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1. Throughout this paper, c 1 , c2 , . . . denote absolute constants ; ko (a, fl, . . .),
kr (a, f3, . . .), . . ., xo (a, /3, . . .), . . . denote constants depending only on the parameters
a, /l, . . . ; v(n) denotes the number of the prime factors of the positive integer n,
counted according to their multiplicity . The number of the elements of a finite
set S is denoted by I S I .

Let k, n be any positive integers, A={ar , a2 , . . ., a„} any finite, strictly in-
creasing sequence of positive integers satisfying

(1)

	

a, =1,a, =2, . . .,ak=k

(consequently, IAI=n-=k) . Let us denote the number of integers which can be
written in form

or
a jaj (1 _- i, i -_ n),

respectively by f(A, n, k) and g(A, n, k) . Let us write

F(n, k) = min f(A, n, k) and G(n, k) = min g(A, n, k)
A

	

A

where the minimums are extended over all sequences A satisfying (1) and JAI =n.
Starting out from a conjecture of G . Halász, the second author showed in

the first part of this paper (see [4]) that

G(n, k)

	

n • exp c,
log k

log log k

Note that to get many distinct products of form a j aj , we need a condition
of type (1) ; otherwise e .g . the sequence A=(1, 2, 22 , . . ., 2") is a counterexample,
namely for this sequence the number of the distinct products is 2n-1=0(n) .
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n

(2)

	

jj a~' ( i = 0 or 1)
i=,
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Furthermore, G(n, k)/n is not much greater for fixed k and large n than for n=k,
i .e . for A=Bk where

Bk=11,2, . . .,k}.

This can be shown by the following construction : let A*= (al, a 2 , . . ., an*) be the
sequence of the integers of form p~j where p is a fixed prime number greater than
k, i=1, 2, . . . , m, j=1, 2, . . ., k, and nz is any positive integer . Clearly,

g(A* . n, k)

	

2 g(Bk , k, k) _ 2
G(k, k)

n

	

k

	

k
thus

hence
G(n, k) _ 4 G(k, k) (= o(k)) for every n .

The authors conjectured that

(3)

	

G(n, k)

	

G(k, k)
n

	

c2	
k

for every n--k, and furthermore, that for any o>0, k>k,&o) and n--k, we have

F(n, k) > n 2 k`°
or perhaps

(4)

	

n 2 exp c 3 k

	

F(n, k) < n 2 exp c,~k-
log k

	

log k~

for large k and n=- k . (See [4], also Problem 9 in [3] .)
The aim of this paper is to disprove (3) (Theorem 1) and to prove a slightly

weaker form of (4) (Theorem 2) .

2. In this section, we will disprove (3) .
P . ERDős showed in [1] (see Theorem 1) that for any s>-O and k>-k,(8),

k 2

	

loglogk2

	

V

	

log log k2
e log 2) log 2 = B k k=

	

1

	

k

	

r log 2)

	

2(log k2)i-+° (

	

g )

	

g( k'

	

) -
m~k2

	

(log k2)l- E (' g )
m=xy

x-k, y=k
be written in the equivalent formThis inequality can

where

G(n1 , k)

	

2 G(k'
k) for k/n

Gk k)

	

k2
(log k), + E

	

(

	

(log k)`,5 - E

1 +loglog 2
C5 = 1 --	

log 2

i<2



An easy computation shows that

0,086 < c; < 0,087 .
Hence, for large k,

k

	

G(k, k)

	

k
(log k)o,"7 <
	

k

	

(log k)o,""

Thus to disprove (3), it is sufficient to show that for large k, there exist a positive
integer n (=k) and a sequence A such that IAA=n, (1) holds and

(6)

	

g(A, n, k)

	

k
n

	

(log k)`l ;
where

(7)

	

cs > 0,087 .

In fact, by (5) and the definition of the function G(n, k), this would imply
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(5)

(8)

where

by (7 ) .
Let us write

the equation

(g)

	

(1) W = p 0 + x) .

A simple computation shows that

(10)

	

0,54 < z

	

0,55.

G(n, k)

	

k

	

l

	

G(k, k)
n

	

(log k)-

	

(log k)`l

	

k

c 7 = cs-0,087 > 0

cp (x)=1 +x log x- .v and let z denote the single real root of

Theorem 1 . For any a > 0 and k >k, (e), there exist a positive integer n ( k)
and a sequence A such that A j =n, (1) holds and

(ll )

	

°(A, n, k)

	

k
n

	

(1og k)`x - E

where

(12)

	

ca = <p (z) .

