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1. R2-phenomena . Our set theoretic notation will be standard with one ex-
ception . Since this paper is largely concerned with powers of ordinals, the symbol
~" will always denote ordinal exponentiation for ordinals ~, 11 . Thus, in particular,
if fl--a, then cos is an ordinal <coy+1 . When we use cardinal exponentiation
we shall either say so or, if there is no danger of confusion, we write 2 11 0 or Wás (despite
the fact that ca),, and RQ otherwise denote the same object) . We shall assume the
reader is familiar with the special symbols as defined e .g. in [6] to denote ordinary
partition relations, polarized partition relations and square bracket relations .

We begin our discussion by recalling a theorem Of MILNER and RADO [13]
which asserts that, for any cardinal x--co,

(1 .1)

This implies that ~(<x+) is the union of co "small" sets A" (n<(0), where we mean
small in the sense that the order type tp A" <x" (n < w) . Four our present purposes
it is usually more convenient to consider another sequence B = (B" : n < (0) defined
by B" = A oU . . . U A,, (n < w) . The sets B" are still "small", i .e . tp B"< n (n -z (0),
and they have an additional property, which we call the co-covering property, that
the union of any co of these sets is the whole set ~ . For brevity we shall say that
a sequence B=(B" :n<co) of subsets of ~ is a paradoxical decomposition of
~ if it has the two properties (i) tp B" -< x" (n < w) and (ii) the a)-covering pro-
perty. The existence of such a paradoxical decomposition (which is only interesting
for xw

	

< x+) implies the polarized partition relation

l M1
-
lx

1 \1,1
for S < x+,

and also the square bracket relation

(1.3)

	

F-[x`° ] a ,~ao for

	

<x+ .

In our paper [7] we investigated the following problem : Let rl < w2 and let
A=(A,, :a-x) be a sequence of subsets of i of length x=co or w l such that
each set AQ has order type tp Aa<a. Under what conditions can we then assert
that there is a subsequence (A,,, :v<Q) of length e whose union has a "large"
complement in %l, say tp (ri\U {A,,,, : v< o})tea? This amounts to an investigation
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of the polarized partition relatio

(1 .4)

for il~w, and ;-co or w, .
In [7] we gave a complete discussion for (i .4) in the case when rl is a power

of co, (although even for this case there remain unresolved questions if the "1"
in (1 .4) is replaced by a larger finite ordinal) . Now in combinatorial set theory
most theorems like these have higher cardinal analogues which are usually obtained
by replacing each cardinal by its successor . However, when writing [7] we realized
that an investigation of (1 .4) for the "next higher case", i .e. for q-_(0, and %=(O,

or w,, leads to entirely different results and problems which we refer to as ", 2 -

phenomena" . The main reason why we could not simply extend the results of [7]
is that one of the principal tools we used there was the Milner-Rado paradoxical
decomposition (1 .1) or rather its square bracket analogue (1 .3),

(U 1
-F- [co, ] so , < xo for

	

< (02-

Now the "higher cardinal" analogue of this is

(1 .5)

	

~

	

[ 0921]iR,,ao for

	

< (t)3,

and this is not true (e.g . it is false if we assume 2sá-=,1 2) . We summarize here the
2 -phenomena as it relates to the relation (1 .5) . For ~<Q)0` we do get the ex-

pected result, i .e .
(1 .6)

	

[CU2 1]x 1 ~a for S < CU2

However, we also have the following .

(1 .7) (a) If 2k1= 2 ; then there is some 5--w, such that

[(12 1] , ko -

(b) It is consistent that

2R1

	

and 5 ~- [w21]x 1,Ho

holds for all <co, .

(1 .8) Both the relations

X22

	

[~21]H1,No and w22 ~ [~2 1]k 1 ,Hp

are true in different models of set theory . (The relation - ;- holds, e .g. in the
constructible universe L, and -- holds e .g . if Chang's conjecture is true.)

These " 2-phenomena" enter into almost all the results and problems considered
in this paper, and so it is not possible to give an entirely naive presentation . Al-
though we discovered most of these results as early as 1967, the presentation we
give here will rely upon, more recent work done by others. In particular we will
use the methods worked out in the paper by GALViN and HAJNAL [9], and we shall
give references to other results later .
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The remainder of this section will be devoted to a detailed description of the
2 -phenomena as it relates to the relation

P (Y) • (w2 )

	

(0)1 1 1
for y--co, . For the sake of clarity this will be done rather slowly and somewhat
redundantly .

Clearly P(y) is equivalent to the assertion : whenever A=(Ax:a<(01) is
a sequence of subsets of o) 2 such that tp Aa< cowl (a < (o l ), then A does not have the
(D-covering property, i .e. there is D E [co il`° such that U (A a : a E D} 0)2 . On the
other hand, in order to establish the negation

l

	

11
P(7) : ( ~ 2 1

	

(0) 2 1 1,

we have to show that there is some

///

sequence A=(A«:a<(ol) of subsets of cot
such that (i) tp A~<co21 (a<c11 1 ) and (ü) A has the o)-covering property . We shall
say briefly that the sequence A establishes --iP(y) if (i) and (ü) hold .

Before we state and prove our first relevant result, it is convenient to introduce
some special notation. If x is an infinite cardinal and 0 < y< x+ we choose a fixed
sequence S"=(Sv: v<y) of subsets of xg having the following properties

(1 .9)

	

xY = U (S, : v < u} ;

(1 .10)

	

So < Sl < . . .< SY < . . .,

where X< Y means that all the elements of the set X precede all the elements of
Y in the ordering of W ;

(1.11) (a) if y=S+1, then u=x and tpSv=xs (v<x) ;

(b) if y is a limit ordinal, then p=ef (y) and tp SY=xy~, where
(y„ : v<p) is a fixed increasing sequence of ordinals with limit y .

We call this sequence S7 the standard decomposition of x 7 (although it depends
upon the choicce of the y v in (1 .11) (b)) .

THEOREM 1 .1 . ~P(y) holds for y<co2 , i .e .

(1.12) ( 032)
(1 w 1°

1 forw2 1 1) y «2 •

REMARK. The following proof can easily be adapted to prove the more general
result Theorem 2.1 .

PROOF . We prove the result by induction on y . For y < wl it is obvious that
P(y) holds. Now assume that (01s Y -< 0) 2 and distinguish the three cases

(i) y=S+1, (ü) cf (y)=co and (iii) cf (y)=a),
In the first two cases there is no difficulty in carrying out the inductive step .

We give the details here, but in later proofs where a similar type of argument is
needed we shall omit the trivial details and simply instruct the reader "to take cross
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sections". The main idea of the proof of this theorem is in establishing the inductive
step for case (iii) .

Let S 1=(Sv :v<p) be the standard decomposition for w2 . By the induc-
tion hypothesis for each v<p there is a sequence A°=(Aá :a-<(o,) of subsets
of S' which establishes ~P(y,,), where tp Sv=w"b .

Case 1 . In this case p=w2 and the sets Sv (v<(0 2) are order isomorphic
i.e. y,,=d (v<w2) . Therefore, for each a<w, we can assume that the sets Av are
also order isomorphic for v < co, Now put A«= U {Aá:v < (02} (a <w,) . For
each a--co,, there is f (a) < co, such that tp Aá < w2 («) (v < w 2), and therefore
tpA« w2 «~<w21. Therefore A=(A« :a<co,) establishes P(y) since each A"
has the w-covering property for S' (v - co,).

Case 2 . In this case p=w. Again we define A« = U {Aá : v< p} . Then A=
has the co-covering property and moreover

tp Á« _ Z{tp A,, : v < co} < con's (a < w,),

since tp Aa<w2 (V--CO; a-
-(00-Case 3 . In this case p=w, . For each v--w,, let Bt'=(B,, :n<w) be a

paradoxical_ decomposition of S 7 as described after (1 .1) . Then Bv has the (0-covering
property (for S;,) and tp By < w2 (n < (o) . Also, for each v --co,, let (P„ denote
any one-to-one function from v into w. Now put

A« = U {Aá : V a}V U {B ,J (a) : a < V C w,}

for a<w, . We show that A=(Aa :a<w,) establishes -1P(y) .
If v_a<w,, there is some f (v, x)<w, such that tp Aá<wf(v>«) . Also,

there is f (a) < w, such that f (v, a) --f (a) for all v --a . Therefore,

tp A« ~ w2 ~«> . a {_ w2 . w, < w21 (a < wl) .

All that remains is to verify that A has the w-covering property . 'Let D E [w

must show that
A(D) = U {A « : aED} = w2 .

For v < (o, , let D (v) = aED : a < v) . Then either D (v) o D\D (v) is infinite. If
D(v) is infinite then

A(D)D U {Bv,(a) :aED(v)} = Sv,

since B° has the w-covering property . Also, if D\D(v) is infinite, then

A(D) D U{Ac1x' :aED\D(v)} = S„q

since A° also has the a)-covering property . Thus, in either case A (D)D S11 for each
v--co, . It follows that A(D)=(072 .

The inductive step used in the above proof breaks down completely if cf (y)=w 2 .
The trouble is that, unlike case (i), the sequences A°=(Aá :a<w,) (v--C0,) ob-
tained from the induction assumption are no longer identical copies of each other .

Our next aim is to say something rather more precise about the order types
of the sets A« of a sequence A = (Aa: a w,) which establishes the negative
relation -1P(y). But in order to state our results we must first recall some defini-
tions from [9] concerning the rank of an ordinal function (at least in a generality
sufficient for our present purposes) .
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We denote by Stat ((o,) the set of all the stationary subsets of W, . Let XE Stat (w,) .
Then we define a partial order <x on 1°lw,, the set of all functions from co, into
w,, by the rule

f <xg - {aEX : f(a) g(a)}q Stat(w,) .

It is easily seen that < v is well founded, and because of this we can define the rank
function, I • I x, by

IVllx=sup{llgllx+l :g <xf}.

We shall write II ( instead of II • lwl and < instead of <u,, . We need the following
easy consequences of this definition (see [9], p. 495) .

(1 .13)

	

Mu <
w,)(Il .f II x - it - {aEX : f (a) - it)EStat (co,)) .

(1 .14)

	

Il .f 11x -_ w,

	

lotEX:f (a) = a}EStat (w,) .

We need also the following simple fact :

(1 .15) If X( Stat (w,), and {aEX:g(a) =f(a)+ 1}jStat(co,), then Ijglj x =!Ifjl x +1.

PROOF . Let h <x g . Then h, <x h h, <xf, and so I hll x - II f II x . Thus
Ilgllx~ll .fllx+1 . But f<xg and so Il .fllx+l-llgllx .

Next we define a special sequence of functions h,,Eu'lw, for y<w 2 by transfinite
recursion on y . For each limit ordinal y < w, we fix a strictly increasing sequence
(y„ : v<µ) of length y=ef (y) having limit y . We agree that this is the same
sequence as that associated with the standard decomposition for ai, appearing
in (1 .11)(b) . Now define h,, by :

The function b y defined in the case cf (y)= (o, is called the diagonal supremum
of the h,,y ( v < w,) . Note that, if XE Stat ((o,), if b y is the supremum or the di-
agonal supremum of certain hyy , and if g<xh y , then g<r h,,.o for some vo<cf(y)
and YE Stat (w,) . This fact ensures that h,, ; X is "the y-th function on X" for any
XEStat (w,), i .e .-
(1 .16)

	

l hy ll x = y for y < w2 and XEStat ((o,) .

As a corollary of this we have, for y<wg, XEStat(w,) and fEW1w,,

(1 .17)

	

ll .f Ilx
n

y

	

{aEX: f (a) - hy (a)}EStat (w,) ;
also,
(1 .18)

	

by < x h, for y<8<w,, .

We make one final remark . For a limit ordinal y (w<y<w 2) the above sequence
(y, : v <cf (y)) can be chosen so that w - y, < y, < . . . . This ensures that

(1 .19)

	

hy ( a)~--- co (0<a<wl ; w~y<w 2) .

Acta. Math<?~- ca Acadenaac Seientzar- a~~l: Iltalq±YTieae ,^l . 197b'
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We shall also make use of another, stronger partial ordering on lco,, ,
defined by

.f << g- {a < wr : f ((X) _- g(a)}1 C Ro,

i .e . g eventually exceeds .f. Again, it is easily seen that << is wellfounded and f<<g-
=f<Xg for any XEStat (co r ) . The functions h,, (y<(~ 2) defined above are also
increasing in this stronger sense, i .e .

