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1 . Introduction . - In this paper we shall consider
multigraphs and digraphs (= directed graphs) with
bounded multiplicity : an integer r is fixed and we
shall assume, that the considered multigraphs or
digraphs have no loops, further, if u and v are two
vertices of a multigraph M, they can be joined by more
than one edge, however, they cannot be joined by more
than r edges. In case of digraphs u and v cannot be
joined by more than r edges of the same orientation .

2 . Fundamental problem . - Given the multigraphs
(digraphs) A 1 , . . ., A k and a multigraph (digraph) H"
not containing submultigraphs (subdigraphs) iso-
morphic to any A; . How large e(H") can be, where
e(H") denotes the number of edges ?

3 . The problem of the extremal structure . - For a
given set A 1 , . . ., A k of prohibited graphs and r the
maximum in the fundamental problem will be denoted
by ex(n ; A1, . . ., A k) . (The dependence on r usually
will not be indicated .) Similarly, EX(n ; A 1 , . . ., A k)
denotes the family of graphs not containing any A i
and having ex(n ; A 1 , . . . : A k ) edges. (In other words
EX(n ; A 1	A k ) is the family of graphs attaining the
maximum in our probleins . They will be called extre-
mal graphs. The word graph will be used for << multi-
graphs >> or (< digraphs >> .)
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Résumé . - Nous considérons des multigraphes (resp. graphes orientés) ayant au plus r arétes
entre deux sommets (resp . r arcs reliant un sommet á un autre). Dans cet article nous donnons des
résultats connus et nouveaux concernant le probléme suivant : étant donné une famille de multi-
graphes (resp . graphes orientés) A 1 , . . ., A k du type ci-dessus, quel est le nombre maximum d'arétes
(resp . arcs) que peut avoir un multigraphe (resp . graphe orienté) du type ci-dessus ne contenant
aucun A ; comme sous-multigraphe (sous-graphe) partiel .

It is a well known theorem of P . Turán (1941 [1]) that
if r = 1 and { A 1 , . . ., A k } = {Kp } = { a complete
graph on n vertices }, then

ex(n, Kn) = 2 1 -
p

	 11 )(n 2 - s 2 ) + (),
2

	

(1)

where s is the residue of the division n/p - 1
n=t(p-1)+s.0<,s<p-2.

For r = 1 for arbitrary family A 1 , . . ., A r of pro-
hibited graphs Erdös and Simonovits proved in [2]
that

ex (n, A

	

1

	

1
A k) = 2 1

	

p - 1 + 0(1) n2 > (2)

if p = : min (Z(A 1) : i = 1, . . ., k), where Z(G) denotes
the chromatic number of G . Thus (2) means that
ex(n ; A 1 , . . ., A r) depends first of all on the minimum
chromatic number of the prohibited graphs if r = 1 .

Later Erdös and Simonovits independently
proved [3, 4, 5] that not only the number of edges but
the structure of extremal graphs is also very near
for A 1 , . . ., A k to the structure of extremal graph in
Turán's original theorem . For Kp (as Turán proved)
there exists only one extremal graph (for each n),
namely, the following one
Let us determine ni (i = 1, . . ., p - 1) so that

nn1 +

	

+ np _ 1 = n and n, - d < 1 . These condi-
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tions determine the integers n i up to a permutation .
Let K(ml , . . ., md) denote the complete d-partite graph
with m; vertices in its jth class and let

',P- 1

with the integers defined above. According to Turán's
theorem T" , P- i is the only extremal graph for KP .
Erdős and Simonovits proved among other results,
that for any family A i , . . ., A k of prohibited subgraphs
and p = min (x(A j ) : i = 1, . . ., k) if S" is an extremal
graph for A i , . . ., A k , then one can change o(n 2 ) edges
in S"(n -+ oo), so that the obtained graph is just T" •P - i

Does anything like this hold for multigraphs
(oriented graphs) too ? The answer is partly yes and
partly no . This paper will try to explain the situation,
in this way it will be a very brief survey, further it will
give some of other newest results, but it will not
contain proofs because they would be too long to be
published here .

4. The connection between the directed and multi-
graph problem. - Let .4 be a family of prohibited
multigraphs for a given even integer r = 2s. We define
for the multiplicity bound s the family of oriented
(prohibited) graphs by taking each multigraph of A
and orienting it in all the possible (permissible) ways .
Let % be the family of digraphs obtained in this way .
Both A and % are allowed to be infinite . One can
easily see that

(a) If Q" is an oriented graph and S" is obtained
from Q" by omitting the orientation, then Q" will
contain a Bi e M iff S" contains some A J e . . (Here the
digraph Q" is an « s-digraph », S" is an (( r-multi-
graph » .)

