General Topology and its Applications 9 (1978) 307-312 © North-Holland Publishing Company

ON THE DENSITY OF λ-BOX PRODUCTS

F. S. CATER

Department of Mathematics, Portland State University, Portland, OR 97207, USA

Paul ERDÖS

Mathematical Institute of the Hungarian Academy of Sciences, Budapest, Hungary

Fred GALVIN*

Department of Mathematics, University of Calgary, Calgary, Alberta, Canada Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA

Received 3 October 1977

If X is a topological space with density $d(X) \ge 2$, then cf $(d((X^*)_{(\lambda)})) \ge cf \lambda$, where $(X^*)_{(\lambda)}$ is the λ -box product of κ copies of X. We use this observation to get lower bounds for the function $\delta(\kappa, \lambda) = d((D(2)^*)_{(\lambda)})$, where D(2) is the discrete space $\{0, 1\}$. It turns out that $\delta(\kappa, \lambda)$ is usually (if not always) equal to the well-known upper bound $(\log \kappa)^{<\lambda}$. We also answer a question of Comfort and Negrepontis about necessary and sufficient conditions for $\delta(\kappa^+, \lambda) \le \kappa$.

AMS (MOS) Subj. Class.: Primary 04A20, 54A25; Secondary 04A10, 54B10

density box product family of large oscillation

1. Introduction

We use the letters α , κ , λ for cardinals, and the letter ξ for ordinals. For cardinals κ and λ , we write

cf $\kappa = \min \{ \alpha : \kappa \text{ is the sum of } \alpha \text{ cardinals} < \kappa \};$ log $\kappa = \min \{ \alpha : 2^{\alpha} \ge \kappa \};$ $\kappa^+ = \min \{ \alpha : \alpha > \kappa \};$ $\kappa^{<\lambda} = \sup \{ \kappa^{\alpha} : \alpha < \lambda \}.$ We write $\beth_0 = \aleph_0, \beth_{n+1} = 2^{\beth_n}$, and

 $\beth_{\omega} = \sum_{n < \omega} \beth_n = \aleph_0 + 2^{\aleph_0} + 2^{2\aleph_0} + \cdots$

* The third author received support from NRC grant A5198 and NSF grant MCS 77-02046.

If A and B are sets, then ${}^{A}B$ is the set of all functions from A into B, |A| is the cardinality of A,

$$P(A) = \{X : X \subseteq A\}, \qquad [A]^{\lambda} = \{X \subseteq A : |X| = \lambda\},\$$

and

$$[A]^{<\lambda} = \{X \subseteq A : |X| < \lambda\}.$$

A set $F \subseteq {}^{A}B$ is λ -dense if, for every $X \in [A]^{<\lambda}$ and every function $\varphi: X \to B$, there is an $f \in F$ such that $f(x) = \varphi(x)$ for all $x \in X$. A sequence $\langle h_{\xi}: \xi < \kappa \rangle$ of functions $h_{\xi} \in {}^{E}B$ is λ -independent (of λ -large oscillation in the terminology of Comfort and Negrepontis [2, 3]) if, for every $X \in [\kappa]^{<\lambda}$ and every function $\varphi: X \to B$, there is an $e \in E$ such that

$$h_{\xi}(e) = \varphi(\xi)$$
 for all $\xi \in X$.

Let κ and λ be cardinals, $\lambda \leq \kappa^+$. We define $\delta(\kappa, \lambda)$ as the minimum cardinality of a λ -dense set $F \subseteq {}^{\kappa} \{0, 1\}$. It is easy to see that $\delta(\kappa, \lambda)$ is also the minimum cardinality of a set E such that there is a λ -independent sequence $\langle h_{\xi} : \xi < \kappa \rangle$ of functions in ${}^{E} \{0, 1\}$. For $\lambda \leq \kappa$, we define $\Delta(\kappa, \lambda) = \delta(\kappa, \lambda^+)$. There is no loss of generality in considering the function $\Delta(\kappa, \lambda)$ instead of $\delta(\kappa, \lambda)$, since