(1 .20)

	

ho << hi « . . .« by << . . . .

We can associate with any sequence A=~AQ :a<(o,) of sets of ordinal numbers,
an ordinal function fA defined by

fl (a) = min {b : tp Aa < co2} .

Note that, if A, 0, then fA(a)=Qa+1 for some ordinal 6a . Also, if A establishes
~ P (y) for some y, then P E `°1(o, . The next theorem shows that, if A establishes

P(y) for some large y, then the associated function fA is also large in some sense .

THEOREM 1 .2 . Let y<co3 . If' A=(A a :a<co r ) is a sequence of subsets of ojz
such that ~j j' jj- y, then A does not have the w r covering property.

PR.ooF . We prove this by induction on y . It is trivial for y=0 since, by (1 .13),
the hypothesis implies that A,,= 0 for a stationary set of a's . Now assume />O-

Case 1 . y is a limit ordinal . We can assume that the sets A a are non-empty
for all but countably many a, and so f1(a)=g(a)+1 for all but a countable number
of a . Therefore, by (1.15), ~1 fA jj _ jj gjj + 1 and hence Jjf'jj -y'< y . By the in-
duction hypothesis A'=~Aa (1co2 , :a<(or) does not have the (o r -covering pro-
perty and hence neither does A .

Case 2. y=8 -l 1 . Let (Sv :v<co2> be the standard decomposition for w2 .
As in Case 1, f' (a)=g(a)+ 1 for all but countably many a's and Jj f`'ll = jI glj + 1 `b + 1,
so ~jgjj_b . Now for each a there is v(a)<w 2 such that

tp (A, n S,v) < w2
(«) for V (a) < V < (n 2 .

There is v, < (oz such that v (a) < vo for all a < w r . Consider the sequence A' _
=~A U nS,'' Clearly' f"<<g and so !j fA'jj_jjgjj-b . Therefore, by the
induction hypothesis A' does not have the co,-covering property and hence neither
does A .

COROLLARY 1 .3 .
co,

	

I col 1_1

2)

	

(C02
holds for y < (o .

PROOF . If A = (A,, : a < (or) is any sequence of subsets of caz such that tp A <o.) .1 ,
then f`'(a)_hy(a)=y (a.< (9 1 ) . Hence f1 f'j1-jjh y jj=y and so A does not have
the cá)2-covering property .

' Naturally, .f, _yz means {a :f,(u)=Jz('a)}I tYo .
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COROLLARY 1 .4 . If IÍfII<w2 for all fE -, co r , then

\ (»2' /
-

\

1 (QI'1' I

CAZa

	

~2x l

PROOF . Let A=(Aa :a<cn I ) be a sequence of subsets of o~~(0-2 , such that
tp A .<co21 . Then fAEw1wI and so IÍ fAIÍ<y for some y<co2 . It follows that
IIfA"II<y, where A'=(Aaflco2 :a<coI) . By the theorem A' does not have the (0,-
covering property and so neither does A .

It is easily seen that Theorem 1 .2 is best possible for y < w 2 since there is a
system Ay=(Aá :a<coI) which establishes ---iP(y) and is such that fA((X)--
~Elz,,+I(a) (a« I) and hence by (1 .16) and (1 .17), II fAll-y+l . This result can
be proved by exactly the same induction argument that we used to prove Theorem
1 .1 ; we only have to make sure that the Aá chosen in the various places have order
types less than (0h2"- (00+3 and this ensures that the A a defined there have order types
less than co2- (a+ I) We omit the details since this result is also a Corollary of the
following more general result Theorem 1 .5 .

We make one preliminary remark . We say that a function gE °' 1co l establishes
the negative relation -1P(y),

((0'017) _+_

(~1i 11 1 1 ,

if there is an A=(Aa :a<c) I) which establishes it and is such that f``(a)-_g(a)
for all a«I . Now if g establishes --i P(y) and g --h, then the function lzI defined
by hI (a)=max {h((x), w} also establishes -1P(y) . For suppose A=(A :a«I)
establishes -iP(y) and fA (a)-g(a) (a< (o I) . Then there is ao <wI so that P(a)-
-h(a) (ao - a< (o i) . Let (B,, :n<co) be a paradoxical decomposition of C9,7 and
consider the system A' _ (Aá : a < co I) defined by

AQ for ao -- a < wI ,
`4a

	

B~, tai for a < a o ,

where 0 is any one-to-one map from ao into w . Clearly A' establishes ]P(y) and
fA " (a) ~ h I (a) (a < w,) . Thus hr also establishes - i P(y) . It follows from this that,
if g, hE"wI , g establishes --iP(y), g«Iz and h(a)-=---o) then h also es-
tablishes 1 P(y) .

THEOREM 1 .5 . Let y < w3 and suppose that (f, : o = y) is a strongly increasing
sequence of infinite-valued functions, i . e . fQ ((x)-(0 (a-y ; o!--0),) and f,<<f,<< . . . .
Then f, + 1 establishes -1 P (y) .

PROOF. This is trivial for y=0 . We now assume that y~:-0 and use induction
on y .

Let (Sd : v<µ) be the standard decompositionn for o02, where tp Sv=ol~~
(v<µ) . Then y„-<y (v<u) and so by the induction hypothesis there is a system
A"=(.4á :a<cpI) of subsets of S,Y, which has the (o-covering property and is such that

1tp Aá < C02"9 W+ ' I (a < w z ; v < ~) .
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Case 1 . y=6+1 . In this case µ=(o, and YV =6 (V<(4)2)' Put A,=
= U {Aá : v <w2} (L%-<(o,). Then A = (A" : a < co l ) has clearly the (t)-covering pro-
perty. Moreover,

tp A" -- cola (") +, (a < coj .

Therefore fs +2 establishes -- i P(y) and fó +2«f,+l . Therefore by the remark
preceding the theorem f,+1 also establishes P(y) .

Case 2. cf (y)=w. In this case µ=w and y,,/y . Again put A"= U (A~ : v<w}
Then A= (A" : a < w,) has the o)-covering property and

tp A"

	

w2 ("0 ,

where g (a) = sup (f, (a) + 1) (a<w,) . Hence g+1 establishes -1P(y) and therefore

and define

Now define

v1(p
f,+1 also establishes --lP(y) since g« f,

Case 3, cf (y)=w, . In this case µ=w, and y,,/y . Let B°=(Bn :n<(O) be
a paradoxical decomposition for Sv (v<w,), and for each v<w, let fir„ be a one-
to-one map from v+I into w. Put

0(a) = min ({a} U {o < a : f,~ = f, (a)}) (a < (o,),

T"=sup{fl <w, : 0(P)--v} (v <w,) .

A" = U {A;, (a): v < 0 (a)} v U {ByT (") : 0 (a) -- v w,}.

First we observe that for v < w, there are only co untably many ordinals # < w,
which satisfy 0(J3)--v. Otherwise, there would be ordinals flu (6< w,) so that
0 (/~Q) = 0 v ~o < /3, < . . . < ~3 Q < . . . <w, . But this implies that fYe (~Q) ~f, (P,) for
a<w,, a contradiction against the hypothesis f.,,,<<f, . It follows that there are
only countably many P< w, for which 0 (fl) = v and so T,, < w, (v < (0,) . Moreover,
if a < (o, and 0 (a) v <w,, then T, Via. Thus ATV (a) is defined and the above
definition for A" is meaningful .

Now we have

tp A,,

	

{cosy"(a)+i : v < 0(a)}+w2 (0, ) (a < (0,),

and since f;,, (a) < fY (a) for v < 0(a), it follows that

tp A" < (o2,(")+' (a < w,) .
To complete the proof in this case it is enough to verify that A(D)= U {A" :

a E D} D S 1 whenever v < co, and D E[w,]w. Let D, _ {a E D : v < 0 (a)} . If D, is
infinite, then S(D)DU{Av(a) :aED,}=S 7 since A" has the (0-covering pro-
perty. On the other hand, if D, is finite, S (D) D U {B , (") : a E D\D,} = Sv since
B" has the w-covering property .

Case 4. cf y = w2 . In this case µ=w2 and y,/ y . Now for each v < w 2 there
s # v -:(o, such that

f"(a) <f,(a) (w -_ a < (0,) .

Also, there is fl-_a), such that fly =fl for R2 different values Of V< (t) 2 . Now put

Acta NlathematIca Academiad Scientlarunz Hungancae 31,1,975
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S*= U {Sv :f ,=/3}, Ap = U {Aá:/i„=l3} (a<c )l) . Then A*=(Aa :a<co,) clearly has
the w-covering property for S* . Moreover, tp S*=oo2 and

~

	

2 («)tp Ax

	

{(I&-"')+1 :
Yv = 'J

	

w~

where g (a) f., ((x) (~ a < co l) . Thus g+1 establishes -1P(y) and hence so does
f,+l since g«f,,, .

COROLLARY l .b . For y<co 2 the function h Y+l establishes -iP(y) .
PROOF . For y<co, this is obvious since h Y -y. For y=w 1 the result follows

from the theorem and the observation that hu,<<h ui+1« . . . <<hy is a strongly increasing
sequence of length y and the values h y(a) are all infinite for a<(ul and 0) v by
(1 .19) .

COROLLARY 1 .7. If there is a function h E u' 'co, so that h,, <h for all v < w° , then
col )

	

(
1 (9 1,1

(0112

	

(0,2

	

2 1

PROOF . This follows from the theorem and the fact that

h o << h l < . . . < hY << . . . << h (y < w2) .

The results of this section concerning the
2
-phenomena for the relation

P(Y) (02) ' (0)T 1) 1,1

are summarized in the following theorem .

THEOREM 1 .8 . (a)

	

P (y) holds for y < (4) 2 ,
(b) If y < w3 and there is a strongly increasing sequence fQ : a = y) of length

y+l in `°'col (i.e. fo«fl<- . . .<fy), then 7P(y) .
(c) If 2N ,= 2, then there is some y<w, such that P(y) is true .
(d) It is consistent that 2x'

át2
and -1P(y) for all y<w3 .

(e) P((o 2) fails in L and P(co2 ) holds if Chang's conjecture is true .
PROOF . (a) and (b) are respectively Theorems 1 .1 and 1.5. The first part of

(e) follows from Corollary 1 .7 since, by a theorem of BAUMGARTNER [1] in L there
is an h E `°'co l such that h„«h for all v <

(o
. The second part of (e) follows from

Corollary 1 .4 and a result of BAUMGARTNER [2] and BENDA [4] which tells us that
Chang's conjecture implies

11 f 11 -<
co, for all fE`°'ool . ( d) follows from Theorem 1 .5

and a theorem of LAVER [1l] (and BAUMGARTNER [2]) which says that it is consistent
with ZFC and 2~'

	

2
that whenever F(-_011(o,, J F J =lye then there is some

gE-a), which eventually majorizés every fEF, i .e . f<<g for all fEF.
To see (c) let us remark that by Lemma 3 of [9] 11w,11 <(2 1)+, where co l is

the constant function a) l . Hence by the hypothesis of (c), 11 f 11 -- 11w,11

	

(0,
for

all fE`°'oo l and then by Theorem 1.2, P(~) is true .
We do not know if the converse of Theorem 1 .5 is true, i .e . if y < w 3 and --i P(7)

holds, does it follow that there is a strongly increasing sequence of functions fQ E `° 'co l
(a y) of length y+1? However, as the next theorem shows, we can prove that
under the stated hypothesis there is a weakly increasing sequence of length y + 1 .

7
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THEOREM 1 .9 . If y < w 3 and -1 P (y), then there are functions fQE "Col (a y)
such that f<f,< . . .<f., .

This is an immediate consequence of Theorem 1 .2 and the following theorem
on the rank function which has an independent interest .

THEOREM 1 .10. Let,fC -co, , ~ j f jj = y < (a3 . Then there are functions f E "10'),
(a -- y) such that fo<f,-_ .< f., and moreover,

(1 .21)

	

f, (7) = (0-,(}f(ce) (7 < (0b) .

PRooF . For any function gEw1u)i , let g denote the function cows . The result
is true for y -- co t by (1 .17) and (1 .18) since b y <f< f •f for v < y . ie now prove
the theorem by transfinite induction on y . Assume cot < y < ~~ and that the result
holds for all smaller ordinals . We distinguish the two cases (1) y=(5+1, (2) -;, is
a limit ordinal .