(b) Q" is extremal for X iff S" is extremal for . .
This shows that the extremal digraph problems are
more general than the multigraph extremal problems .
(One can ask, whether the digraph problems are really
more general, than the multigraph problems . In some
sense they are : if A is a path of 3 vertices and two
edges of multiplicity 1 and B is a directed path of 3 ver-
tices, s = 1, r = 2, then ex(n, A) = 0(n), trivially,
but ex(n, B) = n2/4 since (1) if we orient all the edges
of a T"• 2 from the first class towards the second one,
the obtained graph will not contain B, but (2) if n > 4
and e(Q") > [n2 /4], then either Q" contains a directed
triangle and a B in it or a pair of vertices (u, v) joined
in both direction. In the second case, if Q" contains
no B, then u and v cannot be joined to any other
vertex, thus one can easily prove ex(n, B) _ [n2 /4] .
Thus the digraph problem is more general, indeed .)

S. The structure of extremal graphs in the general
case, r = 2, s = 1. - Most of our results concern
the case r = 2 for multigraphs or the equivalent
digraph problem for s = 1 . Therefore we shall restrict
ourselves to these two cases, and for the sake of brevity
here we shall consider only the digraph problem . Our

theorems below can easily be translated into the
corresponding multigraph theorems .

6 . The matrix graphs. - The most important fea-
tures of T"•d are that the vertices are divided into a
bounded number of classes and two vertices are joined
depending only on whether they belong to the same
classes or not, further, that the number of vertices in
any class is a given proportion of the total number of
vertices

	

n/d. To generalize T", d let us consider a dxd
matrix A = { a i , J } where ai, i = 0 or 1, ai.J = 0
or 2 if i j. If x i + • • • + x d = n, let A((x)) be defined
as follows (x = (x i , . . ., xd)) : C i is a class of x, vertices
(i = 1, . . ., d) and a vertex u e C i is joined to a vertex
v e CJ (i j) by an edge oriented from u to v iff a i, J=2.
If ai,i = 1, then let us enumerate the vertices of C i
by 1, 2, . . ., xi and join any two vertices by an edge
oriented from the smaller label to the greater one : put
a complete acyclic graph into C i .

Theorem A [6]. - For any finite or infinite family
of prohibited digraphs (for s = 1) there exists a
matrix A with the following properties

(i) A is a matrix described in the definition of matrix
graphs : ai , i = 0 or 1, ai,J = 0 or 2 if i j.

(ü) Let us consider for afixedn all the matrix graphs
A((x i , . . ., xd)) with x i + • • • + xd if d is the size of A .
Let A(n) be one of them having maximum number of
edges. Then A(n) is a sequence of asymptotically
extremal graphs : A(n) does not contain any AJ E ,A,
but if a digraph Q" has at least (1 + E) e(A(n)) edges
and n > n o(E), then Q" contains at least one AJ e A .

(iii) If A(n) = A((x i , . . ., x d)), then for every i xi /n
tends to a fixed ui depending only on i . This ui is positive
and is the unique solution of the equations
for u = (u i , . . ., ud) and e = (1, . . ., 1)

where

(u ; e) = 1 and (A + A *) u = 2 g(A) e ,

g(A) = max (vAv : (v ; e) = 1) .

	

(9)

Clearly, (ü) is the most important point in
theorem A. Its meaning is that an almost extremal
graph can be constructed in a very simple way : the
complicatedness of its structure does not depend on n .
The assertion (iii) needs some explanation : If A is a
matrix for which (i) holds, then

2 e(A((x))) = xAx + 0(n) .

	

(10)

From this it follows easily that

ex(n ; A)In 2 -a iz g(A) ,

	

(11)

(if (ü) is already known) . (iii) asserts that the distri-
bution of vertices in the almost extremal digraph is
asymptotically uniquely defined if the matrix A is
appropriately defined .



Another theorem of [6] asserts that theorem A is the
best possible

Theorems B . - Let A = { ai ,1 ] be a d x d matrix
satisfying (i) of theorem A and g(A) be defined by (9) .
If there exists only one solution of (8), then there exists
a finite family A of prohibited digraphs for which
theorem A holds with just this matrix A .

Theorem B reflects that the situation is fairly
complicated : without giving a precise explanation of
the following statement we remark, that the condition
that the system (9) and (8) has only one solution is not
a too strong one, in some sense it expresses strict
convexity of a quadratic form .