 $\delta(\kappa, \lambda) = \sup \{ \Delta(\kappa, \alpha) : \alpha < \lambda \}.$

Let $X_i(i \in I)$ be topological spaces, and let $\omega \le \lambda \le |I|^+$. The λ -box product $(\prod_{i \in I} X_i)_{(\lambda)}$ has basic open sets of the form $\prod_{i \in I} U_i$ where U_i is an open set in X_i and $|\{i \in I : U_i \neq X_i\}| < \lambda$; this is the usual Tychonoff product when $\lambda = \omega$, and the box product when $\lambda = |I|^+$. If $X_i = X$ for all $i \in I$, we write $(X^I)_{(\lambda)}$ instead of $(\prod_{i \in I} X_i)_{(\lambda)}$. The *density* of a topological space X, denoted by d(X), is the minimum cardinality of a dense subset of X. We denote by D(2) the space $\{0, 1\}$ with the discrete topology. Clearly,

 $\delta(\kappa, \lambda) = d((D(2)^{\kappa})_{(\lambda)}) \text{ for } \omega \leq \lambda \leq \kappa^+.$

We now list some well-known properties of the function $\Delta(\kappa, \lambda)$.

1.1. Lemma. If $\kappa' \leq \kappa$ and $\lambda' \leq \lambda$, then $\Delta(\kappa', \lambda') \leq \Delta(\kappa, \lambda)$.

1.2. Lemma. $2^{\lambda} \leq \Delta(\kappa, \lambda) \leq 2^{\kappa}$.

1.3. Lemma. $\Delta(\kappa, 2) \ge \log \kappa$.

1.4. Lemma. If $\kappa \ge \omega$, then $\Delta(\kappa, \lambda) \le (\log \kappa)^{\lambda}$.

1.5 Theorem. If $\kappa \ge \omega$ and $\lambda \ge 2$, then $2^{\lambda} \cdot \log \kappa \le \Delta(\kappa, \lambda) \le (\log \kappa)^{\lambda}$.

1.6. Corollary. If $\kappa \ge \omega$ and $\lambda \ne 1$, then $\Delta(\kappa, \lambda)^{\lambda} = (\log \kappa)^{\lambda}$.

Lemmas 1.1 and 1.2 are trivial. For Lemma 1.3, consider any 3-dense family $F \subseteq {}^{\kappa}\{0, 1\}$. Then $\xi \mapsto \{f \in F : f(\xi) = 0\}$ is a one-to-one mapping of κ into P(F);

308

hence $\kappa \leq 2^{|F|}$, i.e., $|F| \geq \log \kappa$. (We could prove in a similar way that $\Delta(\kappa, \lambda) \geq \log \kappa^{\lambda}$ whenever $\kappa \geq \omega$ and $\lambda \geq 2$; but this seems pointless, since $\log \kappa^{\lambda} \leq 2^{\lambda} \cdot \log \kappa$.) Lemma 1.4 follows from a result of Engelking and Karlowicz [6, Remark 3, p. 279], which generalizes earlier results of Fichtenholz and Kantorovitch [7], Hausdorff [8], and Tarski [11]. We indicate a proof here for the convenience of the reader. Put $\alpha = \log \kappa$. For $A \subseteq \alpha$ and $B \subseteq {}^{A}\{0, 1\}$, define $f_{A,B}$: " $\{0, 1\} \rightarrow \{0, 1\}$ so that

$$f_{A,B}(x) = 1$$
 iff $x \upharpoonright A \in B$,

and let

$$F = \{f_{A,B} : |A| \leq \lambda \text{ and } |B| \leq \lambda\}.$$

Then F is a λ^+ -dense subset of α_2^2 ; hence

$$\Delta(\kappa, \lambda) \leq \Delta(2^{\alpha}, \lambda) \leq |F| = \alpha^{\lambda} = (\log \kappa)^{\lambda}.$$