Before giving the induction details we make a remark about the choice of f,,
in (1 .21) . We use two elementary facts about ordinal exponentiation

(a) 5 q - (D4 < co",
(b) o ` o &°

	

02 < c1~"' .

Property (b) actually characterizes ordinals of the form có 14 , and it is precisely
this which allows our induction proof to work_ . To see (b), suppose « °-' . If
=0, then 0--co and o2<W. If ~ >0, then o) 4 is a limit ordinal arid so Q-<W6

for some a-zaA Then o2~(0-2--w-4 by (a) .
Case 1. y=8+i . There is ,f'<f such that li f'11=ó . -Now the result follows

immediately from the induction hypothesis since f •f' <f •f.
Case 2 . y a limit ordinal . Let of (y)=µ . By assumption y=o), w1 or a)2 .

Let (y„ : v<µ) be the fixed increasing sequence of ordinals with limit y mentioned
in (1.11) (b), and let f,,E -1 o), (v<µ) be functions such that f<f and !,1íj1=y,
(v<µ) . By the induction hypothesis, there are functions fó E"w[ (a<y„) such that

f0 <.f < . . . < fQ < . . . ¢ fv fv (a < jj .

Let N={(a, v) : a< y„ A v<µ) . Then the order type of N under the usual anti-
lexicographic ordering, <,, is tp N(< o)=y. Thus it is sufficient to define func-
tions f,.,,) for (a, v)EN so that f(Q,,,)<f•f and

(1 .22)

	

(a, v) <o W, v') -f(a,V) <f(G',0

For any ordinals ~, rl, there is an order preserving map (p s,,, from s X tj (ordered
by -: 0) onto the ordinal ~ • sl .

We now define f(,,,,) E wlw l for (a, v) E N by

wf (d), s («) (f~ (a), b y (a)) if (f v(«), h (7))Ef(7) Xf (7),
f(' d) (7)

	

10, otherwise .
Note that

.f(Q, v) (a) = cpf (a), s (a) (fá (a), by ( 7))

holds for all but a non-stationary set of a's, since f`'<f, •f <f;, •fv<f and h„--<f.
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Thus f(a,v)<f •,f for (Q, v)EN. Also, if (a, v), W, v')EN and (Q, v)--, (a',

	

, then
either (i) v < v' or (ü) v=v' and u < U', and hence

(fa (a), by (a)) < o (fó (a), hd (a))

holds for all but a non-stationary set of Ys . Thus

We remark that, analogously to the rank functions defined before (1 .13),
we could also define a rank function III -III corresponding to the partial well-ordering
<< . This rank function has not, however, been so thoroughly investigated as the
ordinary rank function

II • II .
The reason for this is that the ideal of the non-stationary

sets is normal and this accounts for many of the pleasant properties of 11 • 11 . But
the ideal of the countable sets is not normal, and we cannot expect III • I II to behave
so well. In particular the functions h d do not have the nice properties (1 .17), (1 .18)
for this new rank .

It is clear that ~Il f III `=-1I f 11 since g<hag<h, we and remark that we could
improve Theorem 1 .2 slightly by replacing II f 11 by ~Il f 111 . However, this would not
help to solve the problem mentioned before Theorem 1 .9 since it is not known
(in ZFC) whether Ilf 11=cot and fE °1 1o), implies the existence of a strongly in-
creasing sequence of functions faE w i co r (asco t) of length co t .

2. Some extensions of the results of the previous section . General lemmas . In
§ 3 and § 4 we are going to give discussions of the relations

`~2) - (C02 CO2) t'1co,

	

1 (o,(2.1)
and

(2 .2)

ON SET SYSTEMS HAVING PARADOXICAL COVERING PROPERTIES

	

99

(

w,

	

1
co ~

	

(co2)

	

2' u%o
w2

)

far &, ti < co 3 and c < (o, The restriction to the case 6-_(o, is not entirely necessary,
but an analysis for the case a--co, will inevitably be complicated by the same kind
of N 2-phenomena that we encountered in § 1 in connection with the case a=01 ,
z=0. In fact most of the results in § 1 find natural extensions to higher order types
and we begin this section with a brief indication of these .

The following is an easy extension of Theorem 1 .1 .

TH EOREm 2.1 . If a<co3 , cf (a)=(o, and y < co2 then

(Cog")col (
1
2 "T 1~ w 1

PROOF . We prove this only for the case y=0. The general result follows by
induction on y just as in the proof of Theorem 1 .1 . Let (Sv : v<co,) be the standard
decomposition of cot as described in § 1 . For v < (o, let (B. : n < co) be a paradoxical
decomposition of Sv and let co, be a one-to-one map frond v into co . Now consider
the system (Aa : a< co I) of subsets of (o2l, where

Aa = U IS, : v s a} v U {Bv„ (a) : a < v < col } .

This system clearly establishes Theorem 2.1 . for y=0 .

7 •
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There is a sharpening of this last theorem which is analogous to Theorem 1 .5 .
THEOREím 2.2. Let u < a),, cf (c) = o),, and let (a, : v < o) J ) be a closed, cofinal,

strictly increasing sequence in a. Let y < o), and suppose that (fl : v _ y) is a strongly
increasing sequence of functions in "áu, of length y + 1 . Then there is a system A =
_ (A a : a--- :: ru,) of col subsets of rue +' having the (o-covering property and such that

tp A < (u6-v+fI'(a)+i (a < o) ) .A,

	

1

PROOF . The case y=0 follows from the last proof, for, by the definition of Aa
above, we have

tp A
a _c w2

«
+02

(U1
<

(02

	

(02a«+fo(a)+I,

Now an induction argument similar to that used to prove Theorem 1 .5 works here
as well .

Theorem 1 .2 has a similar generalization .

THEOREM 2 .3 . Let o)-T<(o,, y<(o,, .fEw1a), . If 11 .81=y and A=(Aa :a<co,)
is a sequence of subsets of (t)2+y such that

tp A« < Q)2 +f(«) (a < COA

then there is DE[c il" such that

(2.3)

	

tp(w2+','\U{Aa : aED}) - (02 .

PROOF . For y=0 this is obvious since f (a)=0 for all but a non-stationary
set of a's and hence there is an uncountable set Dc --(o such that tp A,-- run WD),D),
for some fixed n--co. This implies (2.3). The general result follows by an induction
argument similar to that used to prove Theorem 1 .2 .

These results enable us to state generalizations of Theorem 1 .8. Thus, from
Theorem 2.2 it follows that

P . ERDŐS, A. HAJNAL AND E C. MILNER

(

0,
Co a 0,

holds in L if a<co, and of ó=cu t . Whereas, from Theorem 2.3 we see that Chang's
conjecture implies that

c0,

	

1

	

(0, 1,1
(2.5)

	

T+O)

	

w

	

T
~2 2

y
W2 1 OJ2

holds for all a<c03 . It is interesting to note that (2.5) and 2 110 =R, implies a strong
negation of (2 .4) with u=col_, namely

(0,

	

1

	

a)
Y

,
(2 .6)

	

0)2

	

w l

	

~2
~2

	

02 C02

For suppose that (2.6) is false . Then there is a sequence A=(A« :a<a),) of subsets
Of (02 2 such that tp Aa < (02 1 (a < (0,) and such that

tp(a)2 "\U(A,, : cc ED}) < (oZ

AC1'c7 iYlc~tiz~mc~ticc~ .~lccsc~emiae scienararum. Ilun1}r"yc7e 31, 1~~8



holds for all DE[wi]`° . In view of the hypothesis 2 11 1, = 1 , it follows from this that
there is some T«2 such that

tp ((0012\U {Aa : aED))

	

ot

also holds for all DE[oo,]w . But this contradicts (2.5). Hence (2 .6) is consistent (with
Chang's conjecture and say G . C . H.) . However, we do know that the stronger
relation

is false assuming Dla= 2 (see Theorem 3 .1 (a)) .
We need the following corollary of Theorem 2 .3 .

COROLLARY 2.4 . If w = z < w3 and y--(o, then

(2.7)

ON SET SYSTEMS HAVING PARADOXICAL COVERING PROPERTIES

	

701

(C02

wl

	

1wl I, I

2

	

ú021 w2 2

( 0) 2

COI
+y) -~- (()2 +7

~ 2 )I I

We now describe a general method to obtain polarized partition relations .
First we introduce a new partition relation .

h1)

	

h1o' ki ~zt) 1 1 .

By definition, (2 .7) means that the following statement is true : iffis a partial function
from ~Xq into x then EITHER there is XO X .YOC~Xil such that tpXo=~o,
tp Yo =rio and X0X Yo is disjoint from D(f), the domain off, OR there is X, X Y,c
cD(f) such that tp X,=~1 , tp Y,=r1 2 and I f "(X,X {v))I<, for all vE Y,

A more general symbol than (2.7) can be defined but we do not bother to do
this since (2 .7) is sufficiently general for most of our present purposes .

We now give two lemmas establishing connections between polarized partition
relations and the new relation (2.7) .

LEMMA 2.5 . Suppose x is an infinite cardinal and

(2 .8)

	

(') -- (qo [III

Let w (v <q) Fee ordinals such that S, <x+and let

	

v P11. Let
(9 denote the set of all ordinals of the form (p'= {cp,, : v<ill, where (,q, E v and

Let O=sup{cp'+1 :(p'C(9) and V =Sup {~{ , :vEY)d-1 :YCIIAtPY-1 . Then

(2 .9)

	

G )

	

(

	

1 ) I'10 IF

PROOF . By the hypothesis (2.8) there is a partial function f from c X n into
c« such that
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(I) ({a)XY.)ÍnD(f),,,- 0 whenever aES and Yo cq, tp Yo =t1 o , and
(ü) whenever X,X Y,(-- ~Xil, tp X1=~ 1 , tp Yl= n t , then there is sonic vE Y

such that either X, X {v) t D (f) or I f "(X, x {v)) I _ co .

Let (5,. : v<rl) be a decomposition of ű such that tp S„=ű (v<al) and
So < St < . . . . Let B°=(Bn : n < o)) be a paradoxical decomposition of S, such
that tp B,;-:x" for n < o . Now consider the subsets A a c ű (a < ~) given by

Aa =U{5,, : (a,v)JD(f))U U{Bf(,, v ) : (a,v)ED(f)} .

By (i) it follows that tp A,EC (a<~) and hence tp Ax < 0 (a<~). Now let
X,c~, Bcű with tp Xt =~, and tp B='F . Put Y,={v--q :B(1 S„~, 0) . Then
tp Y,,-- q,, by the definition of T . Hence, by (ü), there is vE Y, such thatt either
X, X {v) c~ D(f) or I f"(X, X {v)) =o). Since B° has the co-covering property for
S„ , this implies that in either case S„ (:77 U {A,, : a E Xl) and hence B n U IA,, : a E Xt ) 0 .

LFMmA 2.6 . Suppose that x is an infinite cardinal and

(2.10)

	

(r1)

	

(10 , ~jll~~,«Ur
,hl

holds. Let ű,, (v<rl) be ordinals such that

	

<x+ (v<q) and let

	

-
_Z JOV : v<ill . Let aY=min {Z (0- : vE Y): Y( --- q, tp Y=tQ. Then

(2.11)

holds.

(3.1)

PROOF . Let (A,, :a< ) be a system of subsets of ű such that tp A u < x 10 r;o (a < ) .
Let (S,, :v<jl) be a decomposition of -7 with tp S Y =xyv (v<jl) an d So --S,
Define a partial function f from ~ Xj1 into o) having domain

By (2.10), and by the fact that tp A a <%Olq, (a< ) it follows that there are
Xl c~ and Y,cq such that tp Xl = fi t , tp Yt =al,, and X,X Y,cD(f) and
If"(X,X{v))I <o) for all vEY, .

For each v E Y,, the set U {A,, n S,,: a E Xt ) has order type less than x°' and hence
S,,\U {A,,n S v :aEX,) has order type x l~. Put B= U {S,, : vE Y)\U {Ax :aEX,.) .
Then tp B-V and B(1 A,,=0 for aEXI . This establishes (2.11) .

3 . Discussion of the relation (2.1) . The aim of this chapter is to give a discussion
of the relation

(0042.) y (01,

(02~1, 1

for ~, z < co 3 and u < co, . We are going to give a complete discussion under the
assumptions 2 11 0= ,, 2111= 2 •

Our main positive result is

Acta ~S[ütnerr< uCa Academ= SCCSi2(17-a 12 Iiu7z9Uricae 31, ,978

and such that

for (a, v) E D ( f ) .