(The function (p(x) is decreasing for 0<x-1 . Thus with respect to (10),
we obtain by a simple computation that

c s = (p (z)

	

cp(0,55) > 0,121 .

Hence, Theorem t yields that for large k, (6) holds with c g=0,121 which satisfies
(7) . Thus in fact, (8) holds with c 7 =0,121-0,087=0,034 which disproves (3) .)
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Proof. Let k be a positive integer which is sufficiently large (in terms of a)
and let m be any positive integer satisfying

(13)

	

in :- k 2 .

Let Dk denote the set of those integers d for which

(14)

	

1=c1_k
and
(15)

	

v(d) > log log, k

hold. Let p be a prime number satisfying

(16)

	

p > k .

Let Ek denote the set of those integers e which can be written in form pad where

(17)

	

1
and
(18)

	

d E D k .
Finally, let

A=E,JB, .

We are going to show that for large enough k, this sequence A satisfies (11) .
Obviously,

(19)

	

n = JA ; = IEk l+jBk l = mk+k < Ink .

Furthermore, by a theorem of P . ERDős and M. KAc [2], we have

IDk II > I k .
3

Thus (with respect to (16))

nl • ;D,~ > 3 ink .

To estimate the number of the distinct products
distinguish four cases .

(20) n=~Al ::- ~Ekj=

Case 1 . Assume at first that a i E Bk , a; E Bk.. Since
the pair a„ a'j can be chosen in at most

k° = n1<il

of form a ja j , we have to

Bk consists of k elements,

ways (with respect to (13) and (20)) .

Case 2 . Assume now that a,=pxdEE, (where (14), (15) and (16) hold),

(21)

	

aj EBk
and
(22)

	

v(a,) - z log log k .



Then
(23)

Let 7,-i (x) denote the number of those integers u for which u-x and v(u)=i
hold. By a theorem of Hardy and Ramanujan, for any w >0 there exists a constant
c,=c s (co) such that for large x and 1 -i-w log x, we have

(24)

(25)

c

On products of integers . 11

ni(x) - c,

a i a ; = pxda j .

0-i-z log log k

x

	

(log log x) i-i

2 ;4 7

log x

	

(i-1)!

Choosing here w=1 and using Stirling's formula, we obtain that for k>k 2 (O)),
the number of the integers aj satisfying ('21) and (22) is at most

2Y ni (k) --

1+

	

Z

	

k_ ( log log k)' -1
1 =i-zloglogk

	

lOg k (1-1)I

1+ cs	
k

	

(log log k)r- log logk]-1

logk l_i_,loglogk ([zloglogk]-1) 1

k

	

(log log k)E= log log k]-1
1 + c

9

	

z log log k	log k

	

([z log log k]-l)!

k

	

(log log k)tz lo g log k1
1 + CIO

IOg k ([z log log k] - I)r` log log k]-1 /2 e-r_ loglogk]-1 C

k

	

(log log k)tz ' o g' og' 1
1 +c11 iog k (z log log k)rz'°grgk7-1/2e-z loglogk

k

	

1

	

k
C'` log k (log k)~ ""z (log log k)-1 / 2(log k)

	

-Z (log k)cl - E 11

(log log k)i -1(where c 8 is defined by (12)) since	i- 1 !

	

is increasing for 1-i=-log log k.

By (14), (17) and (18), a and d can be chosen in at most m and k ways, respect-
ively . Thus the number of the products of form (23) is less than

in -k-

	

/c

	

- ~ u

	

k
(Íoa k)`H /a

	

(log k)`8-E/2

(with respect to (20)) .

Case 3 . Assume that a i =p'deEk (where (14), (15) and (16) hold),

(26)

	

a;E Bk
and
(27)

	

v(af) > z log log k .
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Then
(28)

	

a i ti i = (p'd)a i = p'(da i ) .

By (14), (15), (18), (26) and (27),

da i = k .k=k2

and
v (da i ) = v(d) + v (a j ) > tog log k + z log log k = ( 1 + z) log log k .