Now consider a fixed infinite cardinal κ . By Theorem 1.5, we have $\Delta(\kappa, \lambda) = \log \kappa$ for $2 \le \lambda < \omega$, while $\Delta(\kappa, \log \kappa) = 2^{\log \kappa}$. I.e., if we put

$$\lambda_0 = \min\{\lambda : \Delta(\kappa, \lambda) > \log \kappa\},\$$

then $\omega \leq \lambda_0 \leq \log \kappa$. In Section 2 we show that in fact $\lambda_0 \leq \operatorname{cf} \log \kappa$. Moreover, assuming the so-called singular cardinals hypothesis, we show that $\Delta(\kappa, \lambda) = (\log \kappa)^{\lambda}$ whenever $\kappa \geq \omega$ and $\lambda \geq 2$. In Section 3 we give two examples which answer a question of Comfort and Negrepontis. Our results were announced in [1].

2. A generalization of König's cofinality theorem

2.1. Theorem. Let κ and λ be infinite cardinals, $\lambda \leq \kappa^+$, and let X be a topological space with $d(X) \geq 2$. Then $cf(d((X^*)_{(\lambda)})) \geq cf \lambda$.

Proof. Note that $\alpha = d((X^{\kappa})_{(\lambda)})$ is an infinite cardinal, so it makes sense to talk about its cofinality. Suppose that cf $\alpha < cf \lambda$. Choose a dense set $S \subseteq (X^{\kappa})_{(\lambda)}$ with $|S| = \alpha$; then we can write $S = \bigcup_{i \in I} S_{i*}$ where $|I| < cf \lambda$ and $|S_i| < \alpha$ for $i \in I$. Since $|I| < cf \lambda \le \lambda \le \kappa^+$, we can write $\kappa = \bigcup_{i \in I} K_i$, where the K_i 's are pairwise disjoint sets of cardinality κ . Since $(X^{\kappa_i})_{(\lambda)}$ is homeomorphic to $(X^{\kappa})_{(\lambda)}$, we have $d((X^{\kappa_i})_{(\lambda)}) = \alpha$. Let $\pi_i : X^{\kappa} \to X^{\kappa_i}$ be the projection mapping. Since $|\pi_i[S_i]| < \alpha$, $\pi_i[S_i]$ is not dense in $(X^{\kappa_i})_{(\lambda)}$. Hence, for each $i \in I$, we can choose nonempty open sets $U_{\xi} \subseteq X$ ($\xi \in K_i$) so that

 $|\{\xi \in K_i : U_{\xi} \neq X\}| < \lambda \text{ and } (\prod_{\xi \in K_i} U_{\xi}) \cap \pi_i[S_i] = \emptyset.$

But then $|\{\xi \in \kappa : U_{\xi} \neq X\}| < \lambda$ since $|I| < \text{cf } \lambda$. Thus $\prod_{\xi \in \kappa} U_{\xi}$ is a nonempty open set in $(X^{\kappa})_{(\lambda)}$, and $(\prod_{\xi \in \kappa} U_{\xi}) \cap S = \emptyset$. This contradicts the fact that S is dense in $(X^{\kappa})_{(\lambda)}$.

2.2 Corollary. If $\omega \leq \lambda \leq \kappa^+$, then cf $\delta(\kappa, \lambda) \geq cf \lambda$.

Proof. Let X = D(2) in Theorem 2.1.

2.3. Corollary. If $\omega \leq \lambda \leq \kappa$, then cf $\Delta(\kappa, \lambda) > \lambda$.

Since $\Delta(\kappa, \kappa) = 2^{\kappa}$, Corollary 2.3 generalizes the theorem of J. König that cf $2^{\kappa} > \kappa$.

2.4. Corollary. If $\kappa \ge \omega$, then $\Delta(\kappa, \operatorname{cf} \log \kappa) > \log \kappa$.

Proof. $\Delta(\kappa, \operatorname{cf} \log \kappa) \ge \log \kappa$ by Theorem 1.5, and cf $\Delta(\kappa, \operatorname{cf} \log \kappa) \ge \operatorname{cf} \log \kappa$ by Corollary 2.3.