D (f) _ {(a, v) : tp (A . n S,,) < %- I

f(a, v) = min in : tp (A"n S„) < x"}



Tt3EOREM 3.1 .

0)1

	

1 0)1 a,1
a)

	

z

	

h z

	

for n<(o and n-i=%
~2 ~ 02 f2

(~2+ ~~

	

(~2 7
(02)1 1

COI

	

1

	

U)1
2+1'

	

02+1+y (92

b)

C)

ON SET SYSTEMS HAVING PARADOXICAL COVERING PROPERTIES

	

1 03

l

1,1,1

for z < (p 3 , T+y-~(o+y and y--(o,

for co+l - T < 03 , cf (04) = co 2 and y-<().

PROOF . a) is a trivial consequence of the fact that the union of 001 sets of type
o).á has type < (.oz -

b) is a restatement of Corollary 2 .4 if c0 -T . If 2 < (o then z + y ~- w + y im-
1

plies y=0) { y and hence the statement is true by the special case
(4)w+,

(~2

	

- 2 of Corollary 2.4 .

We prove c) by induction on y . In case y=0 let (S. : V < 002) be the standard
decomposition of 0)2 and assume that A,CcI2, tp A .--solo 1 for a<0) 1

Now for each a--(o, there are n (a) < w and V (a) < (0 2 such that

tp (A . n so < O- (a) for V(a) < V < (A2 .

These is a DE[o31]I'll such that n(a)=n for a E D, where as is some fixed integer,
and then it is easily seen that

tp ((02\ U {A,, : a E D}) = cot .

We now prove c) by induction on y-(). Assume the statement is true for y .
Let (5,, : V<CU2) be a standard decomposition of (t)2+ 7+ 1 ; and assume A a cco2+Y+ a ~
tp A x<w2 +1+ ,+1 (a<c0 1 ) . Then for each a<ml there is v(a) such that tp (A a (1 S,)<
<(O~+1+Y for V(00 V--0)2 . Choose v so that tp (A .n so «2+1+, for all a<col .
By the induction hypothesis there is a D E [0),]" such that

tp (Sd\{Aa : aED}) 0) ,~ .

Now our aim is to show that the rather simple positive results of the last theorem
are best possible .

THEOREM 3.2. Assume

(3 .2) If 2 0 = tél and cf (i) = co then

0)1

	

1

	

0)1\/1, 1

~2

	

(0)2+ 1 w21
(3.3) If cf (i) = co l then

\(02/

	

((U21CU1

0)2 \1, 1

(3 .4) If 2111 = 2 and cf (co2) = (02 then

(CUTT

	

co)

	

( 60 2 11+1 02
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PROOF OF (3.2) . Let (S„ : n < co) be the standard decomposition of (, 2 and let
tp S„=coin (n«). We apply Lemma 2.5 with =cap , a1=('0, rj n =1, 2 =oJ1 , tg z= co .
With this choice of the parameters the 0 of the lemma is cot+1, while T=(02 .
Renee, by the lemma, we only have to prove that 2aO= , implies

(3 .5)
)
ill

We prove this relation under the weaker hypothesis : There is a sequence offunctions
a E °'co (a < co,) having the property that for any g E u'co, there is f3 < oil such that
{n < co : g (n) ~fa(n)} is finite for all a>-# (i .e. there is an o-),-scale) .

Assuming the fa (a«,) satisfy the above, we now define a function f:co,X
Xc)-co by
(3.6)

	

.Í(a, v) = .fa(v)-

Let D E [(o l]", NE [w]°' and suppose that f "(D X {n)) is finite for all n E N. Then
there are integers g(n) (n < w) such that ,f,, (n) < g (n) for all a E D and n E N, a con-
tradiction. Thus {v--co: J f "(DX {v})I-- op must be finite.

PROOF of (3 .3) . The idea of the proof is very similar to that used ill the proof
of Lemma 2 .5, and suggests how that lemma can be generalized . We did not bother
to state the generalization since this is the only instance where the stronger statement
would be needed .

First we prove :

(3 .7) There is a function f: a), X co, ->w such that for all A, BE [(01]0 1 there is v E B
with I f "((A\v)X {v})I=co .

Incidentally, we remark that (3 .7) implies the relation

(t),

	

[(t) 1] 2
W, <w

which does not seem to have been noted previously .
To see (3.7) choose a sequence of functions fa :a -> a) for a<co, in such a way

that, for al l fl< a < co, , fp (v) fa (v) for all but finitely many v. Now put

f( v)
{fa (v) for v < a < co,

a,

	

0 otherwise .

Let now AE[cv,]", and put T={v<o~, : {f(a, v) :aEA\v { 1~I<u~j • We want
to verify that B\T5z 0 for BE [co,]"' and this follows if we show that 1, TI co .
Assume I T I = w, . Then there are T' E [T]` 1 and n < w such that

I{fjv) : aEA\v+1}I < n for vET' .

Let be ordinals such that VkET' for k--O,) and
ajEA for inn . Then there are i j-n such that f,,,(Vk)=fa .(A) for
infinitely many k, a contradiction.

To finish the proof of (3 .3) let (S v : v<a.),) be a standard decomposition of
(o2T . For v-- w, let (BR : n < cu) be a paradoxical decomposition of S, for v< O), .
For a < w, let Aa = U {Bf(,,) : v < a}, where f satisfies (3 .7) .

Al v. c IVlat11e n^t :ce
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It follows, just as in the proof of Lemma 2 .5, that (Ax :a- cal) establishes the
negative relation (3 .3) .

PROOF OF (3.4) . Let (Sy : v«2) be the standard decomposition of cot, where
tp Sv =cU - for V<CL12 . We apply Lemma 2 .5 with ~=CV2, 31=()2, 11 1 =1, 1=cv 1 ,
q 1 =a), Then 0 and P of the lemma are respectively 0)2+t-;-1 and cot .

Hence by the lemma it is sufficient to prove that 2 11i= 2 implies

(3.8)

	

(w2)
~
. r 1

[
0) 2]

. '

This is a trivial corollary of the fact ([6], Theorem 17A) that 211,= 2 implies

(39)

ON SET SYSTEMS HAVING PARADOXICAL COVERING PROPERTIES
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THEOREM 3 .3 . Assume z«3 ,

\0
Q~2

	

COI

2/
-ii 1C0219

We need the following extension of Theorem 3.2 .

y«1-
(a) If 2110= , and cf (z) =w then

(3 .10)

	

0),

	

1

	

(01 1,1
~T+y ~-' ~2+y+ 1 w2

(b) If of (a) =co t and y>0 then

(3.11)

	

(DI

	

1

	

Ujl 1, 1
~2+y ~° boa+1,+ 1 ~x

Z

	

2

	

2

(c) If 2111=R2 and cf(02)=0j2 then

(02

	

(

	

1

	

~1

1,--( (0 2
(3.12)

	

+y +' 1~2+1+v { 1 w2

PROOF . We prove all these statements by induction on -j--co, . Since there
are notable differences it will be convenient to give the proofs separately .

PROOF OF (3.10) . For y=0 this is (3.2) . Assume y~:-0. In the case y=6+1
we can take identical cross sections . Now assume of (y)=co. Let (S. : n -- 0', ) be
the standard decomposition of a,2+", tp Sn =c,2+y». Let A"=(AQ:a<c0i) establish

(o1
(coz+yn2

1

	

co1)1 1 1

FJJ2 +y^+ 1 002
in S„ for n < co .

Let (Bk : k --,o) be a paradoxical decomposition of S„ for n < m . Let f: a), X W --w
satisfy (3 .6) . For a-031 put A,, = U (Aa : n < w} U (B f ta ,,,) : n < a)) . Clearly
tp (A,,n (U (S= :i--n})--0)2+y for n«, and hence tp A t-cot+ y (a teal ) . Assume
D e [o),]- 1 . Then, by the choice of the Ax,

tp (Sn\U IA,, : -ED)) < w2

for all n<w. Also, by the choice of the Bk and f,

U (Bfca,r,y : aED, n < co}
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covers an end section of w2+ ' . It follows that

tp (w2+y\U {Aa : aED)) < w2 .

PROOF OF (3 .11). Let (S,: v<(ol) be a standard decomposition of w20)1-17 . In
case y=I take identical cross sections of systems establishing (33) . In case y=
=8+1 >1 take identical cross sections of the inductive systems . In case cf (y)=w
take cross sections . It is easy to check that this system satisfies all the requirements .
(In case of (y)=w we need the fact that of

PROOF OF (3 .12) . For y=0 this is 3 .4. For cf (y)=w take cross sections . Now
suppose that y=ó+1 and let (Sv :v<w2) be a standard decomposition of cot+y .

Let Av=(Aá :a<c)2) be identical copies esttblishing

	

2+s)+-(~2+a1s+1 ~L
on Sv for V < O-)2 . Let (Bn : n < w) be a paradoxical decomposition Sv for V-! cv2 .
Let f: cot X cot ->co establish (3 .8) . For (X--0)2 let

Aa = U {Aá: V < W2) U U {BÍ (a v) : V < w2).

For each v<co2, Aan u {Sµ :il < v)-w2 +~+s, (v~ 1), and hence tp A .-a)` +i+s~
for a<Ú)2 . Now, by the choice of Bn and f the union of every col Aa covers an
endsection of w2+a By the choice of the Av the union of every col A,, omits a set
of type less than cot from each Sv (V<w2) . Since cf (w2) =w2 it follows that

tP (w2 +7\U {A,, :aED)) < w2
for all D E [wj" .

We claim that, assuming 2110= 1, 2111= 2, Theorems 3 .1-3.3 provide a
complete discussion of (3 .1). We may of course assume that In case a--(o
(3.1) is true by Theorem 3 .1 a) and b) . So we only have to investigate the relation

(3 .13)

	

(njw

	

ww+1 1+ y wwl 2T
1,1

for -r- o < a)3, y < coi and w + 1 + y o . If i -(o the statement is true by Theorem
3.1 b). Hence we may assume r ::-(o. Q can uniquely be written as If
cf ('r)=w or cf (a)=ÚJ1, then (3 .13) holds iff l +If cf (w2) =w2, then
(3.13) holds iff y-o' . These follow from Theorems 3 .1 and 3 .3 and the elementary
fact that Q' < y aS + ~' < 8 + y for any 5 . To conclude this chapter we give some
results about possible improvements of our theorems .

An easy iteration gives the following improvement of Theorem 3 .1 c) :

If w+1 _-C (01, cf (w2)= ' 1, 0<y<wl, and n<w, then

In particular,

l U)1

	

1

	

ÚJ1
69 w+2

	

ww+2 wto+ln

	

for2

	

2

	

2

We omit the proof of this, but it is intriguing to note that this cannot be in,-
proved by replacing n by w .

//

	

1

	

1
wy+Y

	

wuw+1+y\\

	

2
Col 1,1
w2n

n<w.
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0)1 )

	

1

	

w1 )1,1
w2+2

	

w2o+1+1 0
Q+l w

is consistent with G .C.H . (e .g . holds in L) .

PROOF. We apply Lemma 2.5 with u=w2, = wl, q= w2, 110=1, 51 = w1, ái1=
=w2+2' 8,.=w2 +1 for v<a)2 . It is easy to check that =o+ 1 I-1, =w2+1w.

Hence e only have to establish the consistency of

(3 .15)

	

('0)12)

	

( [~I]., -"t )

This follows from the following statement :

(3.16) There is a junction f: w 1 X w 2 - 0) such that for all A E [w1]"=, B E [w.1" there
is a vEB so that f "(AX {v))=co .

This has been proved to be consistent with G .C.H. by PRIKRY [14] . Later JENSF.N

[10] showed using morasses that Prikry's result (3 .16) holds in L .
Finally we are going to prove that (3 .3) of Theorem 3.2 is best possible .

THEOREM 3.5 . Assume T < w3 , cf (T)=w1, 5 --o), . Then

col

	

1

	

w1 1,1

(w2)

	

(w2 cU2

	

.

In order to prove this we need a lemma on set mappings which is similar to
a theorem of ERD6S and SPECKER [15] .

LEMMA 3.6 . Let ~ < w1 and let f: w1 ->P (w 1) be a set mapping on w1 such that
to f (x) < for all x E w 1 . Then there are X, YE [w1]" such that f (X) n Y= 0, where
Y denotes the closure of Y in w 1 .