Thus applying (24) with ct)=100, we obtain that for any 0<d<z/2 and k>k3 (d),
and writing r=[(l +z-ó) log log k 2 ], the number of the distinct products of
form daj is at most
(29)

(30)

k 2
< C16 log k

iri (k2) <

	

7T, (k,2)
_

(1+z)loglogk-i

	

(l+z-ó)loglogk 2 <i

2

	

7-, i (k 2) +

	

2Y

	

7ri(k2) <
r<i~jOologlogk'-

	

1OUloglogk 2<i

k

	

(log log k2 ) i-1

cq		+R(k 2 ) <
r<i<loologogk 2

	

log k 2

	

(i-1)!

<
)ce

	

2 (log log k 2 )r

	

log log k2
+R(k 2 )1a log k

	

r !

k 2
c17	log k

k 2
< C18

log k

k 2
c

	

(log k)<1`

k2 (log log k 2 )r

	

I
~14 log k

	

r!

	

;

	

I +z-6

	

R(ky) <

C15
k

	

(log logk2)r + R(k2)
'' log k

	

1 . 1
where

R (x) _ Z ni(x).
100 log log x < i

Applying Stirling's formula, we obtain that for k >k,(6),

k2 (log log k2)r
log k

	

r!

(log log k2)[('+Z-ó) log lo g k2j

([(I + z- (5) log log k2#0+_ -ó) lo
g logk2)+tre e -[(1+--ó) log logk'l

(log log k2)[(1+r-ó) to g logk2]

((I +z-6) log log k2)[('r'-d) log logi;2]+Ii2 e -(1+z-ö)loglogk

1
e (1+_-ó) log (I +_-a) lo g log k (log log k)1i=(log k)-(1+z-a)
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The function (p(x) is continuous at x= I +z . Thus if d is sufficiently small in terms
of e then for k>kj6)=kj6(s))=k,(r), we obtain from (30) that

(31)

	

V (log log k 2)"

	

k2

	

-

	

k2
log k

	

r!

	

(log k)(I'('+-)-E/3

	

(tog k)°8

(since cp(I +z)=(p(z)=cg by the definition of z) .
Furthermore, P . ERDŐS proved in [1] (see formulae (5) and (6)) that for large x,

(32)

	

R(x) -- 2 x(log r) 2 .

(29), (31) and (32) yield that the number of the distinct products of form da; is
at most

k2

	

k 2

	

k2
(33)

	

15,

	

~i(k 2) ' cr .a

	

+2

	

c

	

~ 8 - Ej3 '
(r+z)IogIogk-i

	

(log k)°e-E/3

	

(log k2)2

	

is (log k)

Finally, by (17), a in (28) can be chosen in in ways. Thus with respect to (20), we
obtain that the number of the distinct products of form (28) is less than

k2

	

kin - C" (log k)`R-E/3
-- n (log	

ky°
	 -E/2 .

Case 4 . Assume that aj =p"d,EE,, a;=p~d2 EEk

(34)

	

1 - u, /3 - m
and
(35)

	

d r , d 2 E Dk'

Then the product a j a j can be written in form

(36)

	

dial = (p"dr)(P f d2) = p"+ad i d z = p"d

where by (34) and (35),
(37)

	

2 - y - 2m
and
(38)

	

d = d,d2 - k • k = k2 . v(d) = v(d l)+v(d 2 )

	

2 log log k .

By (37), y can be chosen in at most 2m-1<2m ways, while in view of (33), at
most

where

integers d satisfy (38) . Thus the number of the distinct products aja j of form (36)
is less than

V

	

k
21n ' cl, (log k)ce-E/3

	

n ( l og k)` a -E, 2 .

k 2
z 7ii(k2) <

	

Z

	

7i /lk2 ) c C19Bloglogk<i

	

(1+z)loglogk-i (log k)`8 - E/3
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(40)

Summarizing the results obtained above, we get that for k>k,(e),

g(A, n, k) < n+3-n . (log
k)`e-E/2

	

n (log k)c8 - E

which completes the proof of Theorem l .

3. In this section, we will estimate F(n, k) .

Theorem 2 . There exist absolute constants e 20, c21 such that for k>k8 and
n _-k,

(39)

	

n 2 exP (C20 log 2 k) ` F(n, k) < n2 exp (c2, log k .