The singular cardinals hypothesis, abbreviated SCH, is the assertion that $\kappa^{\Lambda} \leq 2^{\Lambda} \cdot \kappa^{+}$ for all infinite cardinals κ and λ . (The SCH is equivalent to the assertion that $\kappa^{\text{cf}\kappa} = \kappa^{+}$ for every singular cardinal κ such that $2^{\text{cf}\kappa} < \kappa$; see Sections 6 and 8 of [9].) Clearly, the SCH follows from the generalized continuum hypothesis, but is much weaker. In fact, models of set theory violating the SCH are not easy to come by; Prikry and Silver (see [9, Section 37]) and Magidor [10] have constructed such models assuming the consistency of very large (e.g., supercompact) cardinals, and Jensen has shown that some large cardinal assumption is necessary [4]. The following theorem shows that the SCH settles all questions about the function $\Delta(\kappa, \lambda)$.

2.5. Theorem. Assume the singular cardinals hypothesis. If $\kappa \ge \omega$ and $\lambda \ge 2$, then $\Delta(\kappa, \lambda) = (\log \kappa)^{\lambda}$.

Proof. By Corollary 1.6, it will suffice to show that $\Delta(\kappa, \lambda)^{\lambda} = \Delta(\kappa, \lambda)$. Let $\alpha = \Delta(\kappa, \lambda)$. We may assume that $\lambda \ge \omega$. By Corollary 2.3 we have cf $\alpha > \lambda$; hence ${}^{\lambda}\alpha = \bigcup_{\ell > \alpha} {}^{\lambda}\xi$ and

$$\alpha^{\lambda} \leq \sum_{\xi < \alpha} |\xi|^{\lambda} \leq \sum_{\xi < \alpha} 2^{\lambda} \cdot |\xi|^{+} \leq \alpha.$$

2.6 Corollary. Assume the singular cardinals hypothesis. For every infinite cardinal κ , we have

$$\Delta(\kappa, \lambda) = \begin{cases} 1 & \text{if } \lambda = 0; \\ 2 & \text{if } \lambda = 1; \\ 2^{\lambda} \cdot \log \kappa & \text{if } 2 \leq \lambda < \text{cf } \log \kappa; \\ 2^{\lambda} \cdot (\log \kappa)^{+} & \text{if } \text{cf } \log \kappa \leq \lambda \leq \kappa. \end{cases}$$

2.7. Corollary. Assume the singular cardinals hypothesis. If $\kappa \ge \omega$ and $\lambda \ge 3$, then

310

 $\delta(\kappa, \lambda) = (\log \kappa)^{<\lambda}$. Hence for every infinite cardinal κ , we have

$$\delta(\kappa,\lambda) = \begin{cases} \lambda & \text{if } \lambda \leq 2; \\ 2^{<\lambda} \cdot \log \kappa & \text{if } 3 \leq \lambda \leq \text{cf } \log \kappa; \\ 2^{<\lambda} \cdot (\log \kappa)^+ & \text{if } \text{cf } \log \kappa < \lambda \leq \kappa^+. \end{cases}$$

Problem. Is the SCH needed in Theorem 2.5? I.e., it is consistent with ZFC that $\Delta(\kappa, \lambda) < (\log \kappa)^{\lambda}$ for some infinite cardinals κ and λ ? For example, it is consistent with ZFC that $2^{\aleph_m} < \aleph_{\omega}$ for all $m < \omega$, $2^{\aleph_{\omega}} = \aleph_{\omega+2}$, and $\Delta(\aleph_{\omega}, \aleph_0) = \aleph_{\omega+1}$? How does the function $\Delta(\kappa, \lambda)$ behave in Magidor's models [10]?

3. Two examples

The Souslin number of a topological space X, denoted by S(X), is the least cardinal λ such that no collection of pairwise disjoint nonempty open subsets of X has λ elements. Comfort and Negrepontis [3, Section 3, p. 79] consider the following conditions where $\omega \leq \kappa \leq \alpha$:

- (f') $\delta(2^{\alpha},\kappa) \leq \alpha;$
- $(g') \quad \delta(\alpha^+,\kappa) \leq \alpha;$
- (c') $S((D(2)^I)_{(\kappa)}) \leq \alpha^+$ for all sets I;
- (a') $2^{<\kappa} \leq \alpha$.