PROOF. We will assume that the lemma is false and obtain a contradiction .
For U, VCw1 , let S(U, V)={xE U : f (x) n V= o ) . Suppose A, BE Ro il"

and that

(317)

	

JS(A, Y)l

	

whenever Y(-- B and 0 - FYI

	

1ti 0 .

Choose xo EA,yo EB so that f(x0)<{y0) . Now let 0<v<w1 and suppose that
we have already chosen xu, E A, y r E B for p < v so that f (X,,) n Yv = o, where
X,={xµ :y<v) and Y„={yµ :µ< v) . By (3.17) there is xvES(A, Y,)\X,, . Choose
yv E B so that Yv Uf (X, U {x,,)) < (y,). Then, contrary to our assumption, the lemma
is satisfied with X={x,, :v<w1) and Y={y„ :v<w1) . It follows that, whenever
A, B E [w 1 ]"1, then there are x (A, B) EA and Y(A, B) cB such that 0 < j Y(A, B) j -_=

át0 and
f(x) nY(A, B) 0 for all xEA such that x a x(A) .

We now define ordinals a Y <w1 for v<w1 by transfinite induction as follows .
Let v<w1 and suppose that we have already defined au for µ<v. Let f3,,=
=sup {aµ :fc<v), B„={o :/l,, 7~ 0<w1) . Let Y,,=Y(B,,, B,,), x,,=x(8,,, B„) and

III
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choose a„ < a), so that Y„ U {x„} Uf(x„) < (o! j . This defines Yí, and a„ for all v < (9r
so that yo < Y, < . . . and

f(x) n Y, x o for y-v and a„Lx<c®, .

It follows from, this that tp f(a4))

	

and this is the desired contradiction .

PROOF OF THEOREM 3.5 . Let (Sv : v<_w,) be the standard decomposition of o)2,
and let (A a :a<c~,) be a system of subsets of w2 such that tp A x<co2 (a<c~0-

For a<w,, let f (cc) ={v<o), : tp (A,,nSj - a)2} . Then tpf (a)<~ (a<co,) .
Therefore, by Lemma 3.6 we can assume that

tp (A .n Sd) < (o-, for o.,, v -_ (9,

There is no loss of generality if we assume that Aa o (a«,) and then for
a, v < w, there is an integer n (a, v) such that

(3.18)

	

0_)2 (a, v) = tp (A d n so < (t)g (x' V)+1

Now for a. < w, there are a(a)< and T(a)<w2 such that tp A x = w2 a (a) ~-
+ i (a) . Hence, there are ordinals µs (a a (a)) such that µo<pá < . . . , g (a) _

{Ecó : a a(a)} is closed in co, and

tp (A x (1 U {S, : µó - v < yá i_,}) = cot for a < a(a),

tp (A,, n u {Sv : µá (, - v < co,}) = a(a) .

Since tp g(a)-~, it follows from Lemma 3 .6 that there are D, EC [co,]w' such that
g(D) nE=o .

Suppose that for some a E D the set {n (a, v) : v E E} is unbounded. Then there
are v i EE such that vo<v1< . . . and n(a, v,)<n(a., v,)< . . . . Therefore, by (3.18),

tp (Aa n U {Sv : c < (0}) = 0,2

and hence v =sup {v c : i< co} Eg (a) . This contradicts the fact that g (a) (1 e _ 0 .
ft follows that, for each a ED there is n(a)<w such that n (a, v) < n (a) for all
vEE. There is D,E[D]wl such thatt n(a)=n for all ):CD, and hence tp (S„ r U
V{A a:aED,})<v'2 (vEE) . It follows that tp (a)2\U(A,, :aED&=cot .

4 . A discussion of (2.2). In this section we discuss what happens when the term
a,, on the right-hand side of (3.1) is replaced by a), i .e . we are going to investigate
relations of the form

(4.1) //IOJ,l/

	

1 c0 1, 1

for o, i <oj, and a < co, . We have already indicated in § 2 the reed to restrict
our attention to the case a<co, . For this case we shall give a complete analysis
of (4.1) under the assumption 2~ ,'O= , . The main part of this section and the next
is devoted to proving the positive relations stated in Theorem 4 .1 . The negative
relations given in Theorem 4 .6 are much simpler to prove.
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THEOREM 4.1 . Assume 2 Q = R, . Let v < w, > Q=col ~ + y, where

	

and
y < w, . Then

(4.2)

	

(095)

	

( )k I if k < w and ~ 0,

(4.3)

	

fflQ

	

(0-) coo

col

	

1

	

w 1,1

	

Y
(4 .4)

	

O)2 ~ w(0+7 (00

	

if S > 0 .

REnLkRKS . 1 . We do not know if the 1 on the right-hand sides of (4.3) and (4.4)
can be replaced by u1.

2 . The relations (4.3), (4.4) show that the situation here is significantly different
front the case of (2 .1) (at least under the assumptions 2 0= , and 2 1 1 By
Theorem 3.1 the relation

(~I

~ 1 w I
(02

	

ka)2 0) 2)

holds for y =co+1, but it is false for y=o)+2 . In fact, by Theorem 3 .3, we even
have the stronger negative relation that (assuming 2 '=R 2)

\(02+L)
+- (w2+I+ 1 (0a+I J

holds for all a < w3 .
Our proofs of (4.2)-(4 .4) are quite complicated, and we need several lemmas .

The main idea is most clearly seen in the proof of (4.2) . The reduction lemma (Lemma
4.3) enables us to faithfully represent a system of R, "small" subsets of w2 («.o l)
by a system of "small" subsets of a countable set of type 62 . Using this we easily
reduce (4.2) to a known theorem for countable ordinals due to BAUMGARTNER

and HAJNAL [3] that

(4 .5)

	

(coy((0y)

	

) k 1 (k < o); y < co,) .

The same ideas are needed to prove (4.3) and (4.4) but we need generalizations
of (4.5) (Theorem 4.2) and the reduction lemma (Lemma 4.3) .

We first introduce some special notation . Let 1--n« and let 4=(~o ,
be a sequence of indecomposable ordinals of length n. Put 17 (4) _ ~ O X . . . X ~„ _, ,
the Cartesian product . If n>1, we write ~ to denote the sequence (50,

	

Sn 2)
obtained by deleting the last term.. Also, for Xc 17 (4) we denote by $ the projection
of X into 17 (4) . For uE

	

and Xc H (4), define X"=X (1(á oX . . . X S n_ 2 X {u})
and

	

t")=X" .
We now generalize the concept of a full-sized subset of an ordinal, i .e. we shall

define a relation XEF(4) for subsets of II(,) by induction on the length of g=
=(~o , ~„_,) . For n=1, XEF(4) if and only if X is a subset of ~, such that
tp X=~, . Now assume that n>I and that F(rl) has been defined for sequences
of indecomposable ordinals of length n-l . Then XEF(4) if and only if Xc17(4)
and tp {uE „_ I : t">EF(i )}= „_, .
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(4.6)

We now define the polarized partition relation

(4 .7)
(b) If y < co l ,

(4 .8)

then
OJI
OJYJ

( ('g( ~ ) - ~)k

for a sequence of indecomposable ordinals as follows . The rela-
tion (4 .6) means that whenever f. col X4 ->k then there are D E (co,]" and a full-sized
set X E F(4) such that D X X is homogeneous for f. In the case n =1 this definition
agrees with the normal polarized partition relation .

In order to prove (4.3) and (4.4) we need (4.7), a generalization of (4 .5), and
X4.8), a consequence of (4.5) .

THEOREM 4.2 . (a) Let 1--n, k< co and let =( o , . . . , „_,) be a sequence of
r~decomposable denumerable ordinals. Then

1
)
y
K k.~

1

I~Y~ ~~y]~
cWl\l,l

We postpone the proof of Theorem 4 .2 until the next section and proceed
with a statement and proof of the representation lemma (Lemma 4 .3) and its ge-
neralization (Lemma 4 .4) .

LEMMA 4.3. (Reduction lemma .) Let y<co, and let (A a :a«o,) be a sequence
of subsets of oj2 such that tp Aa<o_)2 . Then there is a countable set Xcw 7 such
that tp X= W and tp (A n X) < wY for all a < co, .

PROOF . We will prove a slightly stronger statement . Let Qa =min IQ : tp A a <COO)
(a<rJJ,) . Then there is XCw2 such that tpX=wy and

(3.4)

	

tp (Aa n X) < wLd

The proof is by induction on y . For y=0 the statement is trivial . Now let
0 < y < w, and assume the result is true for smaller ordinals . We can assume that
A a 7 0 (a<a,,) and hence that pa=oá+1 . We distinguish the two cases (1) y=
=6 +1 and (2) cf (y)=w .

Case 1 . Let (Sv : v<co2) be the standard decomposition of cot . Then tp S„=
= o9s (v < (o2) . Now for each a < w, there is va< w 2 such that tp (A,, n so < w2~
for va < v<co2 . Choose a set Deco, such that tp D=m and such that v a< v
for all a < w, and v E D. By the induction hypothesis, for each v E D there is a set
X,, c S„ such that tp Xv = o)a and tp (Aan Xj < coe. (a < w, ; v (D) . Put X-
= U {X,, : v E D) . Then tp X= o)Y and (3.4) holds.

Case 2 . Let (S„ : n < o)) be the standard decomposition of 0)2 . We can assume
that tp S„=co2n" (n«), where (y„ :n<c)) is an increasing sequence of ordinals
with limit y . Let (5,,,, : V<CO2) be the standard decomposition of 5,, . Then tp 5,,,,=
=w2' (n<w ; v<(J2) . For each a-_(9, there is v,-:o.), such that tp (A" n S„N)< 2 .
for all n -:a) and V a < V < 0)2 . Choose v* < (0 2 so that v,,--v* for all 7--w,
By the induction hypothesis there are sets X„(-- S,,,, . (n<co) such that tp Y;,=u)".

- c( v 1b1 t4ca7ncaP .c~c Acue 1cm .:ae Sctcritia~ una I:un;~artcae
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(n < co) and tp (A,, n X„) <wQ. (a < a), ; n < (o) . Put X= U IX,, :n < w}. Then tp X =
=coy and tp(A,,nx)c coo. <we«~ (a< coo .

We now prove the generalized reduction lemma as follows .

LEMMA 4.4 . Let 1~a2<w, 4=(G, . . ., where Si=xji, Y;<w, and xiE
E{w, 092) for i<n. Suppose ~A d :a<w,) is a sequence of subsets of 11(4) such that
rao A,, is full-sized in H (4) . Then there is a sequence X =(X0 , . . . , X~ _,) such that
Xic xi7 i, tp Xa = w"i (i< n) and no set A a (111(X) is full-sized in H (X) .

PROOF. For n=1 the statement is either trivial (if x,=w) or follows from
Lemma 4.3 (if x,=w 2 ) . We now assume that n-1 and use induction.

For each a<w,,, put B,,={uES„-a :AaOEF(~)} . Then by the assumption
that A,, j F(4), it follows that tp B,, < ~„-, . Therefore, by Lemma 4.3, there is X,,
c~„_, such that tp X„_,=w7,=-, and tp(B,,nx,,_j_o.)Y--, for all a--a),

Now consider the system of sets (Áá"~ : a < w,, u E Da), where Da=
{uEX„_, :Ááu> j F(i)} . By the induction hypothesis it follows that there are sets

XicCj for i<n-1 such that tpXa=wri

	

and such that

Áá~° (111(X) F(X) ((I < w, : u ED a),

where X=(X0, . . ., X„ and X=(X0 , . . ., X„
To complete the proof we have to show that for each a < co, the set A,,nn (X)

is not full-sized, i .e. we have to verify that the set

Ca = {UEX,,-, : Ááu' nr1(x)EF(x)}

has order type less than w 7,, -1 . Now, if uEC,,, then uEX„_,\D a and so Áá">FF(4)
Thus C,cBa (1Xn_, and so has type less than W- .

We now use the reduction lemmas to obtain "higher" analogues of (4.7) and
(4 .S) . The special case n=1, x,=w 2 of Theorem 4.5 (a) gives (4 .2) .

THEOREM 4.5 . Assume 2N= , .

(a) IfIan, k<o),

	

J, ~i - xi iii<wP, xiE{w, w2} for l<n, then

(4 .9)

	

x)

	

~ Jk
1 .