Proof. First we prove the upper estimate . We will show at first that

F(k, k) = f (Bk , k, k) < exp c22
k

tog k

In case A=Bk=11, 2, . . ., k} (and n=k), all the products of form (2) are divisors
of k! . Thus applying Legendre's formula and the prime number theorem (or a more
elementary theorem), we obtain that

F(k, k) = d(k!) =
p=
-
[I ( I +

k

	

7-1 (px ])

T7

	

+`° k

	

2k

	

2k

	

4k
2

= p l

	

p x

	

p~ a~ Pa p~ P -1 p%Ip =

[~og2]

	

4k [ig2
]
~

	

2i
fj 4k- -

i=1

	

k

	

k P

	

i=1

	

k

	

k

	

k.

2=1

11
2i~ p-2i-i

	

V ~pc2i-1

rlogk
Llog 2l

1.109A
Iog2J kexp {c24

i=1

	

2i

rlogkl
Llog 2J

	

k

	

1exp C23111

	

'-1 2j` lo

	

kg 2j `

~logk
1

`-1o921
k )~

log }/k
	-j+ [l ~k]

2i
J -

2 log2 +1

-log 4 .2J)}
2;)7(2J-

exp {c25 (lo k+V k)} exp
(c2, tog k)g

which proves (40) .
Assume now that n>k . Let p denote a prime number satisfying p>k and let

A=11,2, . .,k,p,p2' . . .,p"-k} .



Let us assume at first that

On products of integers . 11

	

251

For this sequence A, IAI=n, and the products (2) can be written in form

k

	

n-k

(41)

	

11 i r '
If pi'); = a - p R

i=1

	

j=1

where s;=0 or I and d i =0 or 1. Here a may assume F(k, k) different values,
and obviously, P, may assume any integer value (independently of a) from the
interval

"-k

	

(n-k)(n-k+1),7 -z 1=	2	
i=1

of length (n - k) (~- k + 1) Furthermore, the prime factors of a are less than

p, thus for different pairs a, fl, we obtain different products of form (41) . Thus
with respect to (40),

F(n, k) f (A, n, k) = F(k, k)
(n-k)(n-k+ 1)

2

k

	

nz

	

k
exp

c22 log k • 2
< n- exp C22 log k

which completes the proof of the second inequality in (39) .

Now we are going to prove that the first inequality in (39) holds with
in other words,

(42)

	

F(n, k) > nz exp 1

	

k
(92 loge k

1

	

k
n ~ exp ( 3 log k

Then for large k, the right hand side of (42) :

1

	

k l

	

2 k

	

I

	

k
nz exp

(92 Iogz kl c exp
~ 3 log k + 92 loge k

(43)

ex p

	

k + 1

	

l:

	

= ex

	

68 k
p (-T log k 100 log lc

	

p 100 log k

On the other hand, let A denote any sequence satisfying (1) . Let us form all
those products of form (2) for which

0 or 1 if a ; is a prime number and a ; -= k,
a ; -

0 otherwise .

By (1), A contains all the 7r(k) prime numbers p --- k, thus the number of these
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products is 2" (') . Hence, by the prime number theorem, we have

(44)
(F(n, k) -)f (A, n, k) - 2n (" = exp (log 271 (k))

69

	

68 k
exp

(100
7r(k) > exp (100 log_ k

(43) and (44) yield (42) in this case .
Let us assume now that

1

	

k
(45)

	

n

	

exp
3 log k

Let
1

	

k
l 7 to g2 k]

Denote the ich prime number by pi (pr =2,p2 =3, . . .) and let q i =p i _, for
i=1, 2, . . ., /, Q = (q, q2, . . ., q, ), R=(qr, 2qr, qs, 2q2, . . ., q,, 2q,) . Obviously, (45)
implies that Rc (a,, a2 , . . ., ataj21) . Let us define the sequence E= (e,, e z , . . ., e„,) by

(a r , a	a l ,124 = E U R, E n R = 0 .

For s =1, 2, . . . , (4
J

+ I , we denote the interval [n-2 [n/4j -I+ 2s, n] by !„

and let Fs denote the set of those products of form (2) for which

E i = 0 if a i E R,

	

Z E j = 2,
i :a,EB

e i = 0 if l2
< i = ti-2[n/41-2+2s,

and

E,= 1 if iE IS (i .e . n-2[n/4]-1+2s

	

i--n) .