7. Cases, where the extremal graphs have simple
structure. - There are two direct generalizations of
the graph T",d playing an important role in multigraph
extremal or digraph extremal problems . U",d be the
multigraph obtained from T",d by doubling each edge
and V",d be the multigraph obtained from T",d by
increasing the multiplicity of each edge by one : the
edges of T",d are changed into double edges and the
independent pairs of vertices are joined by single
edges. Let U",d denote the only permitted orientation
(for s = 1) of U",d and Vn,d denote the only permitted
orientation of V",d where the single edges are oriented
acyclicaly : in other words, we put d transitive tourna-
ments into the d classes of U",d . In very many extremal
graph problems (for multigraphs or digraphs) these
graphs are the extremal graphs or the asymptotically
extremal graphs. The first work investigating multi-
graph extremal problems and digraph extremal pro-
blems is due to W. G. Brown and F. Harary [7] .

[7] contains many results in which the extremal
graphs are always U r4d , V",d, U",d or V",d . Here we
mention only one of them, which will be needed later .

Theorem C. - Let D' and D" be two tournaments,
at least one ofwhich is different from the directed cycle
on 3 vertices and let D be obtained from D' and D"
by joining each vertex of D' to each vertex ofD" by two
edges of the opposite directions . If D has r vertices and
r >, 5, then

ex(n, D) = 2 e(T",r+1 )

and U'," -' is the only extremal graph for D . (If D'
and D" has r' and r" vertices respectively, then r=r' +r" .
that is, we assume that D' and D" have no common
vertices .)

A trivial consequence of this theorem is theorem C'

Theorem C' . - If M is a multigraph in which any
two vertices are joined by at least one edge and the
chromatic number of M + consisting of the double edges
of M is 2, then

ex(n, M) = 2 e(T",r-1) ,

where r >, 7 is the number ofvertices in M.
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(Theorems C and C' are formulated above not in
their most general forms .)

8 . New results. - After the long introduction
above the following theorems do not really need much
explanation. Let us fix r = 2 for maximum mul-
tiplicity .

Theorem 1. - Let M be a multigraph of t + 1
vertices for which any pair of vertices is joined by at
least one edge. If M+ is the graph on the vertices of M
whose edges are the double edges of M and M+ is
q-chromatic, then none of U",' and Vn,R contains M,
further one of the sequences (having the greater number
of edges) is asymptotically extremal

If c > 0 is fixed and n > n o (c), then for any multi-
graph H" with

e(H") > -ax (e(U",`), e( V "' 4)) + cn 2

H" must contain M as a submultigraph .

Corollary 1 . - If M satisfies the conditions of
theorem 1 and h = max (t, 2q), then

ex(n ; M) _ 1 - h + o(1)~ n2 .

The cases t = 2 q, 2 q + 1 are in some sense
exceptional ones, therefore we shall not investigate
them here, however in the other cases we formulate
two theorems generalizing or sharpening theorem 1 .

Theorem 2. - Let M be a multigraph on t + 1
vertices and M + be the graph defined in theorem l .
If M + is q + 1-chromatic and t < 2 q, then { V "°q ]
is a sequence ofasymptotically extremal graph

(i) M V",4 and
(ü) ex(n ; M) = e( V" °4 ) + o(n2 ) ,

(even if we do not assume that any pair of vertices is
joined by at least one edge) .

Theorem 3 . - Let M be a multigraph on t + 1
vertices for which the graph M + defined in theorem 1
is q + 1-chromatic . If t > 2 q + 2, then there exists
an no = no(M) such that for n > n o U" , ` is the only
extremal multigraph for M.

Remark . - The difference between the character
of theorem 2 and theorem 3 is not so surprising as it
may seem. The essential difference between the
conditions of these theorems is, that in theorem 3 there
exists an edge a in M such that M - e U" , `, while
this is not necessarily so in theorem 2 . However, if
there exists an edge a in M in theorem 2 for which
M - e V",4 , then there exists an no such that
for n > no V" , Q is the only extremal graph in theorem 2 .
Remark . - Many extremal graph theorems are

proved in a preprint of ours, [8], most of which gives
the asymptotical value of ex(n, .) for multigraph

6
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extremal problems, r = 2 . In most of these results the
asymptotically extremal graphs are different from U n,d
and Vn•d

9 . An example, where the extremal structure is
complicated . - Let L be the following multigraph
the double edges form a paths (x t x2 x3 x4 x5 x6) and
(XI x 5 x3 ), (x4 X 6 x2 ) are two triangles consisting of
single edges . It can be proved that if n is sufficiently
large, then ex(n ; L) is asymptotically 0.7 n 2 and there
exist only finitely many extremal graphs each having
the following structure : the vertices are divided
into 3 classes C t , C2 and D and

1
Ci 1=5+0(1),

	

IDI=5+0(1)
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