(b) If y < w,, then

(4.10)

	

lwzl

	

~ws Lw2Jw,

y~ tII,I

PROOF . (a) Assume this is false . Then there is a
l
function f: w,XI1(4) -k which

disproves (4.9) .
For each DE [w,]°' and j--k, put

A(D, j) _ {xEn(4) : f "(DX {x}) _ {j}}

Since f disproves (4.9) it follows that the sets A(D, j) are not full-sized in 11(4) .
By the hypothesis 2Ho=fit, there are at most R, sets A(D, j) and hence by Lemma
4.4 there is a sequence X=(Xo , . . ., X„_,) such that Xcx<<, tp Xi=w^li (i<n)
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and A (D, j) A H (X) is not full-sized in 17 (X) for D E [(o,]O and j -Z:k. It follows that
f t w l X 17 (X) disproves

( ") - G' l'1
where rl=(w7 O, . . . , w7n-1), and this contradicts Theorem 4.2(a) .

(b) The proof is essentially the same as the proof of (a) . Assume that there
is a partial function f from 0) lX 0)2 into w which disproves (4.10) . For each D E [0) 1 ]01
let A(D)={ <w2 :(DX{ })nD(f)=O} and B(D)={~<wz :DX{~}cD(f)A
A I f "(D X {~}) I < w}. By the assumption on f, A (D) and B (D) have order type
w for DE[w l ]w . Therefore, by Lemma 4 .3, there is a set X(--(O2 such that

tp X=o)" and A(D)nX and B(D)inX both have type <w7 for each DE[w il' .

Thus f l o) g X X disproves

(01

	

0-1 01
((1)7)

	

(wy ,
LwY1w,

1w,,J

contrary to Theorem 4.2(b) .
We now prove the main result .
PROOF of THEOREM 4 .1 . As we already remarked, (4.2) is a special case of Theo-

rem 4.5(a) .
Also, (4 .4) follows immediately from (4 .10) and Lemma 2.6 (apply the lemma

with x=0)2, ~=wi, ~i=w, =t1o=rli=co7 and H,,=,o-y (v<co2)) .
It remains to prove (4 .3) . Let x=cf (~) . Then x=w or 0) 2 . Let (z, : v<x) be

a strictly increasing sequence of ordinals with limit w l ~. Then zv +vj'wl~ (v<x)
also. Thus we may write 0)2=w21~+ Y=(Z{w2y}Q : v<x}) • 0)2

	

2. Put z w° x xK

	

S0= , b'= ,

~2 =0) 2, 4= G01 b1, ~2) . Let < o denote the antilexicographic ordering of 17(1;) .
Flow there are pairwise disjoint sets S(,,,,,, o ) ((µ, v, 0)E17(4)) such that

(4.11)

	

{0) 2 - U JS(,,,y,o) : (y, v, 0)ED(4)}, tp S(,,,, o ) = wT

S(1,. o) < S(,•, v,o') for (u,v,B) <o(N',v',0') .

Suppose (Aa : a < 0)l ) is a sequence of subsets of a)2 such that tp AQ < (0Q
(a<0)r) . In order to prove (4.3) we have to show that there are D E [0)i]`° and Cc aA
such that tp C=0)2 and A,, n C= 0 for all aED.

For a <0)i , let Ba = {(µ, v, 0) E 17 (h,) : A Q n S(,,, o ) o } . Clearly, for fixed
v<x and 0<w2 i

tp {µ < o)2 : (µ, v, 0) E Ba} - tp A« < 0)2 (a < (oI),
and so the sets B,, (a<w,) are not full-sized in 17(4). By Theorem 4.5(a) (for k=2)
it follows that there are DE[wi]' and Bc17(4) such that B is full-sized and
Ba n B=0 for all aED. Put C=U{S(,,,,,,o) :(µ, v, 0)EB} . Then, by (4 .11) and
the fact that B is full-sized in H(4), we see that tp C=0)2 . Moreover, by the defini-
tion of Ba , we have Aa n C=O for all otED .

We conclude this chapter by showing that the positive results of Theorem 4 .1
are best possible .

THEOREM 4.6 . Let i<w3, cf (i)=0)l , 0<y<w, . Then
0)i

	

//

	

1

	

w 1, '
012

	

10)2 -01+1 012 ,(4.12)
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(4.15)

(4.16)

(4.17)

Finally, we note that in the case T<c03, cf (T)=CU1 there is a gap between
positive result (assuming 2 0= 1)
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(413)

	

(01

	

co(

	

1

	

III

LU2+Y)

	

+y+ 1 w2)

PROOF . It is easy to see that (4 .12) follows from Lemma 2 .5 and the relation

1
(4.14)

	

(w1) ~- (1 [~r)w,_wf)>1

(Apply Lemma 2 .5 with ~=c) 1 , Sl=(n, ri=s71=0)1, )10 =1 , "v=C02° (v<(31), where
T,./T . An easy computation shows that --=iY=w2 and 0=(02(0 1 +1). Now
in order to prove (4 .14) consider the function f : co l X co, -o) given by f (a, v) _
=f,(v) where the fa are pairwise almost disjoint functions in "'(4) . Now for AE[(t) 1 ]'
and BE[w il", there is v,EB such that fa (v o) fa.(v o) whenever a, a' are distinct
elements of A. Thus f ' (AX {v 0 )) is infinite . This proves (4 .14) and hence (4.12) .

To prove (4 .13) use induction on y. If y = 6 + I take identical cross sections
of the inductive systems establishing the negative relation for 0, 2T+1' . If cf (y)=(o
take cross sections .

We remark that if we assume the transversal hypothesis, TH(co l) : there are
co t almost disjoint functions in wlco (which is known to be true in L and false if Changs
conjecture holds), then the argument used above yields the following stronger
statements

( ~)-i-(1 , [ I)-,

	

tY
, '

~D2

	

1

	

w I, 1

coz

	

co + i wT

	

if cf (T) _ 0)1,2

	

2 0h

	

2

Go2 +y )

	

(W2'+9~
.. .1 (I)2)1

1
if cf (T) = w, . , 0 < y < w1 .

wl

	

1 co h I

(602)T

	

(C02
(UT

2

given by (4 .4) and the negative result given by (4.12) . This gap is easy to fill as the
following theorem shows . Although this does not follow from Lemma 2.6, the
proof is similar .

THEOREM 4.7. If

	

cf(T)=o)1, and S<col , teen

( 0) Z)

	

((0L1~1

C62)1., 1

PROOF. Let (5,, : v<o),) be the standard decomposition of w2 and let
(A a : a < c )l) be a system of subsets of coy such that tp Aa< co2 Col . For each a < col
there are v (a) < col and n (a) < co such that tp (A a n S J < coli (a) for v (a) < v < c0 1 .
Now there is D(--co, such that tp D=8 and n(a)=n for all aED. Clearly
tp 10)2\U {Aa :aC .D)J=a)2 .

8

the

Acta Mahematica Academiae Scientiarum Hungaricae 31, 1978



114

	

P. ERDŐS, A . HAJNAL AND E. C. MILNER

5. Proof of Theorem 4.2. As we have already mentioned, both statements of
Theorem 4.2 are generalizations of (4.4) which is a result of BAUMGARTNER and
HAJNAL [3], and both can be proved with the methods used there . Since [3] appeared
F . GALVIN [8] developed an elementary method to obtain the results of [3] and
after we obtained Theorem 4 .2 he kindly informed us that his method can be used
to prove this theorem as well . However, we decided to give our original proof since
it can be explained in less space .

As in [3] both statements will be proved first under the assumption that MA KI
holds (for Martin's axiom see e.g . [12]) . Then we exhibit partial orders which are
well-founded iff the corresponding statements are false . This will show that if the
statements are true in the standard model of Solovay and Tennenbaum yielding
the consistency of MA KI , then they are true in the ground model i .e. they are true
in ZFC.

First we describe the partial orders .
a) Let 4=(c)st :i<n), 0<y i«1 (in) and let f:co,Xll(4)--k be given .

Let (p be a one-to-one mapping of o) onto 17(4) . For m < w and i<n we write
cp (m, i) to denote the i-th coordinate of cp (m) E II (4) . Let P be the set of all pairs
of sequences ((aj : j<1), (uj : j<1)), where 1-< o), the aJ are different ordinals
< (o, for j<1, uJ=(u;,o, . . ., u;,,_1)EJ7(~) for j<1,

uj, i < uj , ,i iff 9(j, i) < 9(j', i) for j < j' < 1,

and such that f is homogeneous on {a j :j < 1 } X {uj : j < l J . The partial order is
defined on P by the rule that ((á;:j< 1'), (u; :,j < 1')) is an extension of
((a j : j<l), (uj : j<l)) iff (á; : j<1') Is an extension of (aj :j<1) and (u; : j<l')
is an extension of (uj : j < 1) .

b) Let y < co, and let f be a partial function from co, X coy into w . Let 9 be
a one-to-one mapping from w onto coy. Let P consist of all pairs ((a j : j < n),
(u ; : j < I)), where 1-<o,), the aj are different ordinals -<(o, for j--I, uj< wy, u, < uj .
iff cp(j)-_9(j') for j<j'<1, and such that either ({aj :j<1}X{u; :j<1})nD(f)=0
holds or {(xj : j<1}X {u; : j<1}cD(f) and f(aj ., uj)=f(aj ,,, u) for j--j', f'-J
The extension is defined as in case a) .

We leave the reader to check that these partial orders have the desired pro-
perties and proceed to derive the statements (4.7) and (4.8) from MAKI .

PROOF of (4.7) FROM MAKI . Let 4=(~ i:i<n) be given, where ;=coy=, y i< w,
for i<n<w .

For XcH(4) we denote by X the projection of X into

	

A subset YcX
will be called a section of X (in H(4)) if X=U{X°:uE S} and S is a section of 1.

Instead of (4.7) we are going to prove the following stronger statement .

(5 .1) Assume f: co, X II (~) -k, where k < w . Then there are a full-sized subset
X c: 11(x,), increasing sections X,c X, c . . . of X (in Id (4,)), and functions

j :w,--k such that (i) X=U{Xi :i<co} and (ü) f"({a}X
X (X \X (a)))= {j (a)} (i .e . {a} X (X \X,,, («)) is homogeneous for f in
the colour j (a)) .

We prove (5.1) by induction on n, the length of 4 . For n=1 this is just Lemma
3 of [3] . Now assume n > 1 .
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Since ,f may be considered as a map from ((o,X ~„ _,) X H ( ) into k, and since
co,X~„_, has ca .rdinality co,, it follows from the induction hypothesis that there
are sets Y, Yi (i < a )) and functions m, : col X ~„ _, --> cal and j, : w y X s„ _ y - k such
that Y is a full-sized subset of fl( ,), the Yj are sections of Y (in 17(4)), Yoc Yyc . . . ,
Y=U{Y; :i<co} and
(5.2)

	

f"({a}X(Y\Y„oa,„)) {u})={jAa, u)}

holds for all a<co l and uE~n _ 1 .
Applying the induction hypothesis once more for the function ,j, : co l X ~„ _, -k,

it follows also that there are sets Z, Z i (i< (o) and functions m 2 :co,-->oo and
j :co y -- k such that Z is a full-sized subset of (i .e . has type the Z` are
sections of Z, Zoc7, (-_ . . ., Z=U{Zj:i<c )} and

(5.3) j, (a, u) = j(a) for a < w, and uEZ\Z„,z(a)-

Put 9.(u)=m,(a, u) for a<coy and uEZ. By a lemma of K. KUNEN (see e .g.
[3]), MAR , implies that there is a function cp :Z--w such that

(5 .4) (pa (u) < cp (u) for all but finitely many u E Z

holds for each a < (o, .
Let X be the full-sized subset of H (4) such that 1C=Z and 10) = Y\Y, l u l

(u ( Z) • Let X, be the section of X determined by ZI By (5.4) there is
m :co y -> w such that m(a)--m2(a) (a < co,) and such that (p,, (u) < (P (u) for all
uEZ\Z„i 1,1

	

Now for a<coy and uEZ\Z,,,1«>, we have Y\Y,. c„>>
Y\ Y9 (n ) =1( n) and hence, by (5.2) and (5 .3),

f"({a}XP„>X {u}) _ V11 (0c, u)} _ {j (a)},

f "({a}X (XvX„,(«))) _ U00,
PROOF OF (4.8) FROM MAR, Let now f be a partial function from co, X wy into

ca. By MAR, we know that

i .e .

ga
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I ~Y I - I ~YJk' 1
\\\ /\\\

This is a theorem of [3] and infactt is acorollary of (4.7) just proved . Therefore,
we may assume that D (f) =co, X coy . We can also assume that y ::-O . Let
{xn:n«}=(w be a one-to-one enumeration of wY . We define a sequence
{y„ :n«)} of elements of o), and a sequence {Y„ :n<(o} of subsets of w, by in-
duction on n<oo as follows . Y,=co, . Assume that n<co and that Y„E[co,]w ]L
and y; (j<n) have already been defined . Choose a subset Z„E[Y„]wl such that
Z„ X {x„} is homogeneous for f Let yn be an arbitrary element of Z„ and Y„ +, _
=Z„\{y„} . Let A,={y„ :n<w} and B,=coy. If x„EB,, then f"(A,X{x„})=
=f"({yi :i=n}X{xn}) is clearly finite. This proves (4.8) .