In other words, F, denotes the set of those numbers which can be written in form

( IJ a„) • ej e,
E r,

where 1 ==i, j=ni, i j . Let F denote the set of those numbers which can be written
in form

e j e j where I - i, j -- ,n, i j .
Then obviously,
(46)

	

JF,l _ ~F1,
independently of s .
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Furthermore, for s=1, 2, . . ., L4J
+1, let G S denote the set of those products

of form (2) for which
e, = 0 or 1 if a ; e R,

	

e; = 1,

e, =0 if
L21

< i n-2[n/4]-2+2s

and
e, = I if i e IS (i .e . n - 2 [n/41- I +2s - i

	

n).

In other words, G s denotes the set of those numbers which can be written in form

t

	

1

]T at,) • e, 11 9j' 1T (2gt)`0i
µE1,

	

j=1

	

t=1

(where e;=0 or l, 1p,=0 or 1). Then JGJ is equal to the number of the products
of form

(47 )

	

ej

	

9j' 11 (2gt)" = 2aei 11 qs'
j- 1

	

t=1

	

j=1
where
(48)

	

8j = 0, 1 or 2
and
(49)

	

0-a=1.

Let G denote the set of those numbers which can be written in form

1
e t

	

qi'
j=1

where (48) holds. Obviously, for any product of this form, there exist exponents
e j , cp t and a, satisfying (47), (49), e j =0 or I and cpt=0 or 1. A product of form
(47) can be obtained from at most l+ l distinct elements of G ; namely, by (49),
a may assume only at most /+1 distinct values . Thus

(50)

	

GSÍ == i IG I
(again, independently of s) .

We are going to show that for s--t,

(51)

	

(F,UGjq(F,UG t ) =0.

In fact, assume that s>t. Then for )' Ft UG t ,

y = [1 a,, =

	

H

	

a te • 17 a tt
pEr,

	

n-2[nÍ1]-1-2táµ-=n-2(n/41-1+2s

	

4E1,

_= an-2[n/11-1 +2t an-2[n/41+2t á

	

a,' (a[n/2 ])` 11 a µ (for
µéL,.

	

µEl y

(52)
y Ft U Gt ) .
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On the other hand, for z( F,,

(53)

	

= e,e j jJ a µ ` (a [ n / 2])2 Íf a„ (for zE F,) .
Y( 1,.

	

Nrl,,.

Finally, if rEG i , then we have
i

	

I

	

'

	

c

(-)4)

	

v --- e, 11 q; Íf 2q, - fl aµ = aí„12]' 2 I/
J=1

	

[=1

	

PC I,

	

J=1

By the prime number theorem,

log ( H pi) - x log x .

Thus if k (and consequently 1) are sufficiently large then with respect to (45) we have
2

r

	

35
2 ' ( . fÍ q ;) = 2 '

	

p;) < 2' (exp

	

(1+ 1) log (1+ 1)))
~_~

	

-z

	

34

exp
I

	

k

	

log 2) exp
35

l
1	 k + 1) log 1

	

k
7 log2 k

	

17 7 log2 k

	

7 log k

eXp ( log 2 k )
exp

( 16 log2
k log k) _

2

q ;) ' IÍ a. .

µE7,

_

	

( k

	

5

	

k

	

1

	

5

	

k

	

1

	

n
eXp l loge k + 16 log k)

	

3 eXp l 5 log lc)

	

3
n

	

[2 - a[n 2]

Putting this into (54), we obtain that

(55)

	

v =~ (aí„/2])2 %I a P
Ncl,

(52), ('53) and (55) yield (51) .
By (46), (50) and (51), we have

ín/4]+1
~) (F, U G.5)(56) i(A, n, k)
s=1

(for vE G,) ;

íi114] + 1

Z IFS U G,1
s-1

[n ;4]+1

	

[n/4]+1

	

Gmax

	

~G,~) =

	

max {IFI,	j } _
5 --,

	

S-1

	

1+ 1

_ ([n/41+ 1) max ~1FI,
1IGI+1

	

n
11 1

1	max {~F!, ~G1} .

Thus to complete the proof of Theorem 2, we need a lower estimate
max {JF~, ~G1}. In the next section, we will prove the following lemma (using
same method as in [41) :

L e m m a 1 . Let 0= {q, , q 2 , . . ., q,} be any set consisting of / (distinct) prime
numbers. Let E_ {e,, e2 , . . , ej (where e, <e2< . . .-e,n) be any sequence of positive

for
the
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integers . Let F and G denote the sets consisting of those integers which can be re-
spectively written in form

t

e,e j (1 _ i, j - m, i j) and e; ]j q ójj (b j = 0, 1 or 2) .
j=1

Then for

(57)

	

I > l o ,

we have

(58)

	

max {IFI, IGI} > m exp ( 5 1) .

