + 1 . Now assume we have a+2 consecutive
integers in one set, say n, n + 1, . . . , n + a + 1 .

Case 1 . There exists an integer m such that

un,-n<n+1< . . .<n+a+1<u,n+r •
Consider the integers i, = u„,+, -(n +j) _ u .- j < n . The y are all less than n, and
hence would lie in the set opposite to these . This would be a contradiction by
induction .

Case 2 . There exists an integer m so that

u„,<n<n+1< . . .<n+a +1 ;u„,+ , .

If n + a + l - u,,,+ , then consider the differences u.+, - ( n + j) for 0 < j < a + 1
which gives 1, 2, . . . , a + 1 in the same set contradicting (2) and (4) . If n + a + 1 <
u„, + , then it is clear by Case 1 .

Case 3. There exists an integer m such that

n<n+I< . . .<n+j=u„,<n+j+I< . . .<n+a+1 .

In this case by Theorem 2 .3, n+j+1 and 1 lie in the same set while n + j - 1 and
1 lie in opposite sets . Thus such a collection of a+2 numbers can never lie in the
same set. We are done .

We have a companion result to Theorem 4 .1 .

Theorem 4 .2. If a„ and (3„ denote the n`h members of A, and A 2 respectively we
have

~an-0,1--a+2 .

Proof. Consider a member u„, e U which is odd . Without loss of generality
assume un, e A, . Denote by

Let these numbers be written in ascending order a,, a2 , . . . , as . So as = un, . Now
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u„, - a ; for i < s determine the set of all 0, e A 2, (3, < u,„. So we have

u... - a., = Or

	

(11)

The case u. - a = a does not arise since u . is odd . So by (11)

Ian-and=la<

	

Os_J .

	

(12)

If u,„ is a member of the sequence immediately after a„ and if u. is odd, then by
(l2) we can connect the difference la, -(3„I with la,_„-(3 s „l and s-n < n. So by
induction we would infer la,, - fl„ < a + 2 . If u,„ e A Z then the above argument can
be modified easily .

So the only problem is when u,,, is even . In this case the only trouble in the
above correspondence is caused by 2uand so there can be a discrepancy of at
most 2 . In the beginning by observation of (2), (3), (4) and (5), la„ - /3„ I = a . So we
have for the first such occurence of u, even, la„-(3„ ~a+2. But then the even
u, go in alternate sets by (1) and by Lemma 3 .7 the Zu,„ also go in opposite sets
alternately . So the errors cancel out . This proves Theorem 4 .2 .

One of the standard ways to partition integers is as follows : pick a real number
a > 1 and denote by

N„ _ {[ na] 1 n c A} .

Then (see [3] or [5])

N,UN13 =N,

	

N,nNR =0

	

(14)

if and only if a and 0 are irrational and

1

	

1
a (3

In our case by Theorem 4 .2 we have

lim
a

Rn = 1
.

	

(15)

So (15) implies we cannot get a partition as in (14) because then a = P = 2 .
One can ask several interesting questions about the sets A, and Az . We

conclude this section by considering one . We showed in Theorem 3 .6 that U or
U * was saturated . That is for p > b there always existed an additive representa-
tion in one set. It is natural to ask the following questions . Which numbers p U,
p > b, are represented ín"both sets, and which in only one? Theorem 4 .3 below
gives a complete answer .

Theorem 4.3 . 1f p e U, p# b -1, then we can find distinct integers a, b with a,
b e A, or a, b e Az and a + b = p. The only integers p that are representable in such
a fashion in only one of these sets are p = 2u .. In such cases the representation is
unique .
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The proof of Theorem 4 .3 has essentially been carried out in Theorem 3 .6 . For
instance in Case 4 there we proved the uniqueness of representation of 2u,n . If
one goes through Cases 1, 2, and 3 more carefully, one can give a complete proof
of Theorem 4 .3 . We do not go through the details here .

5 . Related problems and possible generalizations

How would we generalize Theorem 2 .2? It is probably better to look at its
graph theoretic form, namely Proposition 3 .2 . This naturally leads to the follow-
ing general question : Under what conditions can we say that an additive graph
generated by A is k-colorable? When will this coloration be unique?

We can also ask for a partition of integers into two sets such that the sum of
k-distinct members from any one set is never in A . (We call this a k-additive
partition generated by A.) Throughout this paper we studied 2-additive partitions .
Just as one can put additive partitions in the language of graphs (Proposition 3 .2),
additive partitions will lead to k-hypergraphs . Will we get as extremal solutions to
certain problems of k-additive partitions the k-term recurrence sequences? These
questions are extremely difficult to answer .

In a subsequent paper, V .E . Hoggatt will discuss further interesting properties
of recursive sequences and additive partitions . We conclude this paper with the
following question :

If a set A is saturated, does it necessarily generate a unique additive partition
of N? If not, under what conditions does a saturated set generate a unique
additive partition of N?
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