Note that in both (4.7) and (4.8) the cu on the right-hand sides can be replaced
by any a < co,, but we do not need this .

5. The case of R2 sets . The first aim of this chapter is to prove an analogue
of Theorem 1 .1 for the case of R2 sets. This will show that the critical number for
which the "lti 2-phenomena" appears in this case is uy,+2 instead of coy .
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(6.1)

THEOREm 6 .1 . If

	

then

C0 2
~w2

-

1

	

o

PROOF . We use induction on y . The statement is clearly true for
We now assume and that the statement is true for all 5-<y . Let
x = cf (o,)2) and let (S, : v <x) be a standard decomposition of 0, 27 , tp S,.=0,2.°,
(V-< ;,) . By the induction hypothesis we can choose a system of subsets
(A,v, :C4<0)2) of Sv (v-<x) such that tpAccv-< Co111,12

-

	

and SvcU1Av :aED) for
D E [0)21"- We now distinguish the three cases I x = co, (2) x = co, (3) x = co, .

Case 1 . Since

	

co, for v < w., by Theorem 1 .1, we can find sets B t;(_- S`
(i3 < w1) establishing

co ,

	

Co

Y2( 0)1v)
~' ~ cu 1

	

)1,7.

We choose a one-to-one mapping (p v of v into (-,), for V<(-)2 . Now for g= (") 2
let A,=UfAv. :v--xJUUJBJ,0) :a< vJ . Clearly, QA.<W;112 for a<w, Let
D E[CL)2M I , - z co, Put D, = (oc E D : v < a), D I= Ja ED : a -< vJ . Since either D, or D,
is infinite, either UJaCD, :A,J or UJaED, :B,',(,)J covers S,, . Thus UfA, :aED)
covers Sv in any case. It follows that a)T,(-_U(A, :ocCD) . Hence the system
(A, :a<a)2) establishes (6 .1) .

For cases 2, 3 take cross sections .
The partition relation just established shows the same "R 2 -phenomena" as

w11-.

	

1 , 10) 1,1 .

	

'Cthe relation
0)

	

W,

	

We do not go into details, but we will show the
2

	

(~

	

)

following equivalence :

(6 .2)

	

WY2
0)211) -- (a)

'0

	

0)111 +2 (1)

	

(0
12

	

1
1 1

VJ ~1,1

(9 20"2

The implication from the left is implicitly contained in the proof of Theorem 6 .1,
and the reverse implication is an easy corollary of the following lemma . We leave
it to the reader to derive (6 .2) from the lemma which we prove in detail since this
will be needed for other purposes .

LEMMA 6.2 . Assume 6 -< (o,

	

2, and that cf ((al) is either (0 or 0)2 . Let (A,, : a -cot)
be a sequence of subsets of (o l such that tp A.--(OO"+' for a- co t . Then there exist2
X(--wó, y -< o, and D E 1021"" such that tp X= o)' and tp A,, n x, (o -2, for all a ED .2

	

2

PROOF. Let x = ef (col) and let (S, : v -,:: x) be a standard decomposition of2
CA- We distinguish the two cases (1) x=(9, (2) X = (0 ' .

Case 1 . We may assume that tp 5,.,=w2° +1 for n-_co=x . Let (Sn, :)-- 0')2 )
be a standard decomposition of I Or n<oj . Let Using the fact that
tp A,-z:a)21')1+1, for each n-o) there are ,3 (a, n) <o., , and 0(0', n) --Z O)2 such that
tp(A,nS,,)-_o)fl(1,") for o ( a, n) . < w2 . Put fl(o6)=sup Jfl(a,n) :n-a)J and
e (a) = sup IQ (a, n) : n < wj . Then P (a) , co, and Q (0 ) -< 0)2 for cc -_ (0, Clearly there
are DC10-)211

	

and C--(02 such that

fi(a)+1 = 7 and p(a)--c for OcED .

Let X= U IS, : :n-:co). Then X, y and D satisfy the requirements of the lamina .

Ac= NaMe~a ~emae=~~~~2, M78



(6 .3)
for c~,T<w3 and y<w,+2 .

First we give an extension of the positive result Theorem 3 .1 .

THEOREm 6 .2. Assume T<w3 , T+y--w+y, and y<co,+2 . Then

(6 .4)
and

(6 .5)
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Case 2. For each a--o, there are (a) < w, and Q(a)<w, such that
tp (S v (1A,)<(02"a) for t)(a)< v<w2 =r. There are De[w2]" 1, y <w, and 6<w2
such that fi(a)+1 =y and t)(a)« for aED. Put X= U {S„ :acv<w2} . Then
X, y and D satisfy the requirements .

We now try to investigate the analogue of (3.1) for the case of t-sets, i .e . we
consider the relation

C0 2
) -

	

1 cog ;̀~' I

w2

	

w2 C021

w2

	

9( 1

	

(01)1j .
(U) z +y~

	

\w2 + G) 2
Note that for y<w, Theorem 3 .1(b) yields a stronger result . For y=cog or w,+1
this can be considered as a generalization of e) of Theorem 3 .1 as well, since, 1 + y = y
holds in this case. In case y=col Theorem 6.2 is trivial since among R2 sets of
type < w21 there are , with type < coz for some & < w, . Assume now that
'1 aCw2+"1"1 and tp Aa<w21+t for a<w2 . Then, by Lemma 6 .2, there are Xc
cwt+"1 +a, DE[w2 ]" 1 and y<w, such that

tp X = (0'2",+', and tp Aa n X < w2

for aE D . Hence our claim follows from Theorem 3.1(b) .
One could conjecture that, at least assuming 2 11 0= , and 2 1= 2 , Theorem

6.2 gives the best possible positive result . However, we were not able to prove
this. We now discuss the problem by considering separately the different possible
values of of (T) . In case of (T)=co g we already noted ((4.16) and (4.17)} that if
TH(w,) holds, then

w2) f•
~w~ wg+

1 w J for T < (o, cf (i) = w,

for Tcw3, cf(T)=w,, 0<y< 0), .r 002 l/

	

//

	

1

	

w
~ww+y'

	

/w2

	

2u++l wT\\

We are going to prove the following extension of this .

THEOREM 6.4 . Assume TH((),) . If T< w3 , cf (T) = w, and 0 < y < a), + 2, then

(' cue

	

(/

	

1

	

w

	

i
`w2

+y)
~; \w2

+q+ 1 w2 z,

PROOF . In view of (6.5) we only have to prove this for y=w, and y=w,+1 .
Suppose y=(o, . Let (Sv : v<w,) be a standard decomposition of w2+ "1 such that
tp S =w~ 1+" for v-- w(o, . For each v--:::co, choose sets Aác Sd (a<w2) establishing

(I w2 \1

	

1

	

w,'
-i- (-`w2+ro l

	

w2 +v+ 1 w2)
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For each v < 0)l choose a paradoxical decomposition (B; : n < 0)) of S, . By TH(w l )
there are cot almost disjoint functions f« :(oi - o) (a<w 2) . Now for a<w 2 put

Aá = U {Av : v < 0) l }, A, = U {Bf (v) : v < 0) 1),

A« =ATUA . Clearly tp A« <0)Ei +1 . The union of countably many Aá omits
a set of type < 0)2 from each Sy (v 0)1) . The union of countably many A covers
an end section of 0)2+("1 . It follows that

tp(w2+ 0)l\U{A« :aED}) < 0)2
for all D E 10)21",,

For the case y=0)1 +1, take identical cross sections of the systems obtained
for y=0) 1 .

We now make some remarks about these results .
First of all, it is not worth continuing the induction of the last theorem beyond

y=0) 1+L For, by combining the methods used to prove Theorems 6 .1 and 6 .2,
we can easily prove :

If TH((ol) holds, z<0) 3 , cf (i)=0)1 and y -- 0) 2 , then

(6 .6)

hold?

The relation (6 .4) should be compared with the positive relation

0) l(02'0)h
0)2

given by Theorem 4.7 (i < 0) 3 , cf (z) =0)1 and This shows that the term
0)20)l +1 in (6.4) cannot be decreased. Now (6.4) (obtained from TH(0)1)) implies
the weaker relation

P. ERDŐS, A . HAJNAL AND E. C. MILNER

0)2

	

1

	

0) 1,1
=+Y

	

col+2

	

i0)2

	

(W2 '

	

02)"'
Our second remark is that it would be sufficient for our present purposes if

we could prove (6 .4) with 0) replaced by 0) l . We do not know if TH(0),) is really
needed for this weaker relation . This leads to the following question .

PROBLEM 1 . Assuming GCH, does the relation

~co,

	

c~l l1, 1

1

(6 .7) w2

	

(

	

1

	

0)1 1,1
0)2) ~ l0)E w l + 1 0)2)

which should be compared with (3.3) of Theorem 3 .2, the corresponding result
for k~1 sets. We already saw that (3 .3) is best possible (Theorem 3 .5) and we norv
show that (6 .7) is also best possible, i .e .

1

	

0) 1,1
(6.8)

	

0)
T) -. ( w

	

i)

	

if i < 0)3 , cf (z) = 0)l .0)2

	

0)2 0)l 0)2

PxooF . Let (5,, : v<wl) be a standard decomposition of 0)2 . We may assume
that tp S,, -0)E for v < 0)l . Assume A«~ 0)2 (a < 0)2) and tp A«< 0)2 0) l . Then
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for each a < w2 there are o (a) < co l and n (a) < w such that tp Aa A S, < w2 t~>
for o (a) < v--::w,. There are D E [w2]w1 , n < w, Lo--Co, such that n(a)=n and q((x)=Q
for aED. Clearly tp (w2\U {A~ :aED})=w2 .

This concludes our discussion of (6.3) in case of (i)=w, and we know, assuming
TH((o l), that our results are best possible .

In case cf (w2)=w 2 we already know, by (3.12) of Theorem 3 .3, that 2 1=tt 2
implies

(6.9)

	

(602

w 2 l

	

1

	

wI
+y 1

	

~w2+l+y + 1 w2)
holds for y < w l .

Again this can be generalized as follows .
THEOREM 6.5 . Assume 2s1= 2 . If z < w3 and cf (i) =w2 i then (6.9) holds

for y<w1 +2.

PROOF . To see this in case y=w1 just take cross sections. This works since
cf (w2)=w 2 . For y=w l +1 we obtain it from the statement with y=w 1 using
the partition relation (3.8). We omit the details .

This shows that our positive result Theorem 6.2 is again best possible for the
case cf (w2)=w2 i at least assuming 2H1=R 2 . Unfortunately, we do not know if
the salve is true in the case cf (i)=w. Our main unsolved problem is the following .

PROBLEM 2. Assume 2 o= 1 . Is the relation

(
w2 \'

	

(/ 1

	

wl \/ 1,1
w2 2J

	

(09 w2 2

true for some y, w+2-- y-w • 2?

All our methods for constructing counter examples break down . We do know
that (3 .2) does not remain true for tZ, sets for a >-w, cf (z)=w. The following partial
result shows why we insist that y--w+2 in Problem 2 .

THEOREM 6.6 . Assume 2so=R1 . If w«<w3 , of(T)=cu and ~<w2, then

holds .

0 2
(0)2)

--~
\w2 +1

w 1
w2

PROOF. Let (S„ :n<w) be a standard decomposition of w2 . We may assume
that tp S„=wen +I and y n -w for n-:o.) . Let (S, (o,) be a standard decom-
position of S„ for n<w. Assume Aa cw2, tp Aa<oj2 +I • for a<w2 .