Let us suppose now that Lemma 1 has been proved . Then the proof of Theorem
2 can be completed in the following way :

For large k, (57) holds by the definition of l . Thus we may apply Lemma 1 .
We obtain that (58) holds. Putting this into (56), we get that for large k and any
sequence A (satisfying (1) and IAA=n),

n

	

1

	

2
(59)

	

f (A, n, k) >
4 1 + l

111 exp l25 1) .

With respect to (45) .

Iin

	

n _
= IEI = [n/2]- xi = [n/2]-2l -

2
2 [~1 k

log 2 k >

17

	

2

	

k

	

12

	

1

	

k

	

17

	

11

> ---

	

> ---

	

> --log 17 > - .

3

	

7 1og2 1<

	

3

	

3 log k

	

3

	

4

Thus we obtain from (59) that for large k,

f(A> 17' k) > 4 1 +, 4 exp
( 25 1) > 16 exp

( 26 l)

n2

	

{
1~ 1	k 	~

	

1	k)
16

exp 13 7
[o

a2 k > n2 exp 92
lo

a2 k

which proves (42) and thus also Theorem 2 .

4. To complete the proof of Theorem 2, we still have to give a

Proof of lemma L Let us write every e~E in form

(60)

	

e = (rs")(cli~gE- . • • 9i ) = bd

where r, s arc positive integers, i,=0 or I (for i=1, 2, . . ., l), p/r implies that
p,Q, p/s implies that p-Q ( also r=1 and s=1 may occur) and b=rs-,
d=g "q;" . . .q" . Let us denote the occuring values of b by b1 , b 2 , . . ., b~ (b ; b ;
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for i,-J), let B= (b,, b .), . . ., bj and let us denote the set of those numbers eCE
for which b=b; in (60) (for fixed i, I =i =z), by E(b) . Then obviously,

E = U E(b,) and E(bi) n E(b;) = 0 for i

thus

where
0 or I if e j = I

i '

	

1 or 2 if a ; = 0

and let us denote the set of these products by G(b) .
Obviously,

and

( 61 )

	

rn = ~Ej _

	

~E(br)j .
r=1

For b(~B, let F(b) denote the set of those numbers which can be written in
form

ex ey where e . E E(b), e, E E(b), eX ~- e y ,.

Furthermore, for fixed bEB and for each ex =bq~lgz2 . . .q,E', let us form all the
products of form

(62)

	

e,(q 7 1 9z2 . . . qí'') _ (bq1 qz2 . . . 9i')(g1 q2 2 . . . qi')

(63)

	

F~ U F(b i)
f=1

,

(64)

	

G :~, U G(b) .

We are going to show that

(65)

	

F(b) n F(bj ) = 0 for i j
and
(66)

	

G(b) G G(b;) = 0 for i j .

In fact, let us assume that

(67)

	

b i = r; s

	

b; = r~ sj ,

e.Y = b 9i' qz2
. . . c+í E E(b i ), ey = b ; q" qz 2 . . . q`r" E E(b;),

e„ = b 91 2 2 . . . qi' E E(b,) and e„ = b j qi L g22 . . . qi' E E(b j ) .
Then
(68)

	

'? -1 EL+'I" E"'pg

	

Ei+1"ez e v = ri s, ql

	

9

	

qr

	

(E F(b,)
and
(69)

	

e,, e,, = r 2 s~q" +/r1
g2

•_,+02 . .2

	

q2' + #'

	

(E F(bj)) .



If r, -rj then there exists a prime power p' such that pjQ and p''/e x e y but p'fe,ey ,
or conversely; this implies that e x e 7Le„e,, . If r, - r, then by (67), s, s; must
hold. Thus there exists a prime power q, such that g,EQ and qtls i but q,Is i (or
conversely). Then the exponent of q, is at least 4µ+s,+cp,-4µ in the canonical
form of ex ey and at most 4('p-1)+a .+/f=4p-2 in the canonical form of e e,,
thus e x ey e„e, holds also in this case, which proves (65) .