They remark that $(f') \Rightarrow (g') \Rightarrow (c') \Leftrightarrow (a')$, but it is apparently left open whether the first two implications can be reversed. (The implication $(a') \Rightarrow (c')$ is attributed to S. Shelah). In an earlier paper by the same authors [2, p. 284], it is stated as an open problem whether (f'), (g'), and (c') are equivalent. The examples given below show that the conditions are not equivalent.

First we give a counterexample to $(a') \Rightarrow (g')$. Put $\alpha = \beth_{\omega}$ and $\kappa = \aleph_1$. Note that $\log \alpha = \alpha$ and cf $\log \alpha = \aleph_0$; hence

 $\delta(\alpha, \kappa) = \Delta(\alpha, \aleph_0) = \Delta(\alpha, \operatorname{cf} \log \alpha) > \log \alpha = \alpha$

by Corollary 2.4. Thus we have $\delta(\alpha^+, \kappa) \ge \delta(\alpha, \kappa) > \alpha$ while $2^{<\kappa} = 2^{\aleph_0} < \alpha$.

Of course, we can only give a consistent counterexample to $(g') \Rightarrow (f')$, since (f')and (g') are the same condition if $2^{\alpha} = \alpha^+$. Let us assume, then, that $2^{\aleph_0} < \aleph_{\omega} < 2^{\aleph_1}$ and $2^{\aleph_m} < 2^{\aleph_{m+1}}$ for all $m < \omega$; this assumption is consistent with ZFC (in fact, with ZFC+SCH) by Easton's theorem [5]. Put $\alpha = \aleph_{\omega}$ and $\kappa = \aleph_1$. Note that $\log \alpha^+ = \aleph_1$ and $\log 2^{\alpha} = \aleph_{\omega}$. Now

$$\delta(\alpha^+,\kappa) = \Delta(\alpha^+,\aleph_0) = 2^{\aleph_0} < \alpha$$

by Theorem 1.5, while

$$\delta(2^{\alpha}, \kappa) = \Delta(2^{\alpha}, \aleph_0) = \Delta(2^{\alpha}, \operatorname{cf} \log 2^{\alpha}) > \log 2^{\alpha} = \alpha$$

by Corollary 2.4. I.e.,

 $\delta(\alpha^+,\kappa) \leq \alpha \leq \delta(2^{\alpha},\kappa).$

References

- F.S. Cater, P. Erdös, and F. Galvin, On the density character of λ-box products, Abstract 76T–G100, Notices Amer. Math. Soc. 23 (1976) p. A-600.
- [2] W.W. Comfort and S. Negrepontis, On families of large oscillation, Fund. Math. 75 (1972) 275-290.
- [3] W.W. Comfort and S. Negrepontis, The theory of ultrafilters (Springer-Verlag, New York-Heidelberg-Berlin, 1974).
- [4] K.I. Devlin and R.B. Jensen, Marginalia to a theorem of Silver, ISILC Logic Conference, Springer Lecture Notes no. 499 (1975) 115–142.
- [5] W.B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970) 139-178.
- [6] R. Engelking and M. Karlowicz, Some theorems of set theory and their topological consequences, Fund. Math. 57 (1965) 275–285.
- [7] G. Fichtenholz and L. Kantorovitch, Sur les opérations linéaires dans l'espace des fonctions bornées, Studia Math. 5 (1934) 69–98.
- [8] F. Hausdorff, Über zwei Sätze von G. Fichtenholz und L. Kantorovitch, Studia Math. 6 (1936) 18-19.
- [9] T. Jech, Set Theory (Academic Press, to appear).
- [10] M. Magidor, On the singular cardinals problem I, Israel J. Math. 28 (1977) 1–31; On the singular cardinals problem II, Ann. of Math. 106(2) (1977) 517–547.
- A. Tarski, Ideale in vollständigen Mengenkörpern I, Fund. Math. 32 (1939) 45–63.