Assume now, that ~ --a < a)2 . For each n < w there is o (a, n) < a such that
tp (A.Í1 S,,,eta,,,~)<co2 +1 . Put o(a)=sup {o(a, n) :n<w} . Since {a<wl : ~a<w 2i
cf (a)=(oJ is a stationary subset of w 2 it follows that there are DE[w2]- and o<w 2
such that o (a) = o for all a E D. Using Vo = R1 it follows that there are D' E [D] 10 2
and a sequence (o n : n < w) such that o(a, n) = o n for aED' . Considering
U {S,, L,. : n < w} has type w2 this shows that it is sufficient to prove only that

W2 (J" wI h1

602

	

w2
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To see this consider again the S„ and S,,, g as defined in the first part of the proof
and assume now that A,,ca)u, tp A a <Ú32 + 1 for a<Ú32 .

There are o (a) < Ú32 and k (a, n) < co such that

tp (A.nSn, s) < Ú3k ( 2, n) for o(a) < o --coy .

Using once again that 2"0= I , we see that there are D E [Ú3Z]`02 and kn < co (n--o))
such that k(a, n)=kn for aED. Let D'E[D]wa be arbitrary and let o=
=sup {o(L*c,ED') . Then tp (A,nSn e)<Ú)2" for o<o'<Ú3 2 , n<Ú3 and aED' .
1-fence tp (Sn\ U {A, : aE D)) ~ w 2 for n< co and the result follows .

We conclude this chapterr by analyzing the analogue of (4.1) for t sets, i .e.
the relation

(6.10)

	

(0)9)

	

(C9 2 0)2
l l, l

for a, i<o33 and y<Ú3 1 +2 .
In view of Theorems 6 .3 and 6 .4, a discussion for (6 .10) will be completed by

the following analogue of (4.3) .

THEOREM 6.7 . Assume 2sa = R, . Ifa< a),, Cf (coD = co or u),, 6-(o,, y T 6 and
y<Ú3 1 +2, then

(~ +a)

	

(0 )2 ~2+a~ 1'1

PROOF. It is clearly sufficient to prove this for y=(,3,+l . Assume A~cÚ32+a
tp A,,-- C02

+1 for a--a), Now of (Ú)z +b) is either Ú3 or co t since 8<Ú31 . Hence,Hence,
by the Lemlna 6.2, there are X(:-:: o)2+s, y o<Ú) 2 and DE[0)2]C01 such that tp X=a)z+ s
and tp (A a n x) < w2 for all a ED . Hence the statement follows from

Ú3 I

	

1

	

w 1,1
7o

	

T+6

which is (4.3) of Theorem 4.1 .

7 . Pointwise-finite systems. A system (A,, : a< x) of subsets of S is said to be
pointwise ,finite if each point of the underlying set S is a member of only a finite
number of the A,, (a<x) . In this chapter we investigate analogues of some of our
earlier results for pointwise-finite systems . This amounts to an investigation of
relations of the form

\w2J
-

(( 3g V 1
a)2 11, 1

for o, 6, 1 <Ú3 3 and Y=(O) a3 1 or CÚ2 . While this leads to several quite interesting
new problems we shall not discuss this in the same detail as we did for the case
when the pointwise-finite condition is left out . The results we prove below give
the analogues for (7.1) in the cases x=o3, co l and co t which correspond respectively
to the negative relations of (1 .2), Theorem 1 .1 and Theorem 6.1 .

The following theorem is related to our earlier result ([7], Theorem 8) and so
is the method of proof, but we believe it is worth giving the details .
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THEOREM 7.1 . Assume 2 0= 1 . Let y<w2, T--O-)2 . Then

(7 .2)

	

\w 2/

	

\w2 V 1 w2
i )III ,

(7 .3)

and

(7 .4)

(wl)
--F- (

1

	

w w
) 1 1 1 ,1/\w2

	

w2 i 1 wwi

w2

	

1

	

w 1,1

( 2

	

((

	

c0zi
n

	

1 col, +2

We need the following lemma which was also used in [7] (Lemma 5) . For the
convenience of the reader we give the short proof.

LEMMA 7.2 . Let (T„ :n<(o) be a sequence of denumerable subsets of (0 . Then
there is a pointwise finite sequence (C k :k<c)) offinite subsets of co such that

(7 .5)

	

Ck c k
aad
(7.6)

	

w\ U {Ck :kE T„) is finite for all n < (o .

PROOF. We can assume that the sets Tn are pairwise disjoint (since we can replace
them by infinite disjoint subsets) . Let t„ denote the least member of T„ and let
T.' = T„\{t„) . We define the Ck (k <w) as follows. If k E01\ U {T,, : n < (o) put
Q=0 . If k E U {T„' : n < co) then there are unique integers m(k)<k and n (k)
such that k E T„' (k), m (k) E T„ (k) and i q T„W for m (k) < i< k. In this case put C k =
_ [m(k), k) . It is easy to verify that the Ck are pointwise-finite and that (7 .5) and
(7 .6) hold .

PROOF OF (7.2) . We prove slightly more . We show that there is a pointwise-
finite system (Ak :k<(1) of subsets of 621 which establishes (7.2) and satisfies the
stronger condition that
(7 .7)

	

tp Ak < w2 for k < w .

The proof is by induction on y. For y=0 the result is trivial . Now assume
that y>O .

Let (S„ : v<ef ((02)) be a standard decomposition of (02 . By the induction
hypothesis, for each v < cf ((12) there is a pointwise-finite sequence (Ak :k < w)
of subsets of S„ establishing the corresponding result for tp (SJ . We now distinguish
the cases (1) cf (c)2)=co or w2 and (2) of (012)=w1 .

Case 1 . Take cross sections in the natural way, i .e. put A,= 0 and Ak+1 =
= U {A k : v<cf (012)) . (Note that, in the case cf (012)=co t we have that y is a successor
and for each k the w 2 sets Ak (v<012) all have the same type .)

Case 2 . By the hypothesis 2 11-R, we can assume that [w]w = {T,, : v <(0J .
Let F„={Tu :it<v) for v<011 .

For each v < co , let (Ck : k < 01) be a pointwise-finite system of finite subsets
of w satisfying the requirements of Lemma 7.2 for the countable system F,, of de-
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numerable subsets of o) . Also, let (Bk :k<o)) be a disjoint paradoxical decomposi-
tion of S, (v<o),) such that tp Bk<(p2 and Sv = U {Bk:k<(J} (see (1 .1)) . Now put

Jk = U {B~ iE Q"} for k < co and v < col .

We know that tPÁk<a,2 since Ckck. Moreover, (Ák :k<ow) is pointwise-finite
since (Ck :k<o)) is and the sets Bi' are pairwise disjoint . Finally, by (7.6) of the
lemma, we also know that
(7.8)

	

tp (Sv\ U {Áv: k E T)) < cal
for any TEF,, .

	

_
Now put Ak= U {Ak : v<cl~,}, Ak= U {Ak : v<a),} and Ak=AkUAk for k<co .

Clearly (Ak :k<cu) is pointwise-finite and tp Ak<co2 .
Suppose D E [co] w . Then D = T, for some µ < a), and hence D E Fv for µ < v < co, .

Therefore, by (7.8) and the fidefinition of Ak , we have

tp (S„\ U {A,, : a ED}) < wl for µ -_ v < a), .

Further, by the inductive property of the Aá, we also have that

.Z,, = tp (S„\U {A,, : aED}) < 0 21

for any v<w,, . Combining these we see that

tp (co"z\U {Aa : aED}) s Z {áv : v µ}+col co l < co21 .

PROOF OF (7 .3) . Again the proof is by induction on Y--O-)2 . For y=O the
result is trivial . Also, the induction step in the cases when y is a successor ordinal
or an of-limit is very easy - simply take identical cross sections or cross sections .
The main difficulty in the induction is for the case cf (y)=a), which we now con-
sider in detail .

Let (S,, :v<(o,) be a standard decomposition of (91.' and let (Av :a--:::C0,) be
aa pointwise-finite system of subsets of S, for v<co, which establishes the result
in 5,,, i .e. for v<co, we have

(7 ..9)

	

tp Aá < co,

	

(a < a,),

(7.10)

	

tp (S„\ U {A': (xED}) < coh for all D E [a),]u' .

Let ws v < co, . By (7.2) just proved, there is a pointwise-finite system
(f1á :a--v) of Rn subsets of S,, such that

(7.11)

	

tp Já < cot,

(7.12)

	

tp (S„\ U 14,v, : a E D}) < c21 for all DE [v]').

By the hypothesis 2 11-R, we may write [ow,]°' _ {TW : µ < (o,} . For v < oo,
define F„={Tµ :µ<v, TN,(-_ v} .

Again, let (.o--v-<a), . We define another pointwise-finite systemá:a-v)
of , subsets of S,, as follows . By Lemma 7 .2 there is a pointwise-finite system
(Cá : a-- vv) of R, finite subsets of v such that

(7.13)

	

v\U{Cá :aED} is finite for all DEF,, .
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Let (Bá : a < v) be No disjoint subsets of S„ such that Sv = U (Bá : a < v) and
tp Bá <w2 . Such sets exist by the ordinary paradox (1 .1) . Now define

Áá = U (Bá : a E Ca) (a < v) .
Clearly the system (f1á : a < v) is pointwise-finite since (Q, : a < v) is and the B,'
(a<wl) are pairwise disjoint. Moreover, since f1á is the union of a finite number
of sets of type < w2 , we have

(7.14)

	

tp J' < w2' (a < V < w,) .
For the same reason we also know by (7 .13) that

(7.15)

	

tp (SvA U (Áá : a E D)) < co2 for D E Fl .

Now define sets A,(-- w2 for a<w l by putting A,,=AáUA«, where

Aa =U(AV : V<a}UU{Aa . w ~- V<wl , a<v),

Aa =U{Aá : (o -V<wl,a<v) .

By (7 .9), (7.11) and (7 .14) we easily see that tp A a<ww l (a<wl) . Also the system
(A a ;a<wl) is a pointwise-finite since the sets S„ are pairwise disjoint and the
(.A~ : a < wl ), (fla' : a <col ) and ( lá ; a < wl ) are pointwise-finite . To complete the
proof we must verify that
(7.18)

	

tp ((o2\U (A,, : aED)) < w2~
holds for any DE[w l]' .

Suppose D E [co l ]°' and v < w l . Either D\v is infinite or w-- v < w l and D [-I v
is infinite . In either case, by the definition of A ., we have that

(7.19)

	

tp(Sv\U {Aá : 06 ED)) < w21

by (7.10) or by (7.12) . Also D=T,, for some µ<w,. Let v o=sup ((µ)UTF,) .
Then for vo < v < w l we have D E F„ and hence

(7.20)

	

tp (Sv\U (A : aED)) < w2 (v9 < v < wl)
by (7.15) (7.18) easily follows from (7.19) and (7 .20) .

PROOF OF (7.4) . Again this is trivial for z<wl +2 and we use induction on z .
For the case when r is an w or wl limit there is no problem, we simply take cross
sections . We have only to prove the induction step for the case when of (a) 211)=('0,,
i _w2 .

As usual, let (S v : v<(02) be a standard decomposition for w2 . By the induction
hypothesis there is a pointwise-finite system (Aá :a<(0 2 ) of subsets of S v such that

tp Aá < cowl+2 for a < w2, V < w21

(7.21)

	

tp(Sv\U{A~: aED)) < ww +2 for DE[w 2]w and v < 02 .

By (7.3) already proved, for wl -- v < w 2 'there is a pointwise-finite system
(4á:o-v,', of R1 subsets of Sv such that tp Aá < ww l ((x--v),

(7.22)

	

tp(Sv\ U 1-4,v : a ED)) < w2l for all D E [v]" .
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Now put Ax=U{Aa :v<a)UU{Á, :c),_-v<w2, a<v) (OC-- 2) . Clearly the
system (A a :a<(V2) is pointwise finite and tp A,,«zy+2 (a<()2),

Suppose DE[(o 2]' . Put v o=sup (co,UD) . Then for vo<v<Qj 2 we have
DE[v]`° and so by (7 .22)

tp (Sv\U IA,, : a ED)) < (t)" (vo < v < (1) 2)I

f follows from this and (7 .21) that

tp ((o2\U {A, : aED)) < 0)211 +2 .

Thus ~Ap : a' 0)2) establishes (7 .4) .
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