In order to prove (66), note that we may write the product (62) in form

r(s2 9t qz . . . qj) q1 92 . . . qi' where a, = 0 or 1 for i = 1, 2, . . ., l .

Obviously, a number of this form uniquely determines each of the factors r, s,
q,~, . . ., q,"which proves ('66) .

(63), (64), (65) and (66) imply that

coax {jFI, jGj} = max { U F(b,)1, U G(b,)
I

	

i i=1
(70)

(74)

	

0 ~ 2 --
1

On products of integers . II

	

'_57

max {: IF(b,)j, Z IG(b,)j} '-

	

(~Y I F(bi)j+ ~ 1 G(b i )j) _
i=1

	

=1

	

i=1

	

i=1

z
= 2 Z (IF(bj)j+ IG(b,) ) - 2

	

max {jF(b,)j, IG(b,)i, } .

Thus in order to prove (58), it suffices to show that for b E B, max {JF(b)j, G(b)j}
is lame .

Let us assume that bLB . We have to distinguish two cases .

Case I .-
7

(71)

	

(0<)jE(b)j - 2 8 `

	

1 .

We are going to show that in this case jG(b)j is large (in terms of E(b)j). Let us
fix an element e,, of E(b) and for this ex , form all the products of form (62) . Obviously,
the factor qi 1qz 2 . . . gí11 can be chosen in 2' ways thus the number of these products
is 2 t . Hence, with respect to (71),
(72)

	

G(b)j

	

21 = 2s
t+1

2
t-1

	

2gi+1
jE(b)~

Case 2 :

( 73 )

	

IE(b)! > 2;

In this case . we shall need the following lemma :

Lemma 2. Let o be any real number, satisfying
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and

(75)

	

f(o) aer-o log o-(1-q)log(1-o)-(1-Z)log2<0,

and let 1 be any integer, sufficiently large depending on o :
(76)

	

1 > 1 1 0).
Put

(p (1) = 2 2

Let S denote the set of the 2' 1-tuples (Fly, p2, . . ., p,), satisfying
h=1, 2, . . ., L Let R be any subset of S for which

(77)

	

L R I > cp (1) 2' .

Then the number of the distinct sums of form

(78)

	

(p, + vi , . . . , F4 + v,) _ (pr , . . . , PI) L- O'l, . . . , vO,

where (p, , . . . , it ,) E R and (v i , . . . , r,) E R, is greater than ((p (1))-i IR% .

This lemma is identical with Lemma 2 in [4] .
Using Lemma 2, we are going to show that (73) implies that ~F(b)j is large .

Let us choose o=
4

in Lemma 2 . Then (74) holds trivially, and a simple

computation shows that

f 41 = S (log 8-log 9) < 0.

thus p satisfies also (75) . Furthermore, we choose R as the set of those 1-tuples
(e 1 , E2, . . ., s,) (where a.=0 or 1) for which bq1"q_" . . .q',EE(b) holds. Then by
(73), also (77) holds :

IRI = E(b) > 2 1 = 2 , i ' 2 ' = cp(1)2 .

Thus we may apply Lemma 2 . We obtain that the number of the distinct sums of
form (78) (where (p i , . . ., It,)ER and (v i , . . ., v,)ER) is greater than ((p(I))-ljRj .
But distinct sums of form (78) determine distinct products of form

ex ey, _ (bqiI . . . gi`)(bgi` . . . q, 1) = b2 gii+ " . . , q l" +

and with at most IE(b)j exception, also e x e y, holds. Thus

(79)

	

F(b)i, > (cp(1))-~IRI -IE(b)' -(2 8 ` ')-' jE(b)I-jE(b)I =

(2' i i-1)IE(b)! > 2 11 JE(b)I .

(72) and ('79) yield that for any b E B,

~

	

s n JE(b) .max (IF(b)l, C(b)I} > 2

p,,=0 or 1 for
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Putting this into (70), we obtain (with respect to (61)) that

1

	

Z

> 2 ' ~E(bi)Í = 2s' t 'IE(b i)I =
m2-R'-'=

2 t- i

	

I= i

max {IFI, IG } = Z max{IF(b)

in exp {log 2 (
1

8

	

8

	

(
/-1)} . In exp 4
	log

2 1000) l}
> nl exp

2 1)

which completes the proof of Lemma 1